
Chapter 6.
Model Topology

Topic: *Model Topology

Topology refers to the spatial relationships between the various entities in a model. Topology
describes how geometric entities are connected (connectivity). On its own, topology defines a
“rubber” model, whose position is not fixed in space. For example, a circular edge and an
elliptical edge are topologically equivalent (but not geometrically). Likewise, a square face
and a rhomboid face are topologically equivalent (but not geometrically). A topological
entity’s position is fixed in space when it is associated with a geometric entity.

Topology can be bounded, unbounded, or semi-bounded, allowing for complete and
incomplete bodies. A solid, for example, can have missing faces, and existing faces can have
missing edges. Solids can have internal faces that divide the solid into cells. Bodies such as
these are not physically realizable, but can be represented with ACIS.

ACIS separately represents the geometry (detailed shape) and the topology (connectivity) of
objects. This concept is called boundary representation, or B-rep, modeling. This provides the
ability to determine whether a position is inside, outside, or on the boundary of a volume
(which distinguishes a solid modeler from surface or wireframe modelers). ACIS defines the
boundary between solid material and empty space. This boundary is made from a closed set of
surfaces.

Topology and Boundary Representation
Topic: *Model Topology

The ACIS boundary representation (B-rep) of a model is a hierarchical decomposition of the
model’s topology:

Body The highest level of model object, and is composed of lumps.. . . . . . . . . 

Lump A 1D, 2D, or 3D set of points in space that is disjoint with all other lumps. It. . . . . . . . . 
is bounded by shells.

Shell A set of connected faces and wires, and can bound the outside of a solid or. . . . . . . . . 
an internal void (hollow). Subshells form a further decomposition of shells
for internal efficiency purposes.



Face A connected portion of a surface bounded by a set of loops.. . . . . . . . . 

Loop A connected series of coedges. Generally, loops are closed, having no actual. . . . . . . . . 
start or end point.

Wire A connected series of coedges that are not attached to a face.. . . . . . . . . . 

Coedge Represents the use of an edge by a face. It may also represent the use of an. . . . . . . 
edge by a wire.

Edge A curve bounded by vertices.. . . . . . . . . 

Figure 6-1 shows the relationship of the conceptual topology elements that define the
boundary representation of an ACIS model.
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Figure 6-1. Topology

These elements are implemented in ACIS using the C++ classes BODY, LUMP, SHELL,
SUBSHELL, FACE, LOOP, WIRE, COEDGE, EDGE, and VERTEX. Each of these classes is
derived from the ENTITY class. The specific data and methods of each class is described in
the class reference template in online help.



The B-rep topology specifies the hierarchy of elements involved. For example, the topology
of a hollow cube would include one body, one lump, two shells (one outside and one forming
the inner void), 12 loops, 24 edges, and 16 vertices. It also specifies the relationships of these
elements. For example, the inner void could be centered within the cube, or could be a small
rectangular space off to one side. Within these relationships, transforms mathematically
specify relative location, rotation, scaling, reflection, and shear.

Bodies
Topic: *Model Topology

Bodies are the highest level entities in ACIS models. Typically, a body is a single solid or
sheet component, such as a washer, a stripped-down engine block, a zero thickness plate, or a
cross section. A body can also be several disjoint bodies treated as one. A transformation
recorded with the body relates the local coordinate system of the wires and lumps to the global
coordinate space of the body.

Bodies “own” any number of lumps: zero, one, or more. Figure 6-2 shows an example of a
body with more than one lump. When a square block (solid lines) is cleared by a cylinder
(dashed lines) whose diameter is slightly larger than the length of a side of the block, the
block is separated into four lumps. Although the four lumps are not physically joined, they are
still treated as a single body.

Figure 6-2. Body with Four Lumps



Lumps
Topic: *Model Topology

A lump represents a bounded, connected region in space. A lump is an entire connected set of
points, whether the set is 3D, 2D, 1D, or a combination of dimensions. Thus, a solid block
with a dangling outside face is one lump, as is a solid block with an internal cavity. Two
disconnected sheets are represented as two lumps.

A body contains zero or more lumps, each of which represents a set of points that are disjoint
from those represented by all other lumps in the body.

Figure 6-3 illustrates a body with two solid lumps. The large block represents one solid lump
that completely encloses a void (dotted line). The second lump (small block with solid lines)
is completely enclosed in the void.

Figure 6-3. Body with Two Lumps

Figure 6-4 shows a body with a solid lump and a sheet lump. It is also possible to have solid
and sheet regions within a single lump.



Figure 6-4. Body with Solid Lump and Sheet Lump

Shells
Topic: *Model Topology

A shell is an entire connected set of faces and/or wires, including connections through a
nonmanifold vertex. Faces are connected together along common edges or at common
vertices; wires may be connected to faces at end vertices.

A solid block with a dangling sheet is one shell, but a block with a cavity is two shells. A solid
block with many embedded faces that are all connected through some path to the exterior
faces is one shell, but a solid block with a disconnected “floating” embedded face is two shells
(but one lump).

The most common type of shell is made up only of complete, finite single-sided faces (see
section Faces), two of which meet at every edge, with compatible insides and outsides. Refer
to Figure 6-5.



outside

inside

Figure 6-5. Complete Shell

Such a shell divides the whole of space into one finite region and one infinite one. If the finite
region is inside the bounding faces, the shell is called peripheral, otherwise it represents a
finite void in an object, and is called void. Refer to Figure 6-6.

Figure 6-6. Solid with Void Bounded by One Shell



If one or more edges have only one face attached, they are described as free edges, and the
shell is open. If all the faces are double-sided and all exterior or all interior, then the shell is a
double-sided sheet. If any or all of the faces are single-sided, or there are double-sided faces
of both sorts, points in space cannot be classified unambiguously as inside or outside the shell,
and it is described as incompletely-bounded, or just incomplete. Refer to Figure 6-7.

Figure 6-7. Incomplete Shell

More than two faces may meet along an edge, in which case the edge is said to be
nonmanifold. Normally, if one collects together every face at a vertex that can be reached
from a given face by crossing one or more edges starting or ending at the vertex, the collection
contains all of the faces that meet at that vertex. If this is not the case, the vertex is said to be
nonmanifold. One or more wires may be attached to a vertex that is already on the boundary
of one or more faces. This again makes the vertex nonmanifold.

A shell that contains any nonmanifold edge or vertex is itself said to be nonmanifold. For
these more complex shells, the test for whether they are complete or incomplete is
correspondingly more complex. Points in space close to single-sided faces are inside or
outside according to which side of the face they are on. Points close to double-sided faces or
wire edges are inside or outside, according to whether the face or wire is interior or exterior.
Any other point is classified the same as another already-classified point, if they can be joined
by a continuous path which does not cross any face or wire. If every point in space can be
classified unambiguously in this way, then the shell is complete; otherwise, it is incomplete.
Any shell which contains a single-sided face with a free edge is automatically incomplete.



Bodies containing incomplete shells may only participate in modeling operations in regions
where their shells are defined. Even then, some configurations give rise to ambiguous results,
and so are disallowed.

Subshells
Topic: *Model Topology

ACIS groups shells into a hierarchy of subshells for internal purposes. By computing and
testing boxes that enclose subshells, ACIS can avoid accessing details of subshells and their
descendent subshells and faces, which improves performance. Subshells are not accessible via
the API, and are not generally used directly by applications.

Faces
Topic: *Model Topology

A face is a portion of a single geometric surface in space—the two-dimensional analogue of
the body.

Face Boundary Defined by Loops

Zero or more loops of edges constitute the boundary of a face. Figure 6-8 shows a loop of the
top face (there are six faces) of a rectangular block.
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Figure 6-8. Faces



Each loop determines a portion of the surface that is inside the face and a portion that is
outside the face. If the face has no loops, the whole of the surface on which it lies is
considered to be inside the face.

If the inside and outside of all the loops are consistent (any line in the surface that joins a
point inside to one outside must cross at least one loop) and the inside is connected, then the
face is incompletely defined. A complete face whose inside is not bounded in space is said to
be infinite. It is normally not meaningful to ask whether an incomplete face is finite or
infinite. There are severe restrictions in ACIS on the operations that can be applied to infinite
or incomplete faces.

Face Sidedness, Sense, and Containment

A face’s sidedness indicates whether it is single-sided or double-sided. A single-sided face has
material (a solid region) on one side (the “inside”), and is void on the other (the “outside”). A
single-sided face either completely or partially bounds a solid region, and the face divides the
inside from the outside. (A single-sided face is a solid body, not a sheet body.) A double-sided
face means that the points on either side are either all inside or all outside. If they are all
outside, the face is considered to represent an idealized, infinitely thin sheet (a 2D region). If
they are all inside, the face is an internal partition embedded in a solid.

The normal to a face can be either the same direction as the normal of the underlying surface
at any position, or it can be the reverse of the surface normal. If it is the same as the surface
normal, the face’s sense relative to the surface normal is forward; otherwise, its sense is
reversed. A single-sided face’s normal always points away from the solid region (the
material), regardless of the face’s sense. Figure 6-9 shows a body with two single-sided faces
bounding a solid region; the face normals point away from the material.

Face normals
point away from
the material

Figure 6-9. Single–Sided Face Normals



A double-sided face’s containment indicates whether or not the double-sided face is embedded
within another region (i.e., contained). It indicates where the solid region (material) is. If a
double-sided face is embedded in a solid region, its containment is both-inside. If it is a 2D
region, its containment is both-outside. Containment is not applicable to single-sided faces,
because they bound solid regions.

Unlike representations that use a lamina (two back-to-back faces) to represent sheets, 2D
regions and embedded faces are stored as a single face representation in ACIS. Faces that
make up 2D regions and embedded surfaces are distinguished from faces that form the
external boundary of a solid region by the face’s sidedness, sense, and containment.

An ACIS face meets one of the following combinations of sidedness, sense, and containment:

Single-sided, either sense The face bounds a solid region (either. . . . . . . . . . . . . . 
completely or partially), so there is material on
one side of the face and the other side is void.
The “inside” of the face is solid and the
“outside” of the face is void. The face normal
points away from the material.

Double-sided, both-inside The face is embedded in a solid. Both sides of. . . . . . . . . . . . . . 
the face are solid (there is material on both
sides). The face normals point to the inside.

Double-sided, both outside The face is a 2D region. Both sides of the face. . . . . . . . . . . . . 
are void. Normals point outside.

The following methods (member functions) of the FACE class are used to determine a face’s
sidedness, sense, and containment:

FACE::sides Returns an indicator of the number of sides in the. . . . . . . . . . . . . . . . . . . . . . . . 
face, either SINGLE_SIDED or
DOUBLE_SIDED.

FACE::sense Returns an indicator of the face’s sense relative. . . . . . . . . . . . . . . . . . . . . . . 
to the underlying surface normal, either
FORWARD or REVERSED.

FACE::cont Returns an indicator of a double-sided face’s. . . . . . . . . . . . . . . . . . . . . . . . . 
containment, either BOTH_OUTSIDE or
BOTH_INSIDE. This does not apply to
single-sided faces.

Figure 6-10 shows an ACIS model that contains three types of faces as defined by their
combinations of sidedness, sense, and containment:

� Face 1 is a spherical face that bounds a solid ball region; it is single-sided. The face
normal points away from the sphere. The surface normal in this case also points away
from the sphere, so the sense of the face is forward.



� Face 2 is embedded in a solid sphere; it is double-sided, both-inside.

� Face 3 is a 2D dangling flap; it is double-sided, both-outside.
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Figure 6-10. Three Face Types

Single–Sided Face Bodies versus Sheet Bodies

A single-sided face body is a solid body, not a sheet body. A sheet body is an infinitely thin
body. ACIS considers a single-sided face body to be a solid that extends from the back side of
the face out to infinity, with ill-defined boundaries extending where the edges of the original
face extend backward. Because a single-sided face body is a solid, basic solid modeling
concepts apply. Due to the ill-defined boundaries of a single-sided face body, subsequent solid
modeling operations, such as Booleans, may not work, depending on how the single-sided
face body is being used. When ACIS makes a body from a face, such as with API
api_mk_by_faces, the body is a solid single-sided face, not a sheet body.

Loops
Topic: *Model Topology

A loop represents a connected portion of the boundary of a face. It consists of a set of coedges
linked in a doubly-linked chain which may be circular or open-ended.



If either end of an open-ended loop is at a finite point, then the face containing the loop is
necessarily incomplete. If either end is at infinity, then the face is infinite.

The illustration in Figure 6-11 contains three closed loops. Each loop is the boundary of a
complete, finite face. In the actual physical structure, the adjacent parallel lines are coincident.

Figure 6-11. Loops of Edges

Wires
Topic: *Model Topology

A wire is a connected collection of edges that are not attached to faces and do not enclose any
volume. Wires may represent abstract items like profiles, construction lines and center lines,
or idealizations of rod or beam-like objects or internal passages. They are also commonly used
to form wire frames to be surfaced to form solid-bounding shells.



Figure 6-12. Wire Body

A shell may contain a single wire or faces with multiple wires attached to them at vertices. A
shell with just a wire is called a wire shell, a lump with only a wire shell is a wire lump, and a
body with only wire lumps is a wire body.

Each wire is classified as being exterior representing an infinitesimally thin piece of material,
or interior representing an infinitesimally thin passageway within bulk material.

Coedges
Topic: *Model Topology

A coedge records the occurrence of an edge in a loop of a face. The introduction of coedges
permits edges to occur in one, two or more faces, and so makes possible the modeling of
sheets and solids (manifold or not). A loop refers to one coedge in the loop, from which
pointers lead to the other coedges of the loop. Coedges in a loop are ordered in a continuous
path around the loop and are doubly-linked. If a loop is not a circular list, the loop points to
the first coedge.

In a manifold solid body shell, each edge is adjacent to exactly two faces; therefore, the edge
has two coedges, each associated with a loop in one of the faces (the two faces can be the
same, and even the loops can be the same). In this case, the two coedges always go in opposite
directions along the edge. In a nonmanifold body shell, there may be more than two coedges
associated with an edge. In this case, they are ordered counterclockwise about the edge. Refer
to section Edges in this chapter for more information.

In Figure 6-13, an isometric view of a solid shows three faces. Each face is bounded by a loop
of coedges. Each edge (corner of the block) has two coedges, one for each face that is adjacent
to the edge. Each coedge is coincidental with the edge adjacent and parallel to it.



Figure 6-13. Loops of Coedges on Faces

Coedges in a loop are oriented so that looking along the coedge with the outward pointing
face normal upwards, the face is on the left. In Figure 6-14, the directions of the face normals
(blue arrows) and coedges (red arrows) for several faces of a body are shown to illustrate this
orientation.
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Figure 6-14. Coedge Orientation with Face Normals



In a sheet body, there may be edges that have only one coedge. These are knows as free edges,
and they mark the boundary of a sheet. If the face attached to the coedge is single-sided, the
inside and outside of the associated shell are not well-defined near the edge, and so the shell is
necessarily incomplete. (Refer to section Shells in this chapter for more information.)

Even though the edges of a wire meet no faces, each is given an associated coedge whose
pointers link the edge to its neighbors.

The direction of a coedge can be either the same direction as its edge, or it can be the reverse
of the edge direction. If it is the same as the edge direction, the coedge’s sense relative to the
edge direction is forward; otherwise, its sense is reversed. Each coedge contains a record of its
sense relative to its edge.

Edges
Topic: *Model Topology

An edge is the topology associated with a curve. The direction of an edge can be either the
same direction as its underlying curve, or it can be the opposite direction. If it is the same as
the curve direction, the edge’s sense relative to the underlying curve is forward; otherwise, its
sense is reversed. Each edge contains a record of its sense relative to its underlying curve.

An edge is bounded by one or more vertices, referring to one vertex at each end. If the
reference at either or both ends is NULL, the edge is unbounded in that direction. If the
underlying curve is infinite, so is the unbounded edge. When the curve is closed, the vertex
references must both be the same or both NULL. If both vertex references are NULL, the edge
is the whole curve; unless the curve is open and bounded, in which case the vertices must
coincide with the curve ends.

A special case occurs when the geometry pointer is NULL and both vertex pointers point to
the same vertex; for example, at the apex of a cone. Few ACIS operations work correctly with
edges that have one or both end vertex pointers NULL.

An important feature of ACIS edge representation is the arrangement of the coedges around
an edge. (Refer to section Coedges in this chapter for more information.) If only two faces
meet at an edge, the two coedges from those faces point to each other through the coedge
partner pointers. (If there is only one coedge, its partner pointer is NULL.) If more than two
faces meet at an edge, the coedges are in a circular linked list. The order of the list is
important, because it represents the radial ordering of the faces about the edge in a
counterclockwise direction. Figure 6-15 shows a sheet body that contains a nonmanifold
(more than two faces incident) edge. The edge is directed such that it is coming toward the
reader, and the coedges are ordered counterclockwise about it in the partner list as indicated
by the arrow.



Directed Edge

Figure 6-15. Radial Coedge Ordering

The purpose of radial coedge ordering becomes clear during traversal of an ACIS model that
contains faces embedded with a solid region, such as in a 3D finite element model. Moving
from a face across an edge to the radially closest adjacent face is a simple list operation, rather
than a geometric operation as when coedges are not ordered. For example, moving to the face
that is closest to the front (outward normal) side of a face is done by moving to the next
partner pointer, if the original face coedge is FORWARD. If the original face coedge is
REVERSED, moving to the closet face is done by moving to the previous partner pointer
(obtained by walking all the way around the list).

In a nonmanifold body shell, the edge may be adjacent to more than two faces. A nonmanifold
body is shown in Figure 6-16. An edge common to four faces is at each point where the
cylinder is tangent to the outside edge of the block. In the example, edge ab is common to two
faces on the inside wall of the cylinder (abcd and abfe) and two faces on the outside of the
block (abgh and abjk). Edge ab is common to all four faces. When there are more than two
coedges associated with an edge, they are ordered counterclockwise about the edge.
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Figure 6-16. Nonmanifold Body With Common Edge

Vertices
Topic: *Model Topology

A vertex is the corner of either a face (Figure 6-17) or a wire. Vertex refers to a point in object
space and to the edges that it bounds. The other edges are found by following pointers through
the coedges.



Figure 6-17. Vertices


