
Advanced Blending R10

Chapter 2.
Advanced Blending Examples

Topic: Blending

The examples in this chapter illustrate some advanced blending concepts and the
functionality available in ABL. These examples use Scheme extensions that can be entered
in the Scheme based demonstration application, Scheme AIDE. Only entity–entity blends
are featured in these examples.

ABL Scheme Extension Examples
Topic: *Blending, *Examples

The following examples illustrate performing advanced blending using Scheme extensions.
Each example is followed by plots of the model before and after the blend is applied.

Refer to Chapter 3, Scheme Extensions, for a description of Scheme extension syntax and
the Scheme extensions used in the following examples.

The Scheme based demonstration application, Scheme AIDE, generates and returns a
numeric identifier (ID) whenever a new entity is created. The application starts the ID at
one (1) when the first entity is created during the session and increments the ID whenever a
new entity is created. Thus, the actual ID returned for a given entity depends on how many
entities have been created before. The examples below often use these entity IDs in
subsequent operations to refer to previously created entities. Each example assumes that no
operations have been performed in the current session, so the IDs start at one (1). In
practice, if you run these examples after performing other operations that create entities, you
must adjust the entity IDs in the examples accordingly.

Remote Face–Face Blend
Topic: Blending

In this example, a face–face blend is produced. The two faces are remote, so there is no
blended edge.

Advanced Blending R10

Scheme Example

; create a block
(define after (solid:block (position –30 –30 –30)

(position 30 30 30)))
; create a wire–body
(define wireframe (wire–body:points(list (position 20 –30 30)

(position 20 30 30) (position 30 30 20)
(position 30 –30 20) (position 20 –30 30))))

; create a sheet from the wire–body
(sheet:cover–wires wireframe)
; create a solid from the sheet body
(define body1 (sweep:law wireframe (gvector 30 0 30)))
; subtract the solid from the block
(solid:subtract after body1)
;; OUTPUT Original
; select faces to blend
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
(define face2 (pick:face (ray (position 0 0 0)

(gvector 1 0 0)) 1))
; create a vradius
(define rad1 (abl:const–rad 30))
; create an entity–entity blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 0 0) #t)
; fix the blend
(blend:fix after)
;; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-1. Remote Face–Face Blend

Blending Disjoint Faces
Topic: Blending

In the next example, the two faces to be blended are in disjoint shells. The blend joins the
two shells into one.

Scheme Example

; abl:ent–ent–blend
; Create a solid block
(solid:block (position –40 –40 –5) (position 40 40 5))
;; #[entity 2 1]
; Create a sphere
(solid:sphere (position 0 0 40) 30)
;; #[entity 3 1]
; Unite the solids
(bool:unite (entity 2) (entity 3))
;; #[entity 2 1]
(zoom–all)
; OUTPUT Original

Advanced Blending R10

; Define vradius
(define rad (abl:const–rad 10))
;; rad
; Define side entities
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
;; face1
(define face2 (pick:face (ray (position 0 0 30)

(gvector 1 0 0)) 1))
;; face2
; Do blending
(abl:ent–ent–blend face1 face2 rad

(position 30 0 10) #f)
;; #[entity 2 1]
; Fix the body
(blend:fix (entity 2))
;; #t
; OUTPUT Result

Original Result

Figure 2-2. Blending Disjoint Faces

Advanced Blending R10

Edge–Face Blend
Topic: Blending

An edge–face blend is created by picking an edge and a face, rather than two faces. In this
case, the approximate starting point must indicate on which side of the edge the rolling ball
will rest. The convexity indicates on which side of the face the ball rests. The edge and the
face may be picked in either order.

Scheme Example

(define after (solid:block (position –5 –30 –30)
(position 5 30 30)))

; OUTPUT Original
; select the edge and face for blending
(define edge1 (pick:edge (ray (position –5 0 0)

(gvector 0 0 1))))
(define face1 (pick:face (ray (position 0 0 0)

(gvector 1 0 0)) 1))
; create a vradius
(define rad1 (abl:const–rad 30))
; create the blend
(abl:ent–ent–blend edge1 face1 rad1 (position 0 0 0) #t)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-3. Edge–Face Blend

Blend Along Faces
Topic: Blending

In the next example, an entity–entity blend traverses smoothly from one face to the next. At
the end of the sequence there is no smooth face on which to roll, so the blend terminates at
that point.

Scheme Example

; abl:ent–ent–blend
; Create a solid block
(solid:block (position –20 –20 –20)

(position 20 20 20))
;; #[entity 2 1]
; Create a cylinder
(solid:cylinder (position 20 0 –20)

(position 20 0 20) 20)
;; #[entity 3 1]
; Unite the solids
(bool:unite (entity 2) (entity 3))
;; #[entity 2 1]
; OUTPUT Original

Advanced Blending R10

; Define vradius
(define rad (abl:const–rad 10))
;; rad
; Define side entities
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
;; face1
(define face2 (pick:face (ray (position 0 0 0)

(gvector 0 –1 0)) 1))
;; face2
; Do blending
(abl:ent–ent–blend face1 face2 rad (position 0 0 0) #t)
;; #[entity 2 1]
; Fix the body
(blend:fix (entity 2))
;; #t
; OUTPUT Result

Original Result

Figure 2-4. Blend Along Faces

Advanced Blending R10

Blend Along Edges
Topic: Blending

For edges, the rule is that when the end of an edge is reached and there is a tangent edge at
that vertex, then the blend sequence will continue onto that tangent edge. If there is not,
then the blend will terminate. A blend rolls from one tangent edge onto the next.

Scheme Example

(define block1 (solid:block (position –20 –20 –2.5)
(position 20 20 2.5)))

(define cylinder1 (solid:cylinder (position 20 0 –2.5)
(position 20 0 2.5) 20))

(define after (solid:unite block1 cylinder1))
; OUTPUT Original
; select the face and edge for blending
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
(define edge1 (pick:edge (ray (position 0 –20 0)

(gvector 0 0 –1))))
; create a vradius
(define rad1 (abl:const–rad 10))
; create the blend
(abl:ent–ent–blend face1 edge1 rad1 (position 0 0 0) #t)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-5. Blend Along Edges

A complication with blends running along edges is that they sometimes come away from the
edge and roll onto the adjoining face. When this happens, that adjoining face is
automatically included into the sequence. In the following example, a blend comes off an
edge onto the adjoining face. It does not make sense to try and stop the blend at that point,
as there is no way to close it off sensibly. In addition to the original edge–face blend, a
face–face blend is also included in the sequence. Compare this example, in which the initial
starting blend is edge–face, with the ”Forcing End Cap on Edge–Face” example, in which
the blend starts as face–face and rolls on to the edge. The two examples produce the same
results.

Advanced Blending R10

Scheme Example

(define before (solid:block (position –30 –30 –10)
(position 30 30 10)))

(entity:transform before (transform:translation
(gvector 0 0 –10)))

(define wb (wire–body:points (list (position –30 –30 0)
(position –30 –30 10) (position –30 30 30)
(position –30 30 0) (position –30 –30 0))))

(sheet:cover–wires wb)
(define body1 (sweep:law wb (gvector 30 0 0)))
(solid:unite before body1)
; OUTPUT Original
; select the edge and face for the blend
(define edge1 (pick:edge (ray (position 0 0 1)

(gvector 0 0 1))))
(define face1 (pick:face (ray (position 1 0 1)

(gvector 0 0 –1)) 1))
; create the vradius
(define rad1 (abl:const–rad 20))
; create the blend
(abl:ent–ent–blend edge1 face1 rad1 (position 20 0 20) #f)
; fix the blend
(blend:fix before)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-6. Rolls Onto Adjoining Face

Ambiguities in a Blend Sequence
Topic: Blending

Occasionally, specifying a pair of entities does not define a unique set of faces to be made.
In these cases the starting point is used to select the desired one. There are two distinct
blends that could exist between the two faces in the following example. By placing the
approximate starting point of the rolling ball’s center in the region where it sweeps out the
desired blend face, we can specify which blend is produced. Compare bodies b1 and b2,
which represent the same face–face blend on the original body, but with different starting
positions for the rolling ball.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –30 –30 –30)
(position 30 30 30)))

(define cube2 (solid:block (position –30 –30 –30)
(position 30 30 30)))

(entity:transform cube2
(transform:translation (gvector 30 0 30)))

(solid:subtract after cube2)
(define cube3 (solid:block (position –15 –15 –15)

(position 15 15 15)))
(solid:subtract after cube3)
; OUTPUT Original
; select faces for blending
(define face1 (pick:face (ray (position 25 0 25)

(gvector 0 0 –1)) 1))
(define face2 (pick:face (ray (position 25 0 25)

(gvector –1 0 0)) 1))
; create the vradius
(define rad1 (abl:const–rad 10))
; make a copy of the entity
(define step2 (entity:copy after))
; create the entity–entity blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 25 0) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result1
; delete the modified entity
(entity:delete after)
; select the faces for blending
(set! face1 (pick:face (ray (position 25 0 25)

gvector 0 0 –1)) 1))
(set! face2 (pick:face (ray (position 25 0 25)

gvector –1 0 0)) 1))
; create the entity–entity blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 –25 0) #f)
; fix the blend
(blend:fix step2)
; OUTPUT Result2

Advanced Blending R10

Original

Result1 Result2

Figure 2-7. Ambiguities in a Blend

Advanced Blending R10

If the starting point does not lie within one of the two possible regions (e.g., if 0 0 0 had
been given as the starting point in the previous example), then it is undefined which of the
two blends would be produced. If the topologies and geometries involved allow only one
possible blend, however, then the correct regions should be made, whether or not the
starting point lies within it.

Blend Termination and Capping
Topic: Blending

Blend termination means that the rolling ball does not roll onto any of the new entities it
may have encountered, but rather attempts to trim the blend face to the body. Normally this
involves intersecting the blend surface with existing body faces, or possibly the extensions
of existing body faces. This process is referred to as capping. When capping terminates a
blend, it is referred to as an end cap. End caps are seen in all the previous examples, except
in the blending disjoint faces example.

Capping may not always terminate the blend. The cap may not cover the end of the face but
merely a side of it. Such caps are called side caps. Whether a cap is an end cap or side cap is
a property of the geometries and topology in that region; it is not a user choice. The other
common way that a blend may terminate is by meeting itself, such as in the blending
disjoint faces example.

The rule governing how a blend progresses across a body may be explained by saying that
whenever the ball leaves the current entity, the blend must either roll onto one of the new
entities encountered at that point, or it must start capping itself there. This latter action may
or may not terminate the blend, depending on whether the cap is an end cap or a side cap.

The following example illustrates an edge–face blend with side caps. There are four side
caps where the ball rolls off the face, and one further side cap where it rolls off the edge.
None of the caps are end caps, and the blend eventually terminates by meeting itself again.

Advanced Blending R10

Scheme Example

(define tube1 (solid:cylinder
(position 0 0 –10)

(position 0 0 10) 20))
(define after (solid:block (position –30 –30 –5)

(position 30 30 5)))
(entity:transform after

(transform:translation (gvector 0 0 –5)))
(solid:unite after tube1)
(define block1 (solid:block (position –30 –10 –10)

(position 30 10 10)))
(entity:transform block1

(transform:translation (gvector 30 0 15)))
(solid:subtract after block1)
; OUTPUT Original
; select face and edge for blending
(define face1 (pick:face (ray (position 25 0 5)

(gvector 0 0 –1)) 1))
(define edge1 (pick:edge (ray (position –10 0 10)

(gvector –1 0 0))))
; create the vradius
(define rad1 (abl:const–rad 15))
; create the entity–entity blend
(abl:ent–ent–blend face1 edge1 rad1 (position 30 0 10) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-8. Edge–Face Blend with Side Caps

Advanced Blending R10

Scheme Example

(define after (solid:block (position –30 –30 –30)
(position 30 30 30)))

(define cube2 (solid:block (position –30 –30 –30)
(position 30 30 30)))

(entity:transform cube2
(transform:translation (gvector 30 0 30)))

(solid:subtract after cube2)
(define cube3 (solid:block (position –5 –15 –5)

(position 5 15 5)))
(entity:transform cube3

(transform:translation (gvector 0 0 10)))
(solid:subtract after cube3)
(define cube4 (solid:block (position –5 –15 –5)

(position 5 15 5)))
(entity:transform cube4

(transform:translation (gvector 10 0 0)))
(solid:subtract after cube4)
; OUTPUT Original
;select the faces for blending
(define face1 (pick:face (ray (position 25 0 25)

(gvector 0 0 –1)) 1))
(define face2 (pick:face (ray (position 25 0 25)

(gvector –1 0 0)) 1))
; create the vradius
(define rad1 (abl:const–rad 10))
; create the entity–entity blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 0 0) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-9. Side Caps in the Middle of the Body

Blend Instruction
Topic: Blending

There are occasions when the default behavior of the rolling ball is not desired. The default
behavior may be overridden by setting blend instructions on the body. Because an
entity–entity blend has no sequence of blended edges, the only place from which
instructions can be read is the entities into which the contact points of the ball actually run.
Which of the two available instructions to use depends on the behavior choices the blend
has at any point. The behaviors are either to roll onto the newly encountered entities, or to
begin capping the existing blend instead. The available instructions are:

Roll On Is used to tell the blend to roll onto the encountered entity when the.
default would have been to cap the blend at that point

Cap Is used to tell the blend to begin capping the existing blend face rather.
than to roll onto the new entities. Whenever an entity would normally
have been rolled onto, placing a cap instruction there forces the blend to
cap instead, forming either side or end caps.

A roll on instruction may be placed by the scheme command:

abl:set–instruction <entity type> 1

Advanced Blending R10

and a cap instruction may be placed by the scheme command:

abl:set–instruction <entity type> 2

where <entity type> could be one of the keywords face, edge, or vertex.

Using Blend Instructions
Topic: Blending

The following example illustrates the use of blend instructions. In this example, a cap
instruction (instruction action value = 2) is placed on the first smoothly connected face to
prevent the rolling ball from rolling on. Compare this example with example for
abl:ent–ent–blend.

Scheme Example

; Forcing a blend to cap
; Create a solid block
(solid:block (position –20 –20 –20)

(position 20 20 20))
;; #[entity 2 1]
; Create a cylinder
(solid:cylinder (position 20 0 –20)

(position 20 0 20) 20)
;; #[entity 3 1]
; Unite the solids
(bool:unite (entity 2) (entity 3))
;; #[entity 2 1]
; OUTPUT Original

Advanced Blending R10

; Define vradius
(define rad (abl:const–rad 10))
;; rad
; Define side entities
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
;; face1
(define face2 (pick:face (ray (position 0 0 0)

(gvector 0 –1 0)) 1))
;; face2
; Define a face to put instruction on
(define face_instr (pick:face (ray (position 0 0 0)

(gvector 1 0 0)) 1))
;; face_instr
; Put a cap instruction (action = 2) on the face
(abl:set–instruction face_instr 2)
;; ”cap”
; Do blending
(abl:ent–ent–blend face1 face2 rad (position 0 0 0) #t)
;; #[entity 2 1]
; Fix the blend
(blend:fix (entity 2))
;; #[entity 2 1]
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-10. Forcing a Blend to Cap

Compare the following example with the previous example. A cap instruction is placed on
the first tangent edge to prevent the blend from rolling onto it.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –20 –20 –2.5)
(position 20 20 2.5)))

(define tube1 (solid:cylinder (position 0 0 –2.5)
(position 0 0 2.5) 20))

(entity:transform tube1
(transform:translation (gvector 20 0 0)))

(solid:unite after tube1)
; OUTPUT Original
; select edge for placing blend instruction
(define edge1 (pick:edge (ray (position 0 0 –2.5)

(gvector 1 0 0))))
; select the face and edge for blending
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 0 1)) 1))
(define edge2 (pick:edge (ray (position 0 –20 0)

(gvector 0 0 –1))))
; create the vradius
(define rad1 (abl:const–rad 10))
; setting capping instruction on edge1
(abl:set–instruction edge1 2)
; create the entity–entity blend
(abl:ent–ent–blend face1 edge2 rad1 (position 0 0 0) #t)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

cap

Figure 2-11. Capping at First Tangent Edge

Forcing a Blend to Roll On
Topic: Blending

Whenever a blend running along a face runs into an edge, it will roll onto any smooth face it
finds there, otherwise it will cap. Sometimes it is desirable to roll onto the edge of the face
rather than to cap the blend.

Compare the two results in the following example. In the default case, the face–face blend is
end capped. The addition of the roll on instruction to the edge in the second case causes the
face–face blend to become an edge–face blend. It is this edge–face blend which is
subsequently end capped.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –30 –30 –10)
(position 30 30 10)))

(entity:transform after
(transform:translation (gvector 0 0 –10)))

(define wireframe (wire–body:points (list (position –30 –30 0)
(position –30 –30 10) (position –30 30 30)
(position –30 30 0) (position –30 –30 0))))

(sheet:cover–wires wireframe)
(sheet:cover wireframe)
(define fac (pick:face (ray (position 0 0 10)

(gvector –1 0 0)) 1))
(define body1 (sweep:law fac 30))
(solid:unite after body1)
(define face1 (pick:face (ray (position 1 0 1)

(gvector –1 0 0)) 1))
(define face2 (pick:face (ray (position 1 0 1)

(gvector 0 0 –1)) 1))
(define rad1 (abl:const–rad 20))
; OUTPUT Original
(define step2 (entity:copy after))
(abl:ent–ent–blend face1 face2 rad1 (position 20 0 20) #f)
(blend:fix after)
; OUTPUT Result1
(entity:delete after)
(define face1 (pick:face (ray (position 1 0 1)

(gvector –1 0 0)) 1))
(define face2 (pick:face (ray (position 1 0 1)

(gvector 0 0 –1)) 1))
(define edge1 (pick:edge (ray (position 0 0 1)

(gvector 0 0 1))))
(abl:set–instruction edge1 1)
(abl:ent–ent–blend face1 face2 rad1 (position 20 0 20) #f)
(blend:fix step2)
; OUTPUT Result2

Advanced Blending R10

Original

Result1 Result2

rollon

Figure 2-12. Forcing End Cap on Edge–Face

Advanced Blending R10

Scheme Example

(define after (solid:block (position –40 –40 –10)
(position 40 40 10)))

(entity:transform after
(transform:translation (gvector 0 0 –10)))

(define cube1 (solid:block (position –20 –20 –10)
(position 20 20 10)))

(solid:unite after cube1)
; OUTPUT Original
; select the vertex for blend instruction
(define v1 (pick:vertex (ray (position 0 0 10)

(gvector 1 –1 0))))
(define edge1 (pick:edge (ray (position 0 0 10)

(gvector 0 –1 0))))
(define face1 (pick:face (ray (position 0 –30 10)

(gvector 0 0 –1)) 1))
; create the vradius
(define rad1 (abl:const–rad 20))
; set the rollon instruction at the vertex
(abl:set–instruction v1 1)
; create the blend
(abl:ent–ent–blend edge1 face1 rad1 (position 0 –30 10) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

rollon

Figure 2-13. Face–Vertex Blend

Specifying Instruction Positions
Topic: Blending

At one end of the initial face–face blend in the following example, we wish to roll onto the
edge (rather than cap as usual), so a roll on instruction is placed. However, at the other end
we wish to cap as usual, so we must place a cap instruction to override the previously
established roll on instruction that would now apply. Since there are two instructions for the
same edge, we must distinguish them by associating positions for the instructions.
Whenever there is more than one instruction on a blend, the nearest instruction on the entity
in question applies.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –40 –40 –20)
(position 40 40 20)))

(define tube1 (solid:cylinder (position 0 0 –20)
(position 0 0 20) 30))

(entity:transform tube1
(transform:rotation (position 0 0 0) (gvector 1 0 0) 90))

(entity:transform tube1
(transform:translation (gvector 0 0 15)))

(solid:unite after tube1)
; OUTPUT Original
; select the edge for blend instruction
(define edge1 (pick:edge (ray (position 0 0 45)

(gvector 0 –1 0))))
; select the faces for blending
(define face1 (pick:face (ray (position 0 0 25)

(gvector 0 –1 0)) 1))
(define face2 (pick:face (ray (position 0 –30 0)

(gvector 0 0 1)) 1))
; create the vradius
(define rad1 (abl:const–rad 5))
; apply rollon instruction to edge1 at specific position
(abl:set–instruction edge1 1 (position 45 0 0))
; apply capping instruction to edge1 at specific position
(abl:set–instruction edge1 2 (position –45 0 0))
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 –30 30) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

rollon

rollon

Figure 2-14. Instructions at Specified Positions

Edge–Face Sequence
Topic: Blending

The following is an example of a blend of an edge–face sequence. Unfortunately, the rolling
ball falls off the face as it follows the series of tangent edges. With no roll on instruction,
the blend starts capping, giving rise to a side cap and then an end cap. The effect of the roll
on instruction, terminating with two edge–edge blend faces, is probably more desirable.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –40 –40 –10)
(position 40 40 10)))

(entity:transform after (transform:translation
(gvector 0 0 –10)))

(define cube1 (solid:block (position –30 –35 –10)
(position 30 35 10)))

(entity:transform cube1
(transform:translation (gvector 10 5 0)))

(solid:unite after cube1)
(solid:blend–edges (pick:edge (ray (position –20 0 5)

(gvector 0 –1 0))) 20)
; OUTPUT Original
; select face and edge for blending
(define face1 (pick:face (ray (position –30 0 10)

(gvector 0 0 –1)) 1))
(define edge1 (pick:edge (ray (position 0 0 10)

(gvector –1 0 0))))
; create the vradius
(define rad1 (abl:const–rad 20))
; make a copy of the original entity
(define step1 (entity:copy after))
; create the blend
(abl:ent–ent–blend face1 edge1 rad1 (position –30 0 10) #f)
(blend:fix after)
; OUTPUT Result1
(entity:delete after)
(define face1 (pick:face (ray (position –30 0 10)

(gvector 0 0 –1)) 1))
(define edge1 (pick:edge (ray (position –30 0 0)

(gvector 0 –1 0))))
(define edge2 (pick:edge (ray (position 0 0 10)

(gvector –1 0 0))))
(abl:set–instruction edge1 1)
(abl:ent–ent–blend face1 edge2 rad1 (position –30 0 10) #f)
(blend:fix step1)
; OUTPUT Result2

Advanced Blending R10

Original

Result1 Result2

rollon

Figure 2-15. Edge–Face Sequence

Advanced Blending R10

Tapering Blends
Topic: Blending

Sometimes it is desirable for the ends of a blend to taper out, rather than get capped. In the
following example, the blend will only taper out to nothing if the edge which meets the
bottom face does so tangentially. Otherwise, the rolling ball would roll over the edge onto
the next face. Although only one roll on instruction is required, all the edges in the series of
tangent edges used could have been marked with roll on. This is useful if one does not know
which of the tangent edges will actually be intercepted by the face–face blend.

Scheme Example

(define tube1 (solid:cylinder (position 0 0 –30)
(position 0 0 30) 30))

(entity:transform tube1
(transform:rotation (position 0 0 0) (gvector 0 1 0) 90))

(entity:transform tube1
(transform:translation (gvector 0 –15 30)))

(define cube1 (solid:block (position –30 –7.5 –10)
(position 30 7.5 10)))

(entity:transform cube1
(transform:translation (gvector 0 –7.5 10)))

(solid:subtract cube1 tube1)
(define tube2 (solid:cylinder (position 0 0 –30)

(position 0 0 30) 30))
(entity:transform tube2

(transform:rotation (position 0 0 0) (gvector 0 1 0) 90))
(entity:transform tube2

(transform:translation (gvector 0 15 –30)))
(entity:transform tube2

(transform:translation (gvector 0 0 8.0384757729336833)))
(define cube2 (solid:block (position –30 –7.5 –10)

(position 30 7.5 10)))
(entity:transform cube2

(transform:translation (gvector 0 7.5 10)))
(solid:intersect cube2 tube2)
(define after (solid:block (position –30 –5 –4.0192378864668417)

(position 30 5 4.0192378864668417)))
(entity:transform after

(transform:translation (gvector 0 20 4.0192378864668417)))
(solid:unite cube2 cube1)
(solid:unite after cube2)
(define cube3 (solid:block (position –40 –30 –2.5)

(position 40 30 2.5)))
(entity:transform cube3

(transform:translation (gvector 10 –5 –2.5)))

Advanced Blending R10

(solid:unite after cube3)
; OUTPUT Original
; select edge for rollon instruction
(define edge1 (pick:edge (ray (position 30 5 1)

(gvector 0 0 1))))
; select faces for blending
(define face1 (pick:face (ray (position 40 0 10)

(gvector 0 0 –1)) 1))
(define face2 (pick:face (ray (position 40 0 1)

(gvector –1 0 0)) 1))
; create the vradius
(define rad1 (abl:const–rad 7))
; set the blend instruction
(abl:set–instruction edge1 1)
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 40 10 10) #f)
(blend:fix after)
; OUTPUT Result

Original Result

rollon

Figure 2-16. Tapering Blends

Advanced Blending R10

A tapering end to a blend is more difficult if the edge down which the blend rolls does not
approach the face tangentially. In some cases, an edge–edge blend can provide a solution to
this problem. In this example, the face–face blend first becomes edge–face and the final
triangle of blend surface is edge–edge. The second roll on instruction is important, as the
edge–face surface is otherwise difficult to end cap.

Scheme Example

(define after (solid:block (position –30 –30 –15)
(position 30 30 15)))

(entity:transform after
(transform:translation (gvector 0 0 –15)))

(define wb (wire–body:points (list (position 0 –30 0)
(position 0 30 0) (position 0 30 30) (position 0 –30 0))))

(sheet:cover–wires wb)
(sheet:cover wb)
(define fac (pick:face (ray (position –1 0 1)

(gvector 1 0 0)) 1))
(define body1 (sweep:law fac 30))
(solid:unite after body1)
; OUTPUT Original
; select edges for blend instruction
(define edge1 (pick:edge (ray (position 0 0 1)

(gvector 0 0 1))))
(define edge2 (pick:edge (ray (position 1 0 0)

(gvector 0 –1 0))))
; select faces for blending
(define face1 (pick:face (ray (position 1 0 1)

(gvector –1 0 0)) 1))
(define face2 (pick:face (ray (position 1 0 1)

(gvector 0 0 –1)) 1))
; create the vradius
(define rad1 (abl:const–rad 20))
; set rollon instruction on edge1 and edge2
(abl:set–instruction edge1 1)
(abl:set–instruction edge2 1)
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 0 0 0) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

rollon

rollon

Figure 2-17. Tapering with Edge–Edge Blend

In this example, tapering the blend away with an edge–face blend is a reasonable solution to
an otherwise difficult end capping problem. The straight edges approach the face
tangentially, so the blend tapers to points.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –40 –40 –20)
(position 40 40 20)))

(entity:transform after
(transform:translation (gvector 0 0 –20)))

(define tube1 (solid:cylinder (position 0 0 –40)
(position 0 0 40) 40))

(solid:unite after tube1)
; OUTPUT Original
; select edges for blend instruction
(define edge1 (pick:edge (ray (position 38 –38 0)

(gvector 1 0 0))))
(define edge2 (pick:edge (ray (position 38 –38 0)

(gvector 0 –1 0))))
; select faces for blending
(define face1 (pick:face (ray (position 38 –38 10)

(gvector –1 1 0)) 1))
(define face2 (pick:face (ray (position 38 –38 –1)

(gvector 0 0 1)) 1))
; create the vradius
(define rad1 (abl:const–rad 5))
; set the rollon instruction for the edges
(abl:set–instruction edge1 1)
(abl:set–instruction edge2 1)
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 40 –40 0) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

rollon rollon

Figure 2-18. Tapering Away with Edge–Face Blend

Blends at Complex Vertices
Topic: Blending

Entity–entity blends provide a means of rolling around or over edges and vertices to join
together into a single sequence. This example can be compared with what one would obtain
with ordinary (i.e., non entity–entity) edge blends, mitered together. In this case the miter
would actually extend so far as to run off the bottom face.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –50 –50 –10)
(position 50 50 10)))

(define body1 (solid:pyramid 60 40 40 3))
(entity:transform after (transform:translation

(gvector 0 0 –20)))
(solid:unite after body1)
; OUTPUT Original
; select edge for blend instruction
(define edge1 (pick:edge (ray (position 0 0 0)

(gvector –1 0 1))))
; select faces for blending
(define face1 (pick:face (ray (position 0 0 0)

(gvector 0 1 0)) 1))
(define face2 (pick:face (ray (position 30 0 0)

(gvector 0 0 –1)) 1))
; create the vradius
(define rad1 (abl:const–rad 20))
; set the rollon instruction
(abl:set–instruction edge1 1)
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 30 0 –10) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-19. Joining Edges and Vertices into Single Sequence

This is another example in which the rolling ball rolls around a complex vertex. As it works
its way around, two extra edge–face and one extra face–face blends are produced. Both roll
on instructions are required to guide the ball around.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –40 –40 –40)
(position 40 40 40)))

(define tube1 (solid:cylinder (position 0 0 –50)
(position 0 0 50) 100))

(entity:transform tube1
(transform:translation (gvector 0 65 0)))

; imprint the intersection curves on the body
(solid:imprint after tube1)
(entity:delete tube1)
(define tube2 (solid:cylinder (position 0 0 –50)

(position 0 0 50) 100))
(entity:transform tube2

(transform:rotation (position 0 0 0) (gvector 1 0 0) 90))
(entity:transform tube2

(transform:translation (gvector 0 0 –65)))
; imprint the intersection curves on the body
(solid:imprint after tube2)
(entity:delete tube2)
; OUTPUT Original
; select the imprinted edges for blending
(define edge1 (pick:edge (ray (position 0 0 40)

(gvector 0 –1 0))))
(define edge2 (pick:edge (ray (position 0 –40 0)

(gvector 0 0 1))))
; create the vradius
(define rad1 (abl:const–rad 20))
; create the blend
(abl:ent–ent–blend edge1 edge2 rad1 (position 0 –20 20) #t)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

Figure 2-20. Using Spring Curves

High Degree of Behavior Control
Topic: Blending

Advanced blending offers a high degree of control over where and how to roll onto new
entities or to cap. If there is more than one location at which side caps could be produced, a
face–face blend can be used to roll on at some, but not all, of these places. In the following
example there are four places at which side caps could be formed, but we wish to roll on at
just one of these locations. Therefore, we use the roll on instruction to force the rolling ball
to roll along just one intercepted edge.

Advanced Blending R10

Scheme Example

(define after (solid:block (position –30 –30 –15)
(position 30 30 15)))

(entity:transform after
(transform:translation (gvector 0 0 –15)))

(define tube1 (solid:cylinder (position 0 0 –30)
(position 0 0 30) 20))

(solid:unite after tube1)
; OUTPUT Original
; select edge for blend instruction
(define edge1 (pick:edge (ray (position 25 0 0)

(gvector 1 0 0))))
; select faces for blending
(define face1 (pick:face (ray (position 25 0 1)

(gvector 0 0 –1)) 1))
(define face2 (pick:face (ray (position 0 0 5)

(gvector 1 0 0)) 1))
; create the vradius
(define rad1 (abl:const–rad 15))
; create the instruction on the edge
(abl:set–instruction edge1 1)
; create the blend
(abl:ent–ent–blend face1 face2 rad1 (position 30 0 10) #f)
; fix the blend
(blend:fix after)
; OUTPUT Result

Advanced Blending R10

Original Result

rollon

Figure 2-21. Controlling Capping

