
Kernel R10

Chapter 10.
Save and Restore Overview

Topic: *SAT Save and Restore

ACIS saves, or stores, model geometry information to ACIS save files (also known as SAT,
part save files, or part files). ACIS also restores model information from these files. These
files have an open format. Geometric entities are saved in the form of an entity list.

ACIS provides the API functions api_save_entity_list and api_restore_entity_list for saving
models to and retrieving models from a disk file. Two additional API functions,
api_save_entity_list_file and api_restore_entity_list_file, allow models to be saved and
restored to media other than a stream file.

Applications use these functions in many ways. Single or multiple ENTITYs can be saved in a
file, and applications can intermix their own data with ENTITY_LIST data. For testing or
debugging purposes, it is possible to edit a file and remove all but the data of interest and load
the file into a test or demonstration application, such as Scheme AIDE.

There are two types of ACIS save files: Standard ACIS Text (file extension .sat) and Standard
ACIS Binary (file extension .sab). The only difference between these files is that the data is
stored as ASCII text in a .sat file and in binary form in a .sab file. The organization of a .sat
file and a .sab file is identical; the term SAT file is generally used to refer to both types.

Text file saves have the advantages of being human-readable and being portable between
different platforms. Binary saves are not human-readable and may not be portable across
platforms, but writing records in binary is roughly twice as fast as writing in text and the files
are significantly smaller. Write and read binary files only by the same version running on the
same type of hardware. ACIS can read and write any format of binary file on any platform.
The selection of binary file format to be written is controlled by the binary_format option.
The default format for writing a binary file is the native format of the machine on which it is
being written.

Two sets of information may be available at any one time. There should always be
information about what is going to be saved. That is stored in a FileInfo object and queried
with the env:save–product–id/units Scheme extension. If one has recently retrieved a file,
there should also be information about that file. It is stored in a FileInfo object and queried
with the env:restored–product–id/units Scheme extension. Of course, both of these can be
accessed through C++ by obtaining and querying the appropriate FileInfo object in the kernel
context object.

Kernel R10

Beginning with ACIS Release 6.3, it is required that the product ID and units be populated
for the file header (using class FileInfo) before you can save a SAT file. Refer to the reference
templates for class FileInfo and function api_set_file_info for more information.

API Functions for Save and Restore
Topic: *SAT Save and Restore

The api_save_entity_list function accepts the following arguments:

� An open output stream pointer (FILE*)

� A logical indicating the file mode of text or binary

� An ENTITY_LIST pointer

The function saves the entity to the output stream.

Top level entities (e.g., body entities) are always the first records in the save file. Thereafter,
the data records are in no particular order. A call to api_save_entity_list with a list of n top
level entities always places these entities in the first n records of the save file.

api_save_entity_list_file and api_restore_entity_list_file also control reading and writing of
data during a save or restore. Each of these procedures take two arguments: a FileInterface
pointer and an ENTITY_LIST pointer.

FileInterface is an abstract base class. By deriving classes from FileInterface, ACIS models
can be saved and restored to media other than a stream file. For example, it is possible to
derive FileInterface classes that allow models to be saved and restored to a block of memory
or by using a pipe to transfer data between two processes.

There are classes derived from FileInterface for saving and restoring in binary or text format
to stream files. These are defined in the sabfile.hxx and satfile.hxx files.

If a new type of FileInterface class is being derived, derive it from BinaryFile, which is
defined in the binfile.hxx file. The BinaryFile class provides most of the virtual methods of the
FileInterface class and only the four virtual methods that are specific to the derived class need
to be implemented.

Applications are responsible for opening and closing the file, and for making sure that the file
pointers are positioned correctly when the save or restore function is called. Each function
expects that the file is open and positioned at the byte where the save or restore is to begin.
When the function finishes, the file is positioned after the last byte of the body or entity saved
or restored.

The process of copying an ENTITY_LIST is analogous to performing a save and restore. The
copy algorithm is described with the save and restore algorithms.

Kernel R10

Problems can occur in several areas if you use two different C runtime DLLs (e.g., one release
and one debug) when using ACIS. Using the release DLL with an application debug
configuration is a common source of access violations for save and restore. Refer to the “C
Runtime Library DLL” topic in the Application Development Manual for more details.

Integer identifiers, unique to a given history stream, can be requested for each entity. These
IDs remain constant through roll, save and restore. An entity can be returned from a given ID
when the entity is alive in the active state of the history stream. NULL is returned when the
entity is not alive. This requires two SAT files changes: an extra integer in each entity and the
number of tags assigned in the history stream.

The format of ENTITY and HISTORY_STREAM records accommodates the addition of entity
IDs. An integer field in the entity record holds the entity’s ID. A value of –1 indicates that an
ID has not yet been requested for the ENTITY. This is field #2 in any entity record, where the
entity type is field #0. An integer field in history stream records (part of the history data
section) holds the next available entity ID in that stream. This is field #3 in the history stream
record, where “history_stream” is the first field.

Body Copy
Topic: *SAT Save and Restore

The process of copying a body is identical to that of save and restore, except that it omits the
step of saving an intermediate representation of the body to secondary storage. The algorithms
make use of the class ENTITY_LIST, which is a variable length associative array
implementation used by many of the ACIS algorithms. ENTITY_LIST contains pointers to
ENTITYs.

An ENTITY_LIST has four methods that pertain to copying a body:

add Adds an ENTITY to the list if not already there and always return the index..

lookup Searches for an ENTITY in the list and returns the index..

init Prepares to walk the list..

next Returns the next undeleted item..

The following is the algorithm, with pseudo code, for copying a body.

1. Set the version information so that the pointers are arranged correctly:

restore_major_version = get_major_version ();
restore_minor_version = get_minor_version ();
restore_version_number =

PORTMANTEAU(restore_major_version,
restore_minor_version);

Kernel R10

2. Create an empty ENTITY_LIST to hold a pointer to each data structure in the body:

ENTITY_LIST list;
list.add(entities_to_be_copied);

Seed the list with all entities to be copied.

3. For each entity in the list, add each of its ENTITY pointers to the list:

list.init();
for(int num_ents; ++num_ents) {

ENTITY* this_ent = list.next();
if(this_ent == NULL)
break;
this_ent–>copy_scan(list);

}

4. Continue to scan until all pointers are added to the list.

For example, the copy_scan method for BODY adds the LUMP pointer to the list:

list.add(lump());

5. Allocate an array of ENTITY pointers to hold copies of each data structure:

ENTITY** array = new ENTITY* [num_ents];

6. Copy each entity, replacing every pointer in the copy with an index:

for(int i = 0; i < num_ents; i++)
array[i] = list[i]–>copy_data(list);

7. Copy the LUMP pointer to a new body:

new_body–>lump_ptr = (LUMP*)list.lookup(lump());

The copy_data method for BODY, for example, looks up the LUMP pointer in the list
and inserts the index in the LUMP pointer of the copy. The LUMP index is cast to a
LUMP* to satisfy the C++ compiler.

8. For each entity in the array, replace the pointer indices with pointers corresponding to
the new entities:

for(int i = 0; i < num_ents; i++)
array[i]–>fix_pointers(array);

9. The fix_pointers method for BODY finds the LUMP pointer in the list from the index:

set_lump((LUMP*)read_array(array, (int)lump()));

Kernel R10

The copied body in array[0] is returned and the array is returned to free storage.

Save and Restore Algorithms
Topic: *SAT Save and Restore

The save algorithm works much like the first stage of copying.

1. Create an empty entity list to hold a pointer to each data structure in the body. Seed the
list with the BODY pointer.

ENTITY_LIST list;
list.add(body_to_be_saved);

2. For each entity in the list, write out the class data. Write any pointers as integer indexes
by adding them to the list. Continue to scan until all pointers have been added:

list.init();
for(int count = 0; ; ++count) {

ENTITY* this_ent = list.next();
if (this_ent == NULL)

break;
this_ent–>save(list);

}

The LUMP pointer in the BODY is written out as:

write_ptr(lump(), list);

This call saves the pointer to the file as an index and adds the lump to the entity list.

The example in Figure 10-1 is a body (B0) with two lumps (L0 and L0’). The save begins with
the scan that takes the pointers from the body and entities contained within and makes an
ENTITY_LIST, assigning an index to each pointer. The body pointer is index zero (0).

Kernel R10

B0

L0’

B0

L0

L0’

0

1

2

Index ENTITY_LIST

L0

Figure 10-1. ENTITY_LIST Taken from Body

The save algorithm is analogous to the first two stages of copying. The intermediate form of
the copied body is now on secondary storage instead of in the entity array.

Restore can be broken into two stages.

Restore Stage 1

Stage 1 reads the save file record and constructs the new object, leaving pointers to other
restored entities in symbolic form (as indices into an array), and entering the address into the
array.

The restore_entity_from_file function reads the ID string from the start of each save file
record and searches its tables for the ID components, starting with the last (base) one and
proceeding towards the leaf. It then calls the restore method for the leaf–most class found.
That function constructs an object of the appropriate derived type, and then calls its
restore_common method. That method in turn calls its parent’s restore_common method,
and then reads data specific to the derived class. Finally, restore_entity_from_file reads any
more data in the save file record, and constructs an unknown_entity_text record to contain it,
together with any unrecognized ID strings.

Restore Stage 2

After all new objects have been constructed, stage 2 visits each to convert the symbolic
ENTITY pointers into genuine ones.

The fix_pointers method for each entity in the array is called with the array as argument. This
calls fix_common, which calls its parent’s fix_common, and then corrects any pointers in the
derived class. In practice there is never anything special for fix_pointers to do, but it is
retained for consistency and compatibility.

Kernel R10

The restore process rebuilds the entity array as it reads the records from the file. Then the
pointers are reconstructed as in copying. The restore process is:

1. Read the header to get the version number and set it; otherwise, the restore is not
guaranteed to work correctly:

restore_version = read_int();
restore_major_version =
MAJOR_VERSION(restore_version_number);
restore_minor_version =

MINOR_VERSION(restore_version_number);

2. Read the header to find the number of records and create an array (Figure 10-2) to hold
a pointer to each restored record.

ENTITY** array = new ENTITY* [num_ents];

3. Restore each entity from the file leaving the pointers as integers.

for(i = 0; i < num_ents; i++)
array[i] = restore the ENTITY

4. For each entity in the array, replace the pointer indexes with pointers corresponding to
the new entities.

for(i = 0; i < num_ents; i++)
array[i]–>fix_pointers(array);

The first n entities in the array (array[0] to array[n–1], where n was read from the save file
header) are returned and the array is returned to free storage.

While restoring the example body, the new body contains pointers to the new lumps. Lump L1
contains a pointer to L1’,and the pointer of L1’ is NULL (indicated by –1). This is the data
stored in the disk by the save algorithm. (Figure 10-2).

Kernel R10

B1

L1

L1’

B1
L1
L1’

0
1
2

ARRAYIndex
1

2

–1

Figure 10-2. Array Created for Restore

Figure 10-3 shows the new body after fix_pointers is called for each entity in the array.

B1

L1

L1’

B1
L1
L1’

0
1
2

ARRAYIndex

Figure 10-3. Body Recovered by Restore Algorithm

Each class derived from ENTITY has a save method, and the object is saved by invoking the
save method for the class.

Kernel R10

Restoring is more difficult. ACIS uses a function that is not a class method to restore each
class derived from ENTITY. When the ACIS modeler begins execution, each class derived
from ENTITY notifies the restore code of its identifier and restore function. During the restore
process, the restore code deciphers the identifier and calls the appropriate function.

Part Restore Progress Meter
Topic: *SAT Save and Restore

A restore progress callback mechanism has been added to the SAT/SAB restore functionality.
This callback provides the restore progress information needed by an application to implement
a progress widget. An example of how the data can be used to implement a Windows progress
bar is included in the scm/main/windows/wstdio.cxx source file.

The progress mechanism uses either the entity count or the size of the restore file to measure
progress. When the entity count is available it is used by default. Otherwise an attempt is
made to acquire the restore file size, and if successful is used to measure progress. The
customer can change the progress measurement by setting a custom file size during the very
first call to the callback function. This is useful when the file size was not obtainable or the
customer has a better understanding of the ACIS data block within the restore file that
possibly contains customer data or multiple ACIS data blocks.

The callback frequency can be managed by the customer and is by default set to cause the
callback to get called roughly every percent. This can be set to cause the callback to get called
more or less often as desired.

The callback mechanism is enabled by installing a custom callback function with the
set_restore_progress_callback function. The set_restore_progress_callback function accepts
one argument, which is the custom callback function.

An example call to install the callback looks like this:

set_restore_progress_callback(my_restore_progress_callback);

The installed callback function will be called during every restore operation unless it is either
disabled (discussed later) or uninstalled by calling the set_restore_progress_callback with a
NULL argument.

An example call to uninstall the callback looks like this:

set_restore_progress_callback(NULL);

The custom callback prototype is typedefed to proc_restore_progress_callback in the
savres.hxx header. The function receives a pointer to a restore_progress_data object, which
provides all of the progress information, as an argument and returns an integer as a success
indicator.

Kernel R10

A simple example of a custom callback implementation looks like this:

#include ”kernel/acis.hxx”
#include ”kernel/kerndata/savres/savres.hxx”

int my_restore_progress_callback(restore_progress_data * pd)
{ }

The restore_progress_data object has 4 methods available to the application that can be used
to modify the default behavior of the callback and to retrieve the progress data. They are
public exported methods of the restore_progress_data class and have the following signatures:

int count() const;
int index() const;
int size(int input_size = –1);
int interval(int input_interval = –1);

The count method returns a positive integer count that is either the number of entities to
restore or the size of the restore file when the entity count is not available, or a zero when
none of this information is available or obtainable.

An example call looks like this:

if(pd–>count() > 0) { }

The index method returns a positive integer of the achieved progress, which can be either the
number of entities restored or the number of bytes read from the file, or a zero on the very
first callback call. The customer can modify the progress measurement during the very first
call as mentioned above.

An example call looks like this:

if(pd–>index() == 0) { } // first call

The size method returns a positive integer of the acquired size of the restore file, or a zero if
the entity count is available or the file size could not be obtained. The size method accepts an
integer input size from the customer on the very first callback call useful to replace the default
restore measurement.

An example call looks like this:

if(pd–>size() > 250000) { } // file size greater than
250000 bytes

The interval method returns a positive integer indicating the current callback frequency, which
is set to 1 by default. The method accepts an integer indicating the customer desired callback
frequency on the very first call to the callback. A frequency of 1 causes the callback to get
called roughly every percent. A frequency of 2 causes the callback to get called for every
entity restored, which could be quite often. Setting the frequency to zero will disable the
callback for this restore only.

Kernel R10

An example call looks like this:

if(pd–>size() > 0 && pd–>size() < 250000)
// don’t bother with the progress meter if the restore is

minimal
pd–>interval(0);

else
pd–>interval(1);

Alternatively, one can simply return a –1 from the custom callback to disable the callback for
the current restore.

Optional Sequence Numbers
Topic: *SAT Save and Restore

The indexing of the entity records depends on the active ACIS options when the model was
saved. If they are indexed, the indexing is sequential starting at 0. All top level entities must
appear before any other entities. Thereafter, the record order is not significant.

The optional sequence number represents the index assigned to a record and is intended to
improve readability and simplify editing of ACIS save files. The option sequence_save_files
controls whether ACIS writes sequence numbers to the part save file.

–0 body $1 $2 $–1 $–1 #
.
.
.

–25 point $–1 10 0 25 #

In the example above from a SAT file, “–0” and “–25” are sequence numbers. In the first line,
“$1 $2” happen to be pointers to records (not shown) with sequence numbers “–1” and “–2”,
respectively.

This sequence number itself can be turned on or off for the entity records in the save file.
Even when the sequence number is not written to the file, it is implied by the order of the
records in the file. Pointers to other records correspond to these implied sequence numbers. If
sequence numbers are turned off, a record cannot be simply moved or removed from the save
file, because this will create invalid index referencing when the file is restored.

If sequence numbers are turned on, an entity may be deleted by simply removing its record
from the save file. Any references to the removed record’s index become NULL pointers when
the file is restored by ACIS. With sequence numbers on, records may also be rearranged
within the file.

Kernel R10

A mixture of records with sequence numbers and records without sequence numbers is
permitted within the save file. Any record having a sequence number is given an index one
greater than the previous entry in the file. Specified sequence numbers can be in any order.
However, care must be taken that no sequence number repeat itself, either through manual
specification of sequence numbers or the implied incrementing of other, nonspecified,
sequence numbers.

Regardless of what sequence numbers they contain, the entities represented by the first
records are assumed to be the top-level entities. Top-level entities are part of the ACIS
topology. Also, if the total entity count was written in the header and the last record’s
sequence number is not one less than that count, a dummy record with a sequence number
equal to the count must be added at the end of the file.

Backward Compatibility
Topic: *SAT Save and Restore

The ACIS version number for subsequent save operations is set using the function
set_save_file_version, which takes two arguments, a major version and a minor version.

Throughout the system, all entity save functions, and related functions for curve, surface, etc.,
take into account the version number. This is the global value, save_version_number, which
gives the version of save file format being written. This can be used to produce a save file in a
previous version’s format.

Objects can be modified to be compatible with an earlier version. This may or may not result
in loss of information. If the modification involves loss of information or a possible error in
the resulting save file, a warning is generated, but the save file is still produced.

When restoring objects with shared subtypes, such as int_cur or spl_sur, from a save file in
which they are not shared, the default is to share identical sub-objects rather than to leave
them unshared.

Note The restore of pre-Release 1.6 save files causes the coedges in the entity restored to
be ordered counterclockwise about their edge.

The version number is normally the current version, but the version may be set backwards to
simulate save files generated by previous versions. A major version of 0 or less causes the
version to default to the current ACIS version.

Set the save file version number:

void set_save_file_version(
int = 0, // major version number
int = –1 // minor version number, default gives

// error unless major version is zero
);

Kernel R10

Decimal Point Representation
Topic: *SAT Save and Restore

Some applications using earlier versions of ACIS were written using “internationalization”
concepts and have written save files that contain representations of double precision numbers
containing commas for decimal points. This occurs if the application writing the save file had
made a call to the C standard library function setlocale to change the locale properties from
the default C settings. Consequently, other applications not using this “internationalization”
feature could not read these files.

Beginning with release 2.1, ACIS always writes a save file using the C locale, which uses the
period representation for decimal points. ACIS makes a call to the function setlocale to
change the environment to the C locale before writing a save file. The locale is reset to its
original value after the file is written.

The option restore_locale enables applications to read pre-2.1 save files that were written
with other locales. Before restoring the file, the option should be set to a string representing
the locale in effect when the file was written. The option may be set with the function
api_set_str_option, with the Scheme extension option:set. When a file is restored, ACIS
makes a call to the function setlocale to set the environment to the value (string) specified by
the option.

Option for Testing Shared Geometry
Topic: *SAT Save and Restore

The test_share option checks for shared geometry when restoring SAT files. As entities are
read into ACIS, int_cur and spl_sur types are compared with those that have already been
restored to determine if they are identical to a previously restored int_cur or spl_sur. They can
then be restored simply by incrementing a use count instead of restoring the entire object. This
option significantly reduces the size of retrieved bodies and aids subsequent operations, but it
can be expensive and can become noticeable when restoring large parts.

The option can be turned off to speed up the restore process. However, the amount of memory
required to restore a model will be larger, since sharing of geometry is not taking place. Also,
evaluations of geometry during modeling operations may take longer because the test for
coincidence will take place each time the objects are evaluated. This may cause the test to
happen many times instead of once when the model is loaded.

If you are confident that your models contain little shared data or that the data has already
been shared via modeling operations in ACIS, then turning the test_share option off may lead
to faster load times.

