
Kernel R10

Chapter 7.
History and Roll Overview

Topic: *History and Roll

When ACIS entities and APIs are used, history and roll back are supported. The history and
roll functionality tracks all changes that occur in an ACIS session, which permits rapid change
between states of an ACIS model. The history manager allows both branched histories and
linear histories, which provides even more flexibility for rolling between states.

ACIS history and roll uses four levels:

Bulletin Holds the changes to a single ACIS entity. Individual bulletins.
are not used outside the context of a bulletin board or delta
state.

Bulletin board Holds all bulletins resulting from an API call..

Delta state The delta state is a user-definable, change-tracking structure of.
arbitrary size. It holds all bulletin boards resulting from a
modification to a model. The delta state also has pointers to
the previous, next, and partner delta states. The partner is a
branch delta state at the same “sublevel.”

History stream Contains pointers to the initial delta state, to the last noted.
active delta state, and to the delta state under construction. The
history manager handles the history streams.

History streams for a given model can be saved with the model in its save file. Later, this
entire structure can be restored, permitting roll back to any point in development. Saving and
restoring history streams is covered in more detail in 3D ACIS SAT Format.

The application developer uses the bulletin board to monitor changes to models throughout
the modeling process. This is particularly effective for incrementally updating application
models, such as finite element mesh or graphical representation maintained for display
purposes.

Kernel R10

Bulletins
Topic: *History and Roll

The bulletin is the fundamental structure in the history stream. When an entity is created,
deleted, or changed, a bulletin recording the action is added to the current bulletin board. A
bulletin contains a pointer to the old entity and a pointer to the new entity. Bulletins contain
sufficient data structure information to supply precise information about the change to an
application program.

When an operation performs major changes to a model, each entity in the model that is
changed has its own bulletin. These bulletins become part of a linked list whose head is the
bulletin board. Bulletin boards are part of another linked list, called the delta state. Roll back
and roll forward work on delta states, which use bulletin boards and the entity level bulletins.

Bulletins are generated for data entities in ACIS, and for extensions made by application
developers. On a lower level, support for roll back can be achieved using ENTITY class
methods.

New
Entity

Record

New
Pointer

Old
Pointer

Bulletin

Figure 7-1. Create New Entity

When ACIS changes a model entity, it checks to see if the record is logged. If the record is not
logged, ACIS copies the entity to a new record obtained from free store and changes the
original record to reflect the change. ACIS then generates a bulletin that holds pointers to both
the copied and changed versions of the record (Figure 7-2).

Changed
Entity

Record

Copy of
Entity

Record

New
Pointer

Old
Pointer

Bulletin

Figure 7-2. Change Entity

Kernel R10

When ACIS deletes an entity, it generates a bulletin that holds a pointer to the old version of
the record (Figure 7-3). Entities are not returned to free store, and the space is not available
for reuse. To return the record to free store, delete the bulletin board and its bulletins using
api_delete_ds or api_prune_history.

Deleted
Entity

Record

New
Pointer

Old
Pointer

Bulletin

Figure 7-3. Delete Entity

Bulletin Boards
Topic: *History and Roll

When an entity in the ACIS model is created, altered, or deleted, a bulletin recording the data
structure change is added to a bulletin board. In the modeler’s default state (in which logging
and auto-checkpointing are on), each call to an API function generates a new bulletin board
that holds a list of bulletins for recording modifications to the model. The bulletin board holds
pointers to the first and last bulletin, and to the next bulletin board (Figure 7-4).

Kernel R10

Bulletin

Bulletin

Next Bulletin
Board

Figure 7-4. Bulletin Board Structure

The BULLETIN class provides functions that read the status of the current bulletin board:
retrieve the first, last, next, and previous bulletin on a particular bulletin board; retrieve the
old and new entity pointer from a bulletin board; and retrieve the type of bulletin.

Note An application can read, but cannot alter, the records in a bulletin.

The ACIS programmer has control over roll back through APIs (api_note_state,
api_change_state, api_change_to_state, api_find_named_state, api_name_state,
api_roll_n_states, and api_delete_ds) and macros (API_BEGIN, API_END,
API_NOP_BEGIN, API_NOP_END, API_TRIAL_BEGIN, and API_TRIAL_END). ACIS is
shipped with the default of api_logging TRUE. Therefore, the system automatically logs all
operations. This is the primary control of whether the application will support undo/redo.
When api_logging is set to FALSE, ACIS discards all but the current delta state.

Bulletin Board APIs
Topic: *History and Roll

API functions start by calling api_bb_begin and end by calling api_bb_end. The API
api_bb_begin turns auto–checkpointing off; api_bb_end turns auto–checkpointing on.

When auto-checkpointing is off, the system adds bulletins to the current bulletin board rather
than creating new bulletin boards. Because auto-checkpointing is turned off at the beginning
of each API function, nested API functions do not create new bulletin boards.

Kernel R10

Auto-checkpointing is an accumulating option. For example, if auto-checkpointing is on, then
turned off three times by calls of api_bb_begin, it is not turned on until three calls have been
made to api_bb_end.

If an API call fails, the current bulletin board is preserved to make it available for debugging.
At the next call to an API function, the model is rolled back to the state before the API call
failed.

Bulletin Board Macros
Topic: *History and Roll

There are three sets of macros for BULLETIN_BOARD creation, which differ in how they
handle error conditions and stacked bulletin boards.

API_BEGIN / API_END are the basic macros used to wrap all modifications to the model.
The auto–checkpointing counter is incremented in API_BEGIN and decremented in
API_END. Be careful not to jump out of an API_BEGIN / API_END block using return or
goto, because it gets the counter out of synchronization. Model changes not wrapped in these
macros cause a sys_error(NO_CUR_BB) to be issued.

API_BEGIN opens a new bulletin board without any bulletins. However, API_END does not
close that bulletin board. The bulletin board is not closed until the next API_BEGIN. This
delay in closing the bulletin board is to handle error conditions that might have occurred while
changing the model. A bulletin board is also closed after a note state operation
(api_note_state). The option bb_immediate_close can be used find errors that result when a
delta state and bulletin boards are logically closed.

For history and roll to function properly, functions that change the model must be enclosed
within the two macros, API_BEGIN and API_END. To create one bulletin board for multiple
API calls, nest them within these macros. In such nested cases, new bulletin boards are not
created; instead, entity changes are attached to the bulletins within the current bulletin board.
When using ACIS APIs to create modeling elements, each API generally opens a new bulletin
board because it has API_BEGIN and API_END as part of its code.

If an error occurs, control jumps to the API_END. If an error occurs in a nested API_BEGIN /
API_END block, control jumps to the API_END and proceeds from there. If the API_END
was at the outermost level of nesting, the counter goes to zero and the BULLETIN_BOARD is
marked as failed, then closed. The model will be invalid.

At this point one may look at the BULLETIN_BOARD and the (now invalid) model for
feedback about the error. When the next BULLETIN_BOARD is opened, the changes in the
failed BULLETIN_BOARD will be rolled back and discarded. It is up to the programmer to
check the result and resignal the error (using sys_error), to avoid problems with an invalid
model in later operations. If the error is not resignaled to the outermost API_END, the
BULLETIN_BOARD will not be marked as failed and the changes will not be rolled back.

Kernel R10

API_NOP_BEGIN / API_NOP_END are used for operations that change the model, but
where the user does not want the model changed or any BULLETINs to be created. Typically
they are used in query operations, including ray testing and evaluation that may add boxes to
the model but make no user perceptible change.

API_NOP_BEGIN causes a new BULLETIN_BOARD to be created and stacked, regardless of
the nesting level counter. API_NOP_END rolls back and discards the changes in the stacked
BULLETIN_BOARD.

API_TRIAL_BEGIN / API_TRIAL_END can be used to test operations that may or may not
work. For example, a user interface may allow a user to preview creation of segments of a
sketch, but have the option to abort them. By wrapping the changes in API_TRIAL_BEGIN /
API_TRIAL_END, one can cause the abort to occur by setting an error code in the outcome, or
keep the changes by not setting an error. These macros are also useful for optimization. One
may first try a quick algorithm that does not always work and roll it back and use a more
robust but slower algorithm if it fails. Simply wrap the quick algorithm in
API_TRIAL_BEGIN / API_TRIAL_END and check the outcome.

API_TRIAL_BEGIN stacks a new BULLETIN_BOARD, just as API_NOP_BEGIN does. In
API_TRIAL_END, the result is checked. If the operation was successful, the resulting
bulletins are merged with the BULLETIN_BOARD it is stacked on top of. If the operation
failed, the changes are rolled back and discarded.

Bulletin Board Compression
Topic: *History and Roll

If an entity has been modified in several different API_BEGIN / API_END blocks, there will
be several bulletins for that entity, each on a different bulletin board.

When the option compress_bb is on (default), at the end of each successful block the
bulletins in the bulletin board created for that block are merged with those from the previous
bulletin board, so they appear as though the operations occurred in the same block. This
should save memory used by extra bulletins and backup copies of modified entities. It should
also save time during roll back.

In some cases performance can be improved by setting the compress_bb option off, since the
time to compress the bulletin boards can be prohibitive in cases in which a single delta state is
used for many API calls.

Delta States
Topic: *History and Roll

One or more bulletin boards are grouped to allow the user to move back and forth through
modeler changes in larger moves than from bulletin board to bulletin board.

Kernel R10

When the application calls api_note_state, all bulletin boards made since the previous call to
api_note_state (or since logging was first turned on) are returned in a delta state as shown in
Figure 7-5.

Bulletin
Board

Bulletin
Board

Delta State

Partner DS Prev DSNext DS

Figure 7-5. Delta State Structure

The current delta state is the delta state that is being built. This delta state is open. When
api_note_state is called, the current delta state is closed and becomes the active delta state.

The active delta state is the most recently closed delta state made by calling api_note_state.
Also, rolling to a particular delta state makes that state the active delta state. This state is
active in the sense that it represents the state of the model directly after roll or calling
api_note_state (before construction of a new delta state begins).

The delta state contains a pointer to the first in a list of singly-linked bulletin boards. Each
bulletin board contains a pointer to the next bulletin board in the chain only.

The delta state holds two state identifiers that refer to the current (Prev DS) state and to the
next (Next DS) state. State identifiers are internal modeler state names that are created when a
state is noted. Each modeler state is expressed as a unique integer.

Kernel R10

To permit the user to move between modeler states, the application must remember the delta
states returned to it.

Note The “next” state pointer in the model is with respect to roll back, as in “the state
obtained when rolling the model back one step.” Likewise, the “previous” state
references “the last state obtained before rolling the model back.“

Rolling to Delta States
Topic: *History and Roll

Moving to a state means “make the model data structure the same as it was when the state was
noted.” To move to any state, call api_change_to_state with the desired state as an argument.
To move to modeler state 1, you can call api_change_state with delta state 1 as an
argument. api_change_state is a read/write function that changes the model; it does not
create bulletins or a bulletin board because they already exist in the delta state.

Kernel R10

previous

previous

previous
next

next

next

state 0

state 1

state 2

state 3 Last state

current state

partner

partner

partner

partner

Figure 7-6. Rolling to Delta States

In a nonlinear or branching case, a delta state can have an additional partner delta state
pointer. The partner pointer is part of circular linked list of states branching from the same
state. The partner pointer is always set; if there is no other branch, the pointer points to itself.

The only way to reliably get backward or forward to a given state is to give it a name and
remember that name, or to remember its pointer. This is then used as the argument in the roll
function.

Rolling the model backward presents no problems or additional overhead to the application
developer. However, because branching is permitted in the delta states, roll forward could
present an ambiguous situation. How does ACIS know which state is referenced when a roll
forward is requested? It doesn’t. If the state is important, either the pointer or the name of a
given state has to be remembered (e.g., api_note_state).

Kernel R10

The delete_if_empty argument in api_note_state allows the caller to remove a delta state that
contains no bulletins. So if this argument is set TRUE, some code may need to be modified to
account for deleted empty states, for example, code that relies on a particular number of states
on a stream.

Use the partner delta state pointer to branch to the various delta states. The partner list is a
circular linked list of delta states all having the same previous state. Traversing into the
various branch delta states uses this circular partner list, not just the next delta state pointer.
When a branch of the history is pruned, the partner delta state pointers are also updated.

When experimenting with roll backward S-steps and roll forward S+n-steps with a state
having branches, you may experience unwanted side effects. Specifically, there may be a
difference between what happens when rolling backward to a branch state and then “blindly
rolling forward,” and what happens when rolling backward past the branch state and then
blindly rolling forward. It is the “blindly rolling forward” and the ambiguities in the branch
state which have the potential for difficulties. The solution is to not blindly roll forward, but
rather to note the delta states of importance beforehand and then to explicitly roll to those
states.

Integer identifiers, unique to a given history stream, can be requested for each entity. These
IDs remain constant through roll, save and restore (with APIs api_save_history and
api_restore_history). An entity can be returned from a given ID when the entity is alive in the
active state of the history stream. NULL is returned when the entity is not alive. This requires
two SAT files changes: an extra integer in each entity and the number of tags assigned in the
history stream.

The format of ENTITY and HISTORY_STREAM records accommodates the addition of entity
IDs. An integer field in the entity record holds the entity’s ID. A value of –1 indicates that an
ID has not yet been requested for the ENTITY. This is field #2 in any entity record, where the
entity type is field #0. An integer field in history stream records (part of the history data
section) holds the next available entity ID in that stream. This is field #3 in the history stream
record, where “history_stream” is the first field.

Keeping the Part and Display in Sync with the Model
Topic: *History and Roll

Call the PART::update method when an entity has been updated. The part itself doesn’t really
care, but this triggers the entity_callback mechanism with a pm_Update_Entity so that
observers know that something interesting has occurred. During a later rollback, the
entity_callback mechanism is triggered with a pm_Roll_Update_Entity.

PART::update does change the model and therefore starts a new DELTA_STATE if one is not
already open. The reason for the model change is to create a change bulletin on the
ID_ATTRIB (and the DISPLAY_ATTRIB if using the GI tool). This change bulletin is noticed
during rollback and is used keep the PART (and display) in sync with the active state of the
model.

Kernel R10

PART::update should be called after each change to the model. Call PART::update and then
api_part_note_state inside the delta state where the changes occurred. There is no need to
call PART::update after roll.

Deleting Delta States and Freeing Memory
Topic: *History and Roll, *Memory Management

When delta states are no longer required, delete them by calling to api_delete_ds or
api_prune_history. This call releases their space to free store, making it available for use in
subsequent modeling. The delta state, bulletin boards, and bulletins are returned to free store,
and entity records referred to in the bulletins are also released.

A DELTA_STATE will be automatically deleted if it is empty and was noted by
api_part_note_state or api_pm_note_state. The criterion for empty is no BULLETINs.
There may be one or more BULLETIN_BOARDs, but if none have any BULLETINs, then the
DELTA_STATE is empty.

Other API calls are available to prune preceding states, following states, and all states,
depending upon the roll back or roll forward information needed.

api_delete_ds is a procedural version of the DELTA_STATE class destructor. It releases
memory associated with the DELTA_STATE including some BULLETIN_BOARDs,
BULLETINs and backup copies of various ENTITYs.

So to release memory used by rollback, call api_delete_ds. To minimize the memory used by
rollback, call api_logging(FALSE), which causes the system to automatically delete the
DELTA_STATEs as often as possible, while still retaining rollback’s role in error handling.

api_stop_modeler properly shuts down the modeler and frees all the memory used by ACIS.
api_stop_modeler relies on the fact that if no DELTA_STATEs have been deleted, then the
rollback history contains pointers to all the live ENTITYs as well as the backups. The key
phrase here is “if no DELTA_STATEs have been deleted.”

api_prune_history also deletes delta states, but first saves the information needed by
api_stop_modeller.

There are three ways to clean up on exit:

� Do not bother; let the operating system handle it.

� Call api_stop_modeler, and whatever else you need to clean up your application.
� Keep track of all DELTA_STATE and ENTITYs and then explicitly call api_delete_ds

and api_del_entity and whatever else is needed to clean up the application.

api_stop_modeler can make up for lax programming, but only if no DELTA_STATEs have
been deleted. This includes explicit deletes, deletes through api_delete_ds, and implicit
deletes due to api_logging(FALSE).

Kernel R10

The developer concerned with memory should use one of these methods:

� Use api_prune_history(ds–>history_stream(), ds) after each call to api_note_state(ds).
This uses a bit more memory, but retains api_stop_modeler’s ability to clean up after
some sloppy programming.

� Use hs–>set_max_states_to_keep(number) to provide limited rollback.
� Keep track of all DELTA_STATE and ENTITYs and then explicitly call api_delete_ds

and api_del_entity and whatever else is needed to clean up the application.

Any of these can be used with the compress#_bb option, which merges multiple
BULLETIN_BOARDs into one (on by default). This means that each delta state will have a
single bulletin board, which saves a significant amount of memory, improves performance of
roll and API_TRIAL_BEGIN/END blocks.

History Manager
Topic: *History and Roll

The history manager allows the user to roll directly to a named state even if it is across
multiple branches. It is possible to cycle through all branches of the history within a single
stream.

The history manager supports multiple history streams. As you create and work with different
parts, the individual parts maintain their own independent history streams. As an example,
when working in Scheme, parts are managed in independent windows.

The history stream maintains three pointers. The first pointer is to the root delta state. The
second pointer is to the last noted active delta state. The third pointer is to the delta state
currently being created.

Root DS Active DS Current DS

History Stream

Initial
Delta State

Delta State
when active state

was noted

Delta State
under

construction

Figure 7-7. History Stream Structure

Kernel R10

The following functions may be used with or without the Part Management Component.

Memory Management:

api_prune_history Remove delta states in a history stream.

Save/Restore:

api_save_entity_list_with_history Save history information with the part.

api_save_entity_list_with_history_file Save history information with the part. . .

api_restore_entity_list_with_history Restore the part and history.

api_restore_entity_list_with_history_file Restore the part and history.

History Management Functions with Part Manager
Topic: *History and Roll

The calls to api_pm_start_state and api_pm_note_state (or api_part_start_state and
api_part_note_state) must be strictly paired regardless of errors. Start state and note state are
paired by the use of a static level counter. If the note state were skipped when there was an
error, the counter would be off by one and subsequent states would not be noted.

int depth;
api_pm_start_state(depth);
API_BEGIN

result = api_do_stuff_1(args);
check_outcome(result); // If result is not ok,

// jump to API_END

// Alternate style of using check_outcome
check_outcome(api_do_stuff_2(args));

// Tell the part manager and graphics what happened
record_entity(new top level entity);
update_entity(modified top level entity);

API_END
api_pm_note_state(outcome(API_SUCCESS), depth);

If an error occurs, it will be caught by API_END. The api_pm_note_state is always called
regardless of error. Note that the outcome is checked before recording or updating entities, so
the part manager and graphics don’t see anything bad. The check level is controlled by the
option history_checks.

You can also use API_SYS_BEGIN/END or EXCEPTION_BEGIN/TRY/CATCH/END with
api_pm_start_state in the EXCEPTION_BEGIN block and api_pm_note_state in an
EXCEPTION_CATCH(TRUE) block.

Kernel R10

History Management Functions without Part Manager
Topic: *History and Roll

The Kernel has a set of APIs allowing advanced part management independent of the Part
Management Component. For example, it is possible to use PART only as a port of entry to
the Graphic Interaction Component. This permits roll back without using the Part
Management Component.

Since Part Management uses the Kernel Component APIs, any use of the roll portions of the
Part Management could interfere with tasks performed by the Kernel APIs. This includes
indirect calls such as StartEntityCreation, EndEntityCreation, and the modification cousins.
Searching for “api_pm_” should identify calls to avoid. Even innocuous APIs like
api_pm_save_part and api_pm_load_part could cause problems, because they close delta
states and could create new ones.

The following history-related APIs from the Kernel do not require anything from the Part
Management Component.

The foundation of all history management:

api_note_state Note delta states.

api_delete_ds Delete a delta state.

api_change_state Roll back and forward to a given state.

api_bb_begin Used in the API_BEGIN macro.

api_bb_end Used in the API_END macro.

Advanced navigation in existing streams:

api_change_to_state Roll to a given delta state.

api_find_named_state Recall a delta state with a given name.

api_name_state Name a delta state.

api_roll_n_states Roll back and forward.

Support for multiple history streams:

The api_add_state and api_remove_state are relatively easy to use. After noting a state,
remove it from the default history stream and add it to the stream it should belong to.
api_distribute_state_to_streams is much more difficult to use and incorporates the
StreamFinder class.

api_add_state Add states between streams.

Kernel R10

api_remove_state Move states between streams.

api_distribute_state_to_streams After noting a state, distribute its bulletins to all.
the relevant history streams

Disabling History
Topic: *History and Roll

History is not explicitly enabled or disabled. It is effectively enabled simply by making calls
to functions to perform required tasks. ACIS provides two levels of disabling history.

With api_logging(FALSE), bulletins and delta states are still created, but kept only long
enough to support error recovery.

With set_logging(FALSE), no bulletins are created, but bulletin boards and delta states are
still created. Modeling errors can not be recovered unless the application developers provide
their own mechanism.

The developer must be careful about the use of API_BEGIN/API_END, and should still call
api_note_state periodically to clean up memory used by empty bulletin boards.

Using History and Roll in Scheme
Topic: *History and Roll

History and roll functionality is supported by Scheme AIDE, which can be used to rapidly test
changes between states of an ACIS model. The default settings for history and roll in Scheme
AIDE can be obtained through the option:list extension.

A decision about the history management type has to be made before modeling begins when a
new part is created. With the exception of logging, none of the history stream options are
designed to be changed during actual model creation.

Options for History Management
Topic: *History and Roll

The options that are important for history streams are:

history_checks When TRUE (default), additional checks are done on the.
integrity of the history stream data structure. When FALSE, no
checks are done.

Kernel R10

logging When TRUE (default), bulletin boards and delta states are.
visible at the application level (it logs a change to the history
stream). The bulletin boards are not deleted when the next one
is open; they remain available. When FALSE, each bulletin
board is deleted as soon as the next is opened (logging to the
history stream is turned off).
This is the one option:set parameter that can be changed after
a model has been created.

Scheme Extensions for History Management
Topic: *History and Roll

Use the following Scheme extensions to manage multiple history streams when working with
multiple parts.

Part histories contain roll back information for all entities in a part. Obtain this history with
(history part).

history Gets a history stream from a part or ID or string.

roll:delete–all–states Deletes all delta states.

The default history contains history for entities without history and in a part without part
history. When distributed history is off (FALSE), the default history contains all history. When
distributed history is on (TRUE), the default history contains history for entities that could not
be found in a part. Obtain the default history with (history “default”).

Start with a part:new
Topic: *History and Roll

The first step in establishing a history stream is to create a new part, using the part:new
extension.

The part:new extension takes an optional argument, size, which must be a prime number. It
specifies how large to make the table that stores the entities in the part. This number does not
limit the maximum number of entities that can be stored. However, if a part has many more
entities than this number, performance slows whenever your application has to look up the
entities in Scheme. If the number is much larger than the number of entities referenced from
Scheme, then more memory is used than is actually needed. The default size is
DEFAULT_PART_SIZE, which is defined in the file pmhusk/part_utl.hxx (value is 1009).

; part:new
; Define a new part
(define my_part (part:new))
;; my_part
; Define a new view for the part
(define my_view (view:dl my_part))
;; my_view

Kernel R10

Turn on History and Roll
Topic: *History and Roll

When the default settings are used:

� History stream is turned on

� The history stream is linear

� The history stream is for the part and is independent of other part history streams

� The history streams can be saved and restored with the part

Once the new part has been created, some of its history stream settings can be changed using
the option:set extension.

For the settings to become active, the options must be changed in a new part before any model
geometry has been created.

Use Distributed History Streams
Topic: *History and Roll

Distributed history enables part history. After distribution is set (either on or off) it cannot be
changed. Distributed history is off by default, and the first bulletin created in for a part’s
history stream locks it this state.

; part:new
; Define a new part
(define my_part (part:new))
;; my_part
; Define a new view for the part
(define my_view (view:dl my_part))
;; my_view
(env:set–active–part my_part)
;; ()
(part:set–distribution–mode #t)
;; #t

To use distributed history after it is enabled, create model geometry. At some point in the
modeling, name it using roll:name–state. From that state, you can roll to some previous state
using roll. Any new modeling operations performed from this state on are created in a new
branch.

Kernel R10

; roll:name–state
; Define a new part
(define my_part (part:new))
;; my_part
; Define a new view for the part
(define my_view (view:dl my_part))
;; my_view
(env:set–active–part my_part)
;; ()
(part:set–distribution–mode #t)
;; #t
(define my_sph1 (solid:sphere (position 0 0 0) 10))
;; my_sph1 => #[entity 1 1]
(define my_sph2 (solid:sphere (position 5 10 20) 10))
;; my_sph2 => #[entity 2 1]

; Name the current state.
(roll:name–state ”first_branch”)
;; ”first_branch”
; roll back to before this creation
(roll ”start”)
;; 2

; Any modeling created from now on goes into a
; new history stream.
(define my_block (solid:block

(position –5 10 –20) (position 5 –10 20)))
;; my_block => #[entity 3 1]
; Name the current state.
(roll:name–state ”second_branch”)
;; ”second_branch”
(roll ”first_branch”)
;; 3
(roll ”second_branch”)
;; 3

Roll Through States
Topic: *History and Roll

Once states and branches have been defined, they are easily accessed through the roll
extension. Several operations can be grouped together as one operation to roll back using the
roll:mark–start and roll:mark–end extensions.

roll Rolls to a previous or later state.

roll:mark–end Marks the end of a block of functions for rolling.

Kernel R10

roll:mark–start Marks the start of a block of functions for rolling.

roll:name–state Attaches a name to the current state for rolling.

The easiest way of accessing branched states is to name their states and then start
roll:name–state with the respectively named states. However, a branch does not have to be
named to be accessible.

All of the available branched states can be reached using the roll extension. When using roll, it
is important to roll back past the state where the branching begins. Otherwise, roll forward
and backward remain on the same branch.

; roll:name–state
; Define a new part
(define my_part (part:new))
;; my_part => #[part 2]

; Define a new view for the part
(define my_view (view:dl my_part))
;; my_view
(env:set–active–part my_part)
;; ()
(part:set–distribution–mode #t)
;; #t

; branching point
(define my_sph1 (solid:sphere (position 0 0 0) 10))
;; my_sph1 => #[entity 1 2]

; one branch
(define my_sph2 (solid:sphere (position 5 10 20) 10))
;; my_sph2 => #[entity 2 2]
; roll back to before this creation
(roll –1)
;; –1

; Any modeling created from now on goes into a
; new history stream.

; second branch
(define my_block (solid:block

(position –5 10 –20) (position 5 –10 20)))
;; my_block => #[entity 3 2]

; roll back to before this creation
(roll –1)
;; –1

Kernel R10

; third branch
(define my_block2 (solid:block

(position 10 20 30) (position 15 30 45)))
;; my_block2 => #[entity 4 2]

; Go to a point before the branching
(roll ”start”)
;; 2

; take one branch
(roll ”end”)
;; 2

; Go to a point before the branching
(roll ”start”)
;; 2

; take second branch
(roll ”end”)
;; 2

; Go to a point before the branching
(roll ”start”)
;; 2
; take third branch
(roll ”end”)
;; 2

Save History Streams
Topic: *History and Roll

History streams are saved with the part when the part:save extension is used. The default for
part:save is not to save the history stream.

part:save Saves all entities in a part to a file.

part:save–selection Saves a list of entities to a file; can not save.
history

part:load Loads a part from a file into an active part.

If the history stream is no longer required, it does not have to be saved to a save file. This is
an option on part:save. part:save has an option for the filename to specify both the path and
filename. It has additional options for saving the part in a binary or text file, and for saving the
history data.

If textmode is #t, the data is saved in text mode. If textmode is not specified, then the mode is
determined by the extension of the filename. If the filename string ends in .sab (or .SAB),
then the file is saved in binary mode; otherwise, the file is saved in text mode.

Kernel R10

After setting textmode, a second Boolean specifies whether to save roll back history data. The
default, #f, does not save history.

The “history save” APIs and Scheme extension support saving only the main history stream,
without branches. This is done with a “mainline only” argument. If the argument is true, then
rolled branches are not saved to the file.

; part:save
; Define a new part
(define my_part (part:new))
;; my_part
(part:set–distribution–mode #t)
;; #t
(env:set–active–part my_part)
;; ()
; ...

; Create model here
; ...

; Save the currently–active part to the named file.
; This saves the part defined earlier in text mode
; and saves history data.
(part:save ”test” #t my_part #t)
;; #t

The saved file can be restored at any time using part:load. Obviously, a save file that is loaded
that did not contain history streams cannot roll back to previous states.

; part:save
; Define a new part
(define my_part (part:new))
;; my_part
(part:set–distribution–mode #t)
;; #t
(env:set–active–part my_part)
;; ()
; ...
; Create model here
(define my_block (solid:block

(position 0 0 0) (position 10 10 10)))
;; my_block => #[entity 1 1]
; ...
; Save the currently active part to the named file.
; This saves the part defined earlier in text mode
; and saves history data.
(part:save–selection my_block ”test” #t #t)
;; #t

Kernel R10

Pruning Branches and States
Topic: *History and Roll

It is often useful to remove unnecessary branches and states from a given history stream. The
following extensions for maintaining states within history streams have various options for
exactly what gets removed and from which history stream (if not the default).

roll:delete–all–states Deletes all delta states.

roll:delete–following–states Deletes all delta states after the current delta state.

roll:delete–inactive–states Deletes all delta states not in the active path from.
the root to the current one

roll:delete–previous–states Deletes all delta states before the current one.

