
Kernel  R10

Chapter 13.
Scheme Extensions Fa thru Hz

Topic: Ignore

face:bs
Scheme Extension: Debugging

Action: Returns the B–spline approximation information for a face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:bs  in–face [extra–info=#f])

Arg Types: in–face face
extra–info boolean

Returns: real | real...

Errors: –1 when there is no B–spline to evaluate.

Description: Returns the number of control points in u and v.

in–face specifies the face to be queried.

extra–info is an optional argument. If it is set to true (#t), then additional
B–spline information is returned. The default value is false (#f).

Limitations: None



Kernel  R10

Example: ; face:bs
; Create topology to demonstrate command.
(define path (edge:spline (list (position 0 0 0)

(position 10 0 0) (position 10 10 0))))
;; path
(define profile (edge:ellipse

(position 0 0 0) (gvector 1 0 0)
(gvector 0 0 1)))

;; profile
(define pipe (sweep:law profile path))
;; pipe
(define face (list–ref (entity:faces pipe) 0))
;; face
; Get the B–spline approximation information.
(face:bs face)
;; (14 20)

face:check
Scheme Extension: Debugging

Action: Determines if a face contains invalid loops.

Filename: kern/kern_scm/loop_scm.cxx

APIs: api_check_face_loops

Syntax: ( face:check  face)

Arg Types: face entity

Returns: boolean

Errors: None

Description: This returns text indicating how many of the various kinds of loops there
are in the given face and a Boolean flag indicating whether the check was
successful or not. Valid loop types include periphery loops, holes,
u–separation loops, v–separation loops, unknown loops, and “Closed face,
no loop”.

face specifies a face entity.

Limitations: None



Kernel  R10

Example: ; face:check
; Create a face.
(define face1 (face:law ”vec(cos(x), y, x)”

–20 (law:eval ”10*pi”) –10 10))
;; face1
(face:check face1)
; 1 periphery loop.
;; #t

face:conical?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a conical face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:conical?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: This extension returns #t if the object is a conical face; otherwise, it
returns #f.

object specifies the scheme–object that has to be queried for a conical
face.

Limitations: None

Example: ; face:conical?
; Create a solid cylinder.
(define cyl1

(solid:cylinder (position 5 0 0)
(position 25 25 0) 30))

;; cyl1
; Get the faces of the cylinder.
(define face–list (entity:faces cyl1))
;; face–list
; Determine if the first face is a conical face.
(face:conical? (car face–list))
;; #t
(face:conical? (car (cdr face–list)))
;; #f



Kernel  R10

face:cylinder–axis
Scheme Extension: Construction Geometry

Action: Gets the ray along the axis of a cylindrical–face entity.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:cylinder–axis  entity)

Arg Types: entity cylindrical–face

Returns: ray

Errors: None

Description: The returned ray is a gvector and position that specify the central axis of
the cylinder face supplied as the entity input. Note that the input argument
is cylinder face and not a solid:cylinder.

entity specifies a cylindrical–face.

Limitations: None

Example: ; face:cylinder–axis
; Create a solid cylinder.
(define cyl1

(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))

;; cyl1
; Find the faces of the cylinder.
(define faces1 (entity:faces cyl1))
;; faces1
; Determine the axis of a cylindrical face.
(face:cylinder–axis (car faces1))
;; #[ray (4 4 4) (0.57735 0.57735 0.57735)]

face:cylinder–radius
Scheme Extension: Construction Geometry

Action: Gets the radius of a cylindrical face entity.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None



Kernel  R10

Syntax: ( face:cylinder–radius  entity)

Arg Types: entity cylindrical–face

Returns: real

Errors: None

Description: The returned real specifies the radius of the cylinder face supplied as the
entity input. Note that the input argument is cylinder face and not a
solid:cylinder.

entity specifies a cylindrical–face.

Limitations: None

Example: ; face:cylinder–radius
; Create a cylinder.
(define cyl1

(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))

;; cyl1
; Find the faces of the cylinder.
(define faces1 (entity:faces cyl1))
;; faces1
; (#[entity 3 1] #[entity 4 1] #[entity 5 1])
; Find the radius of the cylindrical face.
(face:cylinder–radius (car faces1))
;; 32

face:cylindrical?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a cylindrical face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:cylindrical?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None



Kernel  R10

Description: The returned boolean specifies whether the supplied entity input is a
cylindrical face. Note that the input argument is cylinder face and not a
solid:cylinder.

object specifies the scheme–object that has to be queried for a
cylindrical–face.

Limitations: None

Example: ; face:cylindrical?
; Create a solid cylinder.
(define cyl1

(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))

;; cyl1
; Find the faces of the cylinder.
(define faces1 (entity:faces cyl1))
;; faces1
; Determine whether cyl1 is a cylindrical face.
(face:cylindrical? cyl1)
;; #f
; Determine whether face 2 is a cylindrical face.
(face:cylindrical? (car faces1))
;; #t
; Determine whether face 3 is a cylindrical face.
(face:cylindrical? (car (cdr faces1)))
;; #f

face:derivtest
Scheme Extension: Model Geometry

Action: Tests face quality by comparing the procedural derivatives with finite
difference derivatives up to the 4th derivatives.

Filename: kern/kern_scm/surf_scm.cxx

APIs: None

Syntax: ( face:derivtest  face [num–u] [num–v] [start–u]
[end–u] [start–u] [start–v] [end–v] [file])



Kernel  R10

Arg Types: face entity
num–u integer
num–v integer
start–u real
end–u real
start–v real
end–v real
file string

Returns: string

Errors: None

Description: This Scheme extension tests the face quality by comparing the procedural
derivatives with finite difference derivatives up to the 4th derivatives.
Output message can be sent to a optional data file.

face defines the face entity to test derivatives.

num–u defines the position number to test in the surface u direction. The
default is 10.

num–v defines the position number to test in the surface v direction. The
default is 10.

 start–u defines the start surface u parameter. The default is the surface u
parameter range.

end–u defines the end surface u parameter.

start–v defines the start surface v parameter. The default is the surface v
parameter range.

end–v defines the end surface v parameter.

file defines the output file name. The default is debug_file_ptr.

Limitations: None

Example: ; face:derivtest
; Example not available at this time.

face:planar?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a planar face.



Kernel  R10

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:planar?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: This extension returns #t if the specified object is a planar face.

object specifies the scheme–object that has to be queried for a planar
face.

Limitations: None

Example: ; face:planar?
; Create a solid block.
(define block1

(solid:block (position –10 –10 0)
(position 25 25 25)))

;; block1
; Get a list of the solid block’s faces.
(define faces1 (entity:faces block1))
;; faces1
; Determine if one of these faces is
; actually a planar face.
(face:planar? (car (cdr (cdr faces1))))
;; #t

face:plane–normal
Scheme Extension: Construction Geometry

Action: Gets the normal of a planar face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:plane–normal  entity)

Arg Types: entity planar–face

Returns: gvector



Kernel  R10

Errors: None

Description: This extension returns the normal of a planar face.

entity specifies a face entity.

Limitations: None

Example: ; face:plane–normal
; Create a solid block.
(define block1

(solid:block (position 0 0 0)
(position 40 40 40)))

;; block1
; Get a list of the solid block’s faces.
(define faces1 (entity:faces block1))
;; faces1
; Get the normal of one of the planar faces.
(face:plane–normal (car (cdr faces1)))
;; #[gvector 0 0 –1]
; Get the normal of another planar face.
(face:plane–normal (car (cdr (cdr (cdr faces1)))))
;; #[gvector –1 0 0]

face:plane–ray
Scheme Extension: Construction Geometry

Action: Gets the plane from a planar face as a ray.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:plane–ray  entity)

Arg Types: entity planar–face

Returns: gvector

Errors: None

Description: This extension represents the specified planar face as a ray.

entity specifies a face entity.

Limitations: None



Kernel  R10

Example: ; face:plane–ray
; Create a solid block.
(define block1

(solid:block (position 0 0 0)
(position 40 40 40)))

;; block1
; Get a list of the solid block’s faces.
(define faces1 (entity:faces block1))
;; faces1
; Extract a plane from one of the faces and
; represent the face as a ray.
(face:plane–ray (car (cdr faces1)))
;; #[ray (20 20 0) (0 0 –1)]
; Do the same with a second face.
(face:plane–ray (car (cdr (cdr (cdr faces1)))))
;; #[ray (0 20 20) (–1 0 0)]

face:scar?
Scheme Extension: Debugging

Action: Checks the input body or face for scars and returns list (or unspecified if
no scars exist).

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:scar?  face | body)

Arg Types: face face | face ...
body body | body ...

Returns: (edge | edge ...) | unspecified

Errors: None

Description: Refer to Action.

face specifies a face or a list of faces.

body specifies a body or a list of bodies.

Limitations: None



Kernel  R10

Example: ; face:scar?
; Create four types of face/edge geometry to
; demonstrate command.
(define block1 (solid:block –40 –5 –15 –25 5 15))
;; block1
(define edge (edge:linear (position –30 0 0)

(position –30 0 10)))
;; edge
(define body1 (hh:combine (list block1 edge)))
;; body1
(face:scar? block1)
;; ()
; Create a planar disk.
(define pdisk (face:planar–disk 

(position 0 0 0) (gvector 0 0 10) 10))
;; pdisk
(define disk–edge (edge:linear 

(position –10 0 0) (position 10 0 0)))
;; disk–edge
(define body2 (hh:combine (list pdisk disk–edge)))
;; body2
(face:scar? body2)
;; ()
(define block2 (solid:block 20 10 0 30 20 40))
;; block2
(define block2–edge (edge:linear 

(position 27 10 0) (position 22 15 20)))
;; block2–edge
(define body3 (hh:combine (list block2 block2–edge)))
;; body3
(define cylinder (solid:cylinder 

(position –5 0 –14) (position –5 0 –34) 5))
;; cylinder
(define cyl–edge (edge:linear 

(position –3 5 –14) (position –3 5 –35)))
;; cyl–edge
(define body4 (hh:combine (list cylinder cyl–edge)))
;; body4



Kernel  R10

Original

Figure 13-1. face:scar?

face:sphere–center
Scheme Extension: Construction Geometry

Action: Gets the center position of a spherical face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:sphere–center  face)

Arg Types: face spherical–face

Returns: position

Errors: None

Description: This extension returns the position of the center of a spherical face.

face specifies a spherical face entity.

Limitations: None



Kernel  R10

Example: ; face:sphere–center
; Create a solid sphere.
(define sphere1 (solid:sphere (position 0 0 0) 38))
;; sphere1
; Find the faces of the solid sphere.
(define faces1 (entity:faces sphere1))
;; faces1
; Find the center of the spherical face.
(face:sphere–center (car faces1))
;; #[position 0 0 0]

face:sphere–radius
Scheme Extension: Construction Geometry

Action: Gets the radius of a spherical face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:sphere–radius  face)

Arg Types: face spherical–face

Returns: real

Errors: None

Description: This extension returns the radius of the spherical face.

face specifies a spherical face entity.

Limitations: None

Example: ; face:sphere–radius
; Create a solid sphere.
(define sphere1 (solid:sphere (position 0 0 0) 38))
;; sphere1
; Find the faces of the solid sphere.
(define faces1 (entity:faces sphere1))
;; faces1
; Find the radius of a spherical face.
(face:sphere–radius (car faces1))
;; 38

face:spherical?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a spherical face.



Kernel  R10

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:spherical?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: This extension returns #t if the specified object is a spherical face.

object specifies the scheme–object that has to be queried for a spherical
face.

Limitations: None

Example: ; face:spherical?
; Create a solid sphere.
(define sphere1 (solid:sphere (position 0 0 0) 20))
;; sphere1
; Determine if the solid sphere is a
; spherical face.
(face:spherical? sphere1)
;; #f
; Find the faces of the solid sphere.
(define faces1 (entity:faces sphere1))
;; faces1
; Determine if the face is actually a
; spherical face.
(face:spherical? (car faces1))
;; #t

face:spline?
Scheme Extension: Model Geometry, Spline Interface

Action: Determines if a Scheme object is a face:spline.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:spline?  object)

Arg Types: object scheme–object



Kernel  R10

Returns: boolean

Errors: None

Description: Refer to Action.

object specifies the scheme–object that has to be queried for a face
spline.

Limitations: None

Example: ; face:spline?
; Define a spline edge 1.
(define e1 (edge:spline (list (position 0 0 0)

(position 20 –20 0) (position 20 0 0))))
;; e1
; Define linear edge 2.
(define e2 (edge:linear (position 20 0 0)

(position 20 20 0)))
;; e2
; Define linear edge 3.
(define e3 (edge:linear (position 20 20 0)

(position 0 20 0)))
;; e3
; Define linear edge 4.
(define e4 (edge:linear (position 0 20 0)

(position 0 0 0)))
;; e4
; Define a wire body from
; the spline and linear edges.
(define w (wire–body (list e1 e2 e3 e4)))
;; w
; Create a solid by sweeping
; a planar wire along a vector.
(define ws (solid:sweep–wire w (gvector 0 0 20)))
;; ws
; Get the faces of the solid.
(define edges1 (entity:faces ws))
;; edges1
; Determine if one of the faces is a spline face.
(face:spline? (car (cdr edges1)))
;; #f
; Determine if another face is a spline face.
(face:spline? (car (cdr (cdr (cdr edges1)))))
;; #t



Kernel  R10

face:toroidal?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a toroidal face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:toroidal?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: Refer to Action.

object specifies the scheme–object that has to be queried for a toroidal
face.

Limitations: None

Example: ; face:toroidal?
; Create solid torus 1.
(define torus1

(solid:torus (position –10 –10 –10) 7 3))
;; torus1
; Get a list of the faces on torus 1.
(define faces1 (entity:faces torus1))
;; faces1
; Determine if the face is a toroidal face.
(face:toroidal? (car faces1))
;; #t

face:type
Scheme Extension: Debugging

Action: Returns the type of a face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face:type  face1)



Kernel  R10

Arg Types: face1 entity

Returns: string

Errors: None

Description: This returns a string that tells what type of face has been produced. Output
strings include “Plane”, “Cylinder”, “Cone”, “Sphere”, “Torus”, “Spline”,
and “Unknown type”. When the face is a spline, it also returns the subtype
for the spline.

face1 specifies a face entity.

Limitations: None

Example: ; face:type
; Create a face.
(define face1 (face:law ”vec (cos (x), y, x)”

–20 (law:eval ”10*pi”) –10 10))
;; face1
(face:type face1)
;; ”Spline surface (lawsur–spline)”

face:types
Scheme Extension: Debugging

Action: Prints a table of all faces in the current part, including their containing
entities and surface types.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: api_get_active_part, api_get_faces

Syntax: ( face:types )

Arg Types: None

Returns: string

Errors: None

Description: Refer to Action.

Limitations: None



Kernel  R10

Example: ; face:types
; create a solid cylinder
(define cylinder (solid:cylinder (position 0 0 0)

(position 0 0 30) 10))
;; cylinder
; request a list of all faces in current part
(face:types)
; entity:(entity 1 1)
; face:(entity 4 1) face–type:Cylinder
; face:(entity 5 1) face–type:Plane
; face:(entity 6 1) face–type:Plane
;; #t

face?
Scheme Extension: Model Geometry

Action: Determines if a Scheme object is a face.

Filename: kern/kern_scm/qfac_scm.cxx

APIs: None

Syntax: ( face?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: The extension returns #t if the object is a face; otherwise, it returns #f.

object specifies the scheme–object that has to be queried for a face.

Limitations: None

Example: ; face?
; Create a solid block.
(define block1

(solid:block (position –10 –5 –15)
(position 10 5 15)))

;; block1
; Get the block’s faces.
(define faces1 (entity:faces block1))
;; faces1
(face? block1)
;; #f
; Determine if face 2 is a face.
(face? (car (cdr faces1)))
;; #t



Kernel  R10

filter:and
Scheme Extension: Filtering

Action: Computes an AND of two or more entity–filters.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None

Syntax: ( filter:and  filt1 ... filtn)

Arg Types: filt1 entity–filter
filtn entity–filter

Returns: entity–filter

Errors: None

Description: Multiple filters can be combined using the Boolean and filter to form a
single filter that can be applied to a single entity or a list of entities. An
entity is selected if all parts of the combined filter return #t.

filt1 is an entity–filter. The ellipsis ( ... ) indicates one or more
entity–filters.

Limitations: None



Kernel  R10

Example: ; filter:and
; Create solid block 1.
(define block1

(solid:block (position 10 0 10)
(position 20 30 40)))

;; block1
; Create linear edge 2.
(define edge1 (edge:linear (position 0 0 0)

(position 10 10 10)))
;; edge1
; Create circular edge 3.
(define edge2 (edge:circular (position 0 0 0) 20))
;; edge2
; Change the color of the existing entities to red.
(entity:set–color (part:entities) 1)
;; ()
; Create solid sphere 4.
(define sphere1 (solid:sphere

(position 20 30 40) 30))
;; sphere1
; Create solid sphere 5.
(define cyl1 (solid:cylinder

(position 40 0 0) (position 5 5 5) 8))
;; cyl1
; Create linear edge 6.
(define edge3 (edge:linear (position 0 50 0)

(position 50 50 0)))
;; edge3
; Create spline edge 7.
(define edge4 (edge:spline (list

(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edge4
; Define a filter for red curves.
(define red–curves (filter:and (filter:color 1)

(filter:type ”edge:circular?”)))
;; red–curves
; List the red curve entities.
(filter:apply red–curves (part:entities))
;; (#[entity 4 1])
; The following accomplishes the same thing.
(part:entities red–curves)
;; (#[entity 4 1])



Kernel  R10

filter:apply
Scheme Extension: Filtering

Action: Applies a filter to an entity or list of entities.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None

Syntax: ( filter:apply  filter entity–or–list)

Arg Types: filter entity–filter
entity–or–list entity | (entity ... )

Returns: (entity ... )

Errors: None

Description: Once a filter is created, the filter can be applied to obtain the particular
results. For example, if numerous entities are components of a part of
various colors, applying a color filter to the list of entities returns the list
of entities that match the filter’s color. When applying the filter to an
entity that does not meet the requirements for the filter, this extension
returns the empty list.

filter specifies an entity–filter.

entity–or–list specifies an entity or an entity list.

Limitations: None

Example: ; filter:apply
; Create solid block 1.
(define block1

(solid:block (position 10 0 10)
(position 20 30 40)))

;; block1
; Create linear edge 2.
(define edge1 (edge:linear (position 0 0 0)

(position 10 10 10)))
;; edge1
; Create circular edge 3.
(define edge2 (edge:circular (position 0 0 0) 20))
;; edge2
; Change the color of the entities so far to red.
(entity:set–color (part:entities) 1)
;; ()



Kernel  R10

; Create solid sphere 4.
(define sphere1 (solid:sphere

(position 20 30 40) 30))
;; sphere1
; Create solid sphere 5.
(define cyl1 (solid:cylinder

(position 40 0 0) (position 5 5 5) 8))
;; cyl1
; Create linear edge 6.
(define edge3 (edge:linear (position 0 50 0)

(position 50 50 0)))
;; edge3
; Create spline edge 7.
(define edge4 (edge:spline (list

(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edge4
; Apply a green filter and obtain the entities.
(filter:apply (filter:color 2) (part:entities))
;; (#[entity 5 1] #[entity 6 1]
;; #[entity 7 1] #[entity 8 1])
; Apply a solid, red filter and obtain the entities.
(filter:apply (filter:and (filter:type ”solid?”)

(filter:color 1)) (part:entities))
;; (#[entity 2 1])
; Apply a solid, green filter and
; obtain the entities.
(part:entities (filter:type ”solid?”))
;; (#[entity 2 1] #[entity 5 1] #[entity 6 1])
(filter:apply (filter:type ”solid?”) edge1)
;; ()

filter:not
Scheme Extension: Filtering

Action: Computes the NOT of an input entity–filter.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None

Syntax: ( filter:not  filter)

Arg Types: filter entity–filter



Kernel  R10

Returns: entity–filter

Errors: None

Description: Refer to Action.

filter specifies an entity–filter.

Limitations: None

Example: ; filter:not
; Create solid block 1.
(define block1

(solid:block (position 10 0 10)
(position 20 30 40)))

;; block1
; Create linear edge 2.
(define edge1 (edge:linear (position 0 0 0)

(position 10 10 10)))
;; edge1
; Create circular edge 3.
(define edge2 (edge:circular (position 0 0 0) 20))
;; edge2
; Change the color of the entities so far to red.
(entity:set–color (part:entities) 1)
;; ()
; Create solid sphere 4.
(define sphere1 (solid:sphere

(position 20 30 40) 30))
;; sphere1
; Create solid sphere 5.
(define cyl1 (solid:cylinder

(position 40 0 0) (position 5 5 5) 8))
;; cyl1
; Create linear edge 6.
(define edge3 (edge:linear (position 0 50 0)

(position 50 50 0)))
;; edge3
; Create spline edge 7.
(define edge4 (edge:spline (list

(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edge4
; Apply a green filter and obtain the entities.
(filter:apply (filter:color 2) (part:entities))
;; (#[entity 5 1] #[entity 6 1] #[entity 7 1]



Kernel  R10

;; #[entity 8 1])
; Define a yes–red filter.
(define yes–red (filter:color 1))
;; yes–red
(part:entities yes–red)
;; (#[entity 1 1] #[entity 2 1]
;; #[entity 3 1] #[entity 4 1])
; Define a not–red filter.
(define not–red (filter:not (filter:color 1)))
;; not–red
; Apply a not–red filter and obtain the entities.
(part:entities not–red)
;; (#[entity 5 1] #[entity 6 1] #[entity 7 1]
;; #[entity 8 1])

filter:or
Scheme Extension: Filtering

Action: Computes the OR of two or more entity–filters.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None

Syntax: ( filter:or  filt1 ... filtn)

Arg Types: filt1 entity–filter
filtn entity–filter

Returns: entity–filter

Errors: None

Description: Multiple filters can be combined using the Boolean or filter to form a
single filter that can be applied to a single entity or a list of entities. An
entity will be selected if at least one part of the combined filter returns #t.

filt1 is an entity–filter. The ellipsis ( ... ) indicates one or more
entity–filters.

Limitations: None



Kernel  R10

Example: ; filter:or
; Create solid block 1.
(define block1

(solid:block (position 10 0 10)
(position 20 30 40)))

;; block1
; Create linear edge 2.
(define edge1 (edge:linear (position 0 0 0)

(position 10 10 10)))
;; edge1
; Create circular edge 3.
(define edge2 (edge:circular (position 0 0 0) 20))
;; edge2
; Change the color of the entities so far to red.
(entity:set–color (part:entities) 1)
;; ()
; Create solid sphere 4.
(define sphere1 (solid:sphere

(position 20 30 40) 30))
;; sphere1
; Create solid sphere 5.
(define cyl1 (solid:cylinder

(position 40 0 0) (position 5 5 5) 8))
;; cyl1
; Create linear edge 6.
(define edge3 (edge:linear (position 0 50 0)

(position 50 50 0)))
;; edge3
; Create spline edge 7.
(define edge4 (edge:spline (list

(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edge4
; Define the green–or–solid filter.
(define green–or–solid (filter:or (filter:color 2)

(filter:type ”solid?”)))
;; green–or–solid
; Apply a green–or–solid filter and
; obtain the entities.
(part:entities green–or–solid)
;; (#[entity 2 1] #[entity 5 1] #[entity 6 1]
;; #[entity 7 1] #[entity 8 1])



Kernel  R10

filter:type
Scheme Extension: Filtering

Action: Creates a filter entity that selects for the type of an entity.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None

Syntax: ( filter:type  type–name)

Arg Types: type–name string

Returns: entity–filter

Errors: None

Description: This extension creates the specified type–name as a filter, which specifies
the type of entity to be used in another filter operation.

If a new type filter is created, it replaces the previously–defined type.

Refer to filter:color for creating filters based on color, and filter:types to
display the list of available filter types.

type–name specifies an entity–filter to be created. The possible string
values for the type–name are:

“edge:curve?”, “edge:linear?”, “edge:circular?”, “edge:elliptical?”,
“edge:spline?”, “edge?”, “body?”, “solid?”, “wire–body?”, “mixed–body?”,
“wire?”, “face?”, “face:planar?”, “face:spherical?”, “face:cylindrical?”,
“face:conical?”, “face:toroidal?”, “face:spline?”, “wcs?”, “text?”, “vertex?”,
or “point?”.

Limitations: None

Example: ; filter:type
; Create a solid block.
(define part1

(solid:block (position 10 0 10)
(position 20 30 40)))

;; part1
; Create linear edge.
(define part2 (edge:linear (position 0 0 0)

(position 10 10 10)))
;; part2
; Create circular edge.
(define part3 (edge:circular (position 0 0 0) 20))



Kernel  R10

;; part3
; Change the color of the existing entities to red.
(entity:set–color (part:entities) 1)
;; ()
; Create solid sphere.
(define part4 (solid:sphere

(position 20 30 40) 30))
;; part4
; Create solid cylinder.
(define part5 (solid:cylinder

(position 40 0 0) (position 5 5 5) 8))
;; part5
; Create another linear edge.
(define part6 (edge:linear (position 0 50 0)

(position 50 50 0)))
;; part6
; Create a spline edge.
(define part7 (edge:spline (list

(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; part7
; Get a list of available filter types.
(filter:types)
;; (”point?” ”vertex?” ”text?” ”wcs?” ”face:spline?”
;; ”face:toroidal?” ”face:conical?”
;; ”face:cylindrical?” ”face:spherical?”
;; ”face:planar?” ”face?” ”wire?” ”mixed–body?”
;; ”wire–body?” ”solid?” ”body?” ”edge?”
;; ”edge:spline?” ”edge:elliptical?”
;; ”edge:circular?” ”edge:linear?” ”edge:curve?”)
; Apply a solid filter and get entities.
(part:entities (filter:type ”solid?”))
;; (#[entity 2 1] #[entity 5 1] #[entity 6 1])
; Apply edge:spline filter and get entities.
(part:entities (filter:type ”edge:spline?”))
;; (#[entity 8 1])

filter:types
Scheme Extension: Filtering

Action: Gets a list of available filter types.

Filename: kern/kern_scm/filt_scm.cxx

APIs: None



Kernel  R10

Syntax: ( filter:types )

Arg Types: None

Returns: (string ... )

Errors: None

Description: This extension returns all the valid filter types as a list of strings.

Limitations: None

Example: ; filter:types
; Get a list of available filter types.
(filter:types)
;; (”point?” ”vertex?” ”text?” ”wcs?” ”face:spline?”
;; ”face:toroidal?” ”face:conical?”
;; ”face:cylindrical?” ”face:spherical?”
;; ”face:planar?” ”face?” ”wire?” ”mixed–body?”
;; ”wire–body?” ”solid?” ”body?” ”edge?”
;; ”edge:spline?” ”edge:elliptical?”
;; ”edge:circular?” ”edge:linear?” ”edge:curve?”)

find:angle
Scheme Extension: Physical Properties

Action: Returns the angle between edges. Returns a list of angles if a
non–branched wire–body is submitted.

Filename: kern/kern_scm/find_scm.cxx

APIs: api_get_edges

Syntax: ( find:angle  input1 [input2] [logical])

Arg Types: input1 vertex | edge | wire–body
input2 edge
logical real

Returns: real | (real ...)

Errors: None

Description: Refer to Action.

input1 specifies a vertex, edge or a wire–body. A vertex as input1
computes the angles between the two edges around the vertex. If input1 is
a closed edge, the angle between the start and end is returned. If input1 is
a non–branched, wire–body, a list of angles between each of the edges of
the wire–body is returned.



Kernel  R10

input2 specifies an edge. input2 must be supplied if input1 is an open
edge. The angle between these two edges is returned.

A logical of false (#f) returns the results in radians, the default is degrees.

Limitations: Success is not guaranteed for branched wire–bodies, edges that do not
share a vertex, and vertices with more than two edges.

Example: ; find:angle
; Create an entity
(define p1 (wire–body:polygon

(position 0 0 0) (gvector 0 1 0)
(gvector 0 0 1) 5))

;; p1
(define p2 (wire–body:polygon

(position 0 2 0) (gvector 0 –1 0)
(gvector 0 0 1) 5))

;; p2
(define unite (bool:unite p1 p2))
;; unite
(zoom–all)
;; #[view 25363466]
(define v (list–ref (entity:vertices p1)3))
;; v
(entity:set–color v 1)
;; ()
(find:angle v)
;; 108.0

find:bump
Scheme Extension: Physical Properties

Action: Finds the bump associated with the given face or loop.

Filename: kern/kern_scm/pattern_scm.cxx

APIs: api_pattern_find_bump

Syntax: ( find:bump  seed [return–type [no–cross–list
[show–loop=#f]]])

Arg Types: seed entity
return–type string
no–cross–list entity | (entity ...)
show–loop boolean



Kernel  R10

Returns: entity ...

Errors: None

Description: Finds the bump associated with the face or loop specified by seed, and
highlights the face of the bump in red.

seed specifies the entity to be searched.

return–type is an optional argument that could be used to have the
function return a list of entities in the bump.  The options for return–type
are ”faces”, ”loops”, and ”all”. ”faces” returns a list of all faces in the
bump.  “loops” returns a list of all loops in the bump (e.g., those not
owned by faces on the bump). ”all” returns a list consisting of both the
above. No list is returned unless this string is present.

no–cross–list allows for finer definition or limitation in the search.

show–loop set to true (#t), highlights any limiting loops on the bump in
yellow.

Limitations: None

Example: ; find:bump
; create a bump
(define blank (solid:block (position 0 0 0)

(position 10 10 –1)))
;; blank
(define tool (solid:block (position 1 1 0)

(position 2 2 1)))
;; tool
(define unite (solid:unite blank tool))
;; unite
; pick out one face on the bump
(define bump_face (car (entity:faces blank)))
;; bump_face
; pass in an empty string and list so that
; we highlight the default faces and loops
; belonging to the bump, but return no list
(find:bump bump_face ”” (list ) #t)
;; ()
; loop:(entity 14 1)
; face:(entity 3 1)
; face:(entity 7 1)
; face:(entity 4 1)
; face:(entity 5 1)
; face:(entity 6 1)



Kernel  R10

find:pattern–index
Scheme Extension: Patterns

Action: Finds the pattern index associated with a given entity.

Filename: kern/kern_scm/pattern_scm.cxx

APIs: None

Syntax: ( find:pattern–index  entity)

Arg Types: entity entity

Returns: integer

Errors: An invalid entity was specified.

Description: Finds the zero–based pattern index associated with the entity specified by
entity.

entity specifies the entity to be searched.

Limitations: None

Example: ; find:pattern–index
; make a prism
(define height 1)
;; height
(define maj_rad 1)
;; maj_rad
(define min_rad 0.5)
;; min_rad
(define num–sides 3)
;; num–sides
(define prism (solid:prism height maj_rad min_rad

num–sides))
;; prism
; position the prism
(define origin (position 1 2 3))
;; origin
(define transform (entity:transform prism

(transform:axes origin
(gvector 1 0 0) (gvector 0 1 0))))

;; transform
; make a pattern
(define center origin)
;; center
(define normal (gvector 0 0 1))



Kernel  R10

;; normal
(define num–radial 4)
;; num–radial
(define num–angular 5)
;; num–angular
(define spacing 3)
;; spacing
(define pat (pattern:radial center normal

num–radial num–angular spacing))
;; pat
; apply the pattern to the prism
(define body (entity:pattern prism pat))
;; body
; find the pattern index of a specific lump
(define lump (list–ref (entity:lumps body) 8))
;; lump
(define index (find:pattern–index lump))
;; index
; check the index
(law:equal–test index 8)
;; #t

graph:add–edge
Scheme Extension: Graph Theory

Action: Adds an edge to a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:add–edge  output–graph vertex1 vertex2)

Arg Types: output–graph graph
vertex1 string | entity
vertex2 string | entity

Returns: graph

Errors: None

Description: This extension adds an edge to an existing graph between two existing
vertices.

output–graph specifies a graph. The output–graph is updated to show the
new connection between vertices.



Kernel  R10

The vertex1 and vertex2 elements are required to be part of the
output–graph. If the output–graph was created using face entities as the
vertices, the vertex1 and vertex2 can be either the face entities or their
designation as part of the graph.

Limitations: None

Example: ; graph:add–edge
; Create a simple example
(define g1 (graph ”me–you us–them”))
;; g1
; Add a new edge between two existing vertices
(define g2 (graph:add–edge g1 ”me” ”them”))
;; g2

graph:add–vertex
Scheme Extension: Graph Theory

Action: Adds a vertex to a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:add–vertex  in–graph in–name)

Arg Types: in–graph graph
in–name string

Returns: graph

Errors: None

Description: This adds the in–name string as a vertex in in–graph.

in–graph specifies a graph.

in–name is a string specifying the vertex that has to be added to the
in–graph.

Limitations: None



Kernel  R10

Example: ; graph:add–vertex
; Create a simple example
(define g1 (graph ”me–you us–them”))
;; g1
; Add a vertex.
(define g2 (graph:add–vertex g1 ”NEW_ONE”))
;; g2
; CAREFUL: The order of the graph output may
; not be the same each time.
; Create an example using entities.
(define b1 (solid:block (position –5 –10 –20)

(position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.
(define g3 (graph faces1))
;; g3
; Add a vertex.
(define g4 (graph:add–vertex g3 ”NEW_ONE”))
;; g4

graph:adjacent
Scheme Extension: Graph Theory

Action: Returns whether or not two vertices in a graph are connected with an edge.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:adjacent  in–graph vertex1 vertex2)

Arg Types: in–graph graph
vertex1 string | entity
vertex2 string | entity

Returns: boolean

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

The vertex1 and vertex2 elements are required to be part of the in–graph.
They could be either entities or their designation as part of the in–graph.



Kernel  R10

Limitations: None

Example: ; graph:adjacent
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:adjacent g1 ”we” ”FIDO”)
;; #f
(graph:adjacent g1 ”we” ”they”)
;; #t

graph:branch
Scheme Extension: Graph Theory

Action: Returns a subgraph of the given input graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:branch  in–graph in–trunk
which–branch [keep–trunk=#f])

Arg Types: in–graph graph
in–trunk graph
which–branch integer
keep–trunk boolean

Returns: graph

Errors: None

Description: This command returns a subgraph of the given in–graph that is made up of
all the branches that are connected to a given vertex in the ordered
in–trunk graph.

in–graph specifies a graph.

in–trunk specifies a graph showing all the connections to a given vertex.

which–branch is an integer signifying the vertex to be used.



Kernel  R10

The keep–trunk is an option to keep (#t) or not keep (#f) the vertex from
the trunk.

Limitations: The in–trunk must be a linear ordered subgraph of the in–graph. The
which–branch must be a nonnegative integer less than the max order of
the trunk.

Example: ; graph:branch
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(define g2 (graph ”b–c”))
;; g2
(graph:order–from g2 ”b”)
;; 1
(graph:branch g1 g2 0)
;; #[graph ”a”]
(graph:branch g1 g2 0 #t)
;; #[graph ”a–b”]
(graph:branch g1 g2 1)
;; #[graph ”f–g f–h d e”]
(graph:branch g1 g2 1 #t)
;; #[graph ”c–d c–e c–f f–g f–h”]

graph:component
Scheme Extension: Graph Theory

Action: Creates a new graph from all of the component elements of a given graph
specified by one of the component elements.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:component  in–graph in–which)

Arg Types: in–graph graph
in–which integer | string | entity

Returns: graph

Errors: None

Description: This extension is useful if the given in–graph has multiple components. It
creates a new graph from just the elements of a single component.



Kernel  R10

in–graph specifies a graph.

in–which specifies a component. The component is selected by providing
the integer of the component (numbering starts at 0), a string which is the
name of an element of the component, or an entity that is associated with
an element of the component.

Limitations: None

Example: ; graph:component
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:components g1)
;; 3
(define g2 (graph:component g1 ”me”))
;; g2
(define g3 (graph:component g1 ”FIDO”))
;; g3
(define g4 (graph:component g1 1))
;; g4

graph:components
Scheme Extension: Graph Theory

Action: Returns the number of independent components that are in a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:components  in–graph)

Arg Types: in–graph graph

Returns: integer

Errors: None

Description: Refer to Action.

in–graph specifies a graph.



Kernel  R10

Limitations: None

Example: ; graph:components
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:components g1)
;; 3
(define g2 (graph:component g1 ”me”))
;; g2
(define g3 (graph:component g1 ”FIDO”))
;; g3
(define g4 (graph:component g1 1))
;; g4

graph:connected?
Scheme Extension: Graph Theory

Action: Determines whether or not the specified graph is connected, or all in one
component.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:connected?  in–graph)

Arg Types: in–graph graph

Returns: boolean

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

Limitations: None



Kernel  R10

Example: ; graph:connected?
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:connected? g1)
;; #f
(graph:components g1)
;; 3
(define g2 (graph:component g1 ”me”))
;; g2
(define g3 (graph:component g1 ”FIDO”))
;; g3
(define g4 (graph:component g1 1))
;; g4
(graph:connected? g4)
;; #t

graph:copy
Scheme Extension: Graph Theory

Action: Creates a new graph that is a copy of the specified graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:copy  in–graph)

Arg Types: in–graph graph

Returns: graph

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

Limitations: None



Kernel  R10

Example: ; graph:copy
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:component g1 ”FIDO”))
;; g2
(define g3 (graph:copy g2))
;; g3
; CAREFUL: The order may not be the same as the
; original, but graphs are still equivalent.

graph:cut–edge?
Scheme Extension: Graph Theory

Action: Determines whether or not the specified edge is a cutting edge.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cut–edge ? in–graph in–edge)

Arg Types: in–graph graph
in–edge string

Returns: boolean

Errors: None

Description: A cutting edge is an edge whose removal creates more components in the
graph than are present when the edge is not removed.

in–graph specifies a graph.

in–edge specifies the edge to be queried.

Limitations: None



Kernel  R10

Example: ; graph:cut–edge?
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they we–me us–me”))
;; g1
; them–us they–we”]
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:cut–edges g1))
;; g2
(graph:cut–edge? g1 ”us–them”)
;; #f
(graph:cut–edge? g1 ”me–you”)
;; #t

graph:cut–edges
Scheme Extension: Graph Theory

Action: Returns all of the cutting edges of a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cut–edges  in–graph)

Arg Types: in–graph graph

Returns: graph

Errors: None

Description: A cutting edge is an edge whose removal creates more components in the
graph than are present when the edge is not removed.

in–graph specifies a graph.

Limitations: None



Kernel  R10

Example: ; graph:cut–edges
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they we–me us–me”))
;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:cut–edges g1))
;; g2
(graph:cut–edge? g1 ”us–them”)
;; #f
(graph:cut–edge? g1 ”me–you”)
;; #t

graph:cut–vertex?
Scheme Extension: Graph Theory

Action: Determines whether or not the specified vertex is a cutting vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cut–vertex?  in–graph test–vertex)

Arg Types: in–graph graph
test–vertex string | entity |

Returns: boolean

Errors: None

Description: A cutting vertex is vertex whose removal creates more components in the
graph than are present when the vertex is not removed.

in–graph specifies a graph.

test–vertex could be either the designation string in the graph or an entity
associated with that graph vertex.

Limitations: None



Kernel  R10

Example: ; graph:cut–vertex?
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:cut–vertices g1))
;; g2
(graph:cut–vertex? g1 ”us”)
;; #f
(graph:cut–vertex? g1 ”SPOT”)
;; #t

graph:cut–vertices
Scheme Extension: Graph Theory

Action: Returns all of the cutting vertices of a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cut–vertices  in–graph)

Arg Types: in–graph graph

Returns: graph

Errors: None

Description: A cutting vertex is vertex whose removal creates more components in the
graph than are present when the vertex is not removed.

in–graph specifies a graph.

Limitations: None

Example: ; graph:cut–vertices
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:cut–vertices g1))
;; g2



Kernel  R10

graph:cycle–vertex?
Scheme Extension: Graph Theory

Action: Determines whether or not a given vertex is a cycle vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cycle–vertex?  in–graph in–vertex)

Arg Types: in–graph graph
in–vertex string | entity

Returns: boolean

Errors: None

Description: A cycle is defined as a connected group of vertices whose individual
removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex.

in–graph specifies a graph.

in–vertex could be the designated name string within the graph or the
model entity associated with the graph vertex.

Limitations: None



Kernel  R10

Example: ; graph:cycle–vertex?
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:cycle? g1)
;; #f
(define g2 (graph:component g1 ”FIDO”))
;; g2
(graph:cycle? g2)
;; #f
(define g3 (graph:component g1 ”me”))
;; g3
(graph:cycle? g3)
;; #t
(graph:cycle–vertex? g1 ”FIDO”)
;; #f
(graph:cycle–vertex? g1 ”me”)
;; #t
(graph:cycle–vertex? g3 ”me”)
;; #t

graph:cycle?
Scheme Extension: Graph Theory

Action: Determines whether or not a graph has a cycle.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:cycle?  in–graph)

Arg Types: in–graph graph

Returns: boolean

Errors: None

Description: A cycle is defined as a connected group of vertices whose individual
removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex.



Kernel  R10

in–graph specifies a graph.

Limitations: None

Example: ; graph:cycle?
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:cycle? g1)
;; #f
(define g2 (graph:component g1 ”FIDO”))
;; g2
(graph:cycle? g2)
;; #f
(define g3 (graph:component g1 ”me”))
;; g3
(graph:cycle? g3)
;; #t

graph:degree?
Scheme Extension: Graph Theory

Action: Returns the number of graph vertices that are connected with graph edges
to the specified vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:degree?  in–graph in–vertex)

Arg Types: in–graph graph
in–vertex string | entity

Returns: integer

Errors: None

Description: Refer to Action.

in–graph specifies a graph.



Kernel  R10

in–vertex could be either the designation name used as part of the graph or
the model entity associated with that graph vertex.

Limitations: None

Example: ; graph:degree?
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:degree? g1 ”me”)
;; 2
(graph:degree? g1 ”SPOT”)
;; 3
(graph:degree? g1 ”PETEY”)
;; 1
; Create an example using entities.
(define b1 (solid:block

(position –5 –10 –20) (position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.
(define g3 (graph faces1))
;; g3
(graph:degree? g3 ”(Face 0)”)
;; 4
(graph:degree? g3 (list–ref faces1 3))
;; 4

graph:edge–entities
Scheme Extension: Graph Theory

Action: Returns a list of model entities associated with the graph edges.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:edge–entities  in–graph)

Arg Types: in–graph graph



Kernel  R10

Returns: (entity...)

Errors: None

Description: The edges of a graph can have entities associated with them. An example
of this is the case of a wirebody. In a wirebody, the vertices of the
wireframe become vertices in the graph while the edges of the wirebody
become edges in the graph.

in–graph specifies a graph.

Limitations: None

Example: ; graph:edge–entities
; Create an example using entities.
(define e1 (edge:linear (position 10 10 0)

(position 10 –10 0)))
;; e1
(define e2 (edge:linear (position 10 –10 0)

(position –10 –10 0)))
;; e2
(define e3 (edge:linear (position –10 –10 0)

(position –10 10 0)))
;; e3
(define e4 (edge:linear (position –10 10 0)

(position 10 10 0)))
;; e4
(define g1 (graph (list e1 e2 e3 e4)))
;; g1
(graph:edge–entities g1)
;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]
;; #[entity 2 1])
(graph:vertex–entities g1)
;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]
;; #[entity 9 1] #[entity 10 1] #[entity 11 1]
;; #[entity 12 1] #[entity 13 1])
(define b1 (solid:block (position –5 –10 –20)

(position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.
(define g2 (graph faces1))
;; g2
; (entity 16 65536)–(entity 19 65536)
(graph:edge–entities g2)



Kernel  R10

;; ()
(graph:vertex–entities g2)
;; (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #[entity 17 1] #[entity 16 1] #[entity 15 1])
(define g3 (graph:unite g1 g2))
;; g3
(graph:edge–entities g3)
;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]
;; #[entity 5 1])
(graph:vertex–entities g3)
;; (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;; #[entity 10 1] #[entity 9 1] #[entity 8 1]
;; #[entity 7 1] #[entity 6 1] #[entity 15 1]
;; #[entity 16 1] #[entity 17 1] #[entity 18 1]
;; #[entity 19 1] #[entity 20 1])

graph:edge–weight
Scheme Extension: Graph Theory

Action: Sets the weight for an edge of a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:edge–weight  in–graph {edge–name weight} |
{vertex–name1 vertex–name2 weight})

Arg Types: in–graph graph
edge–name string
weight real
vertex–name1 string
vertex–name2 string

Returns: graph

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

edge–name specifies the edge by name.

weight specifies the value to be assigned.



Kernel  R10

vertex–name1 and vertex–name2 specifies the edge by naming the two
bounding vertices.

Limitations: None

Example: ; graph:edge–weight
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:edge–weight g1 ”a” ”b” 3)
;; #[graph ”a–b b–c c–d c–e c–f f–g f–h”]
(graph:edge–weight g1 ”c–e” 5)
;; #[graph ”a–b b–c c–d c–e c–f f–g f–h”]
(graph:total–weight g1)
;; 8

graph:entities
Scheme Extension: Graph Theory

Action: Returns a list of model entities associated with the graph vertices and
edges.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:entities  in–graph [use–ordering=#f])

Arg Types: in–graph graph
use–ordering boolean

Returns: (entity ...)

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

If use–ordering is true (#t), sorts the result by graph order. The default
value is false (#f).

Limitations: None



Kernel  R10

Example: ; graph:entities
; Create an example using entities.
(define e1 (edge:linear (position 10 10 0)

(position 10 –10 0)))
;; e1
(define e2 (edge:linear (position 10 –10 0)

(position –10 –10 0)))
;; e2
(define e3 (edge:linear (position –10 –10 0)

(position –10 10 0)))
;; e3
(define e4 (edge:linear (position –10 10 0)

(position 10 10 0)))
;; e4
(define g1 (graph (list e1 e2 e3 e4)))
;; g1
(graph:entities g1)
;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]
;; #[entity 9 1] #[entity 10 1] #[entity 11 1]
;; #[entity 12 1] #[entity 13 1]
;; #[entity 5 1] #[entity 4 1] #[entity 3 1]



Kernel  R10

;; #[entity 2 1])
(graph:edge–entities g1)
;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]
;; #[entity 2 1])
(graph:vertex–entities g1)
;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]
;; #[entity 9 1] #[entity 10 1] #[entity 11 1]
;; #[entity 12 1] #[entity 13 1])
(define b1 (solid:block (position –5 –10 –20)

(position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.
(define g2 (graph faces1))
;; g2
(graph:entities g2)
;; (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #[entity 17 1] #[entity 16 1] #[entity 15 1])
(graph:edge–entities g2)
;; ()
(graph:vertex–entities g2)
;; (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #[entity 17 1] #[entity 16 1] #[entity 15 1])
(define g3 (graph:unite g1 g2))
;; g3
(graph:entities g3)
;; (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;; #[entity 10 1] #[entity 9 1] #[entity 8 1]
;; #[entity 7 1] #[entity 6 1] #[entity 15 1]
;; #[entity 16 1] #[entity 17 1] #[entity 18 1]
;; #[entity 19 1] #[entity 20 1] #[entity 2 1]
;; #[entity 3 1] #[entity 4 1] #[entity 5 1])
(graph:edge–entities g3)
;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]
;; #[entity 5 1])
(graph:vertex–entities g3)
;; (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;; #[entity 10 1] #[entity 9 1] #[entity 8 1]
;; #[entity 7 1] #[entity 6 1] #[entity 15 1]
;; #[entity 16 1] #[entity 17 1] #[entity 18 1]
;; #[entity 19 1] #[entity 20 1])



Kernel  R10

graph:get–order
Scheme Extension: Graph Theory

Action: Returns a number representing the distance a given graph vertex is from
the 0 node in the given ordered graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:get–order  in–graph in–vertex)

Arg Types: in–graph graph
in–vertex string | entity

Returns: integer

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

in–vertex could be either the designation name used as part of the graph or
the model entity associated with that graph vertex.

Limitations: None

Example: ; graph:get–order
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(graph:get–order g1 ”a”)
;; 0
(graph:get–order g1 ”b”)
;; 1
(graph:get–order g1 ”h”)
;; 4
(graph:show–order g1)
;; (”a 0” ”b 1” ”c 2” ”e 3” ”d 3” ”f 3” ”g 4” ”h 4”)

graph:intersect
Scheme Extension: Graph Theory, Booleans

Action: Performs a Boolean intersect operation of two graphs.



Kernel  R10

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:intersect  in–graph1 in–graph2)

Arg Types: in–graph1 graph
in–graph2 graph

Returns: graph

Errors: None

Description: Given two graphs, returns a new graph that is a Boolean intersection of the
two.

in–graph1 and in–graph2 specifies the graphs to be intersected.

Limitations: None

Example: ; graph:intersect
; Create some simple graphs.
(define g1 (graph ”I–me me–myself myself–mine I–we

we–us us–them”))
;; g1
(define g2 (graph ”he–she it–thing they–those us–we

them–us”))
;; g2
(define g3 (graph:intersect g1 g2))
;; g3

graph:is–subset
Scheme Extension: Graph Theory

Action: Returns TRUE if the small graph is a subset of the large graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:is–subset  small–graph large–graph)

Arg Types: small–graph graph
large–graph graph

Returns: boolean



Kernel  R10

Errors: None

Description: Refer to Action.

small–graph specifies the subset graph.

large–graph specifies the graph of which small–graph is a subset.

Limitations: None

Example: ; graph:is–subset
; Create a graph
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(define g2 (graph ”b–c c–e”))
;; g2
(define g3 (graph ”h–i i–j”))
;; g3
(graph:is–subset g2 g1)
;; #t
(graph:is–subset g3 g1)
;; #f

graph:kind
Scheme Extension: Graph Theory

Action: Returns a graph containing the input graph elements that are of the
specified kind number and specified kind status.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:kind  in–graph kind on–off)

Arg Types: in–graph graph
kind integer
on–off boolean

Returns: graph

Errors: None

Description: A graph can have multiple kinds assigned to it. Each kind can have a
status of #t or #f.

in–graph specifies a graph.



Kernel  R10

kind is an integer specifying the type.

on–off specifies the kind status.

Limitations: None

Example: ; graph:kind
; Create some simple graphs.
(define g (graph ”a–b b–c c–d c–e”))
;; g
(graph:set–kind g 3 #t ”a–b”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:set–kind g 3 #t ”b–c”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:kind g 0 #f)
;; #[graph ”a–b b–c c–d c–e”]
(graph:kind g 3 #f)
;; #[graph ”c–d c–e a b”]
(graph:kind g 3 #t)
; *** Error graph:kind: A bad edge was added
; to a graph
;; #f
(graph:kind? g 3 ”a–b”)
;; #t
(graph:kind? g 2 ”a–b”)
;; #f
(graph:kind? g 3 ”b–c”)
;; #t
(graph:kind? g 3 ”c–e”)
;; #f



Kernel  R10

; Create a selective boolean example.
(define blank (solid:block (position 0 0 0)

(position 25 10 10)))
;; blank
(define b2 (solid:block (position 5 0 0)

(position 10 5 10)))
;; b2
(define b3 (solid:block (position 15 0 0)

(position 20 5 10)))
;; b3
(define subtract1 (solid:subtract blank b2))
;; subtract1
(define subtract2 (solid:subtract blank b3))
;; subtract2
(define tool (solid:cylinder

(position –5 2.5 5) (position 30 2.5 5)1))
;; tool
(define g (bool:select1 blank tool))
;; g
(define p (graph:kind g 0 #t))
;; p
(entity:set–color (graph:entities p) 6)
;; ()

graph:kind?
Scheme Extension: Graph Theory

Action: Returns whether or not a graph with a given edge is of the specified kind.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:kind?  in–graph kind item1 [item2])

Arg Types: in–graph graph
kind integer
item1 string | entity
item2 entity

Returns: boolean

Errors: None

Description: A graph can have any number of kind types assigned to edges of the graph.
kind is a integer for the type and can take a Boolean value. If not
specified, it is assumed to be #f. The assignment of kind and its value is
done on a per edge basis.



Kernel  R10

This Scheme extension provides flexibility for the types of arguments and
how they are used.

in–graph specifies a graph.

kind is an integer representing a type that was assigned to a graph edge.

item1 argument can be either a string or an entity. When it is a string, it is
tested to see whether it represents the name of an edge in the graph or a
vertex in the graph.

item2 argument is only used when item1 is an entity representing a vertex,
in which case item2 must also be an entity representing a vertex.

Limitations: None

Example: ; graph:kind?
; Create some simple graphs.
(define g (graph ”a–b b–c c–d c–e”))
;; g
(graph:set–kind g 3 #t ”a–b”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:set–kind g 3 #t ”b–c”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:kind? g 3 ”a–b”)
;; #t
(graph:kind? g 2 ”a–b”)
;; #f
(graph:kind? g 3 ”b–c”)
;; #t
(graph:kind? g 3 ”c–e”)
;; #f

; Create an example using entities.
(define e1 (edge:linear (position 10 10 0)

(position 10 –10 0)))
;; e1
(define e2 (edge:linear (position 10 –10 0)

(position –10 –10 0)))
;; e2
(define e3 (edge:linear (position –10 –10 0)

(position –10 10 0)))
;; e3
(define e4 (edge:linear (position –10 10 0)

(position 10 10 0)))
;; e4



Kernel  R10

(define g1 (graph (list e1 e2 e3 e4)))
;; g1
(define ve (graph:vertex–entities g1))
;; ve
(graph:set–kind g1 0 #t

(list–ref ve 0) (list–ref ve 1))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:set–kind g1 1 #t

(list–ref ve 2) (list–ref ve 3))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:set–kind g1 2 #t

(list–ref ve 4) (list–ref ve 5))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:kind? g1 0 (list–ref ve 0) (list–ref ve 1))
;; #t
(graph:kind? g1 1 (list–ref ve 0) (list–ref ve 1))
;; #f
(graph:kind? g1 2 (list–ref ve 0) (list–ref ve 1))
;; #f
(graph:kind? g1 0 (list–ref ve 2) (list–ref ve 3))
;; #f
(graph:kind? g1 1 (list–ref ve 2) (list–ref ve 3))
;; #t
(graph:kind? g1 2 (list–ref ve 2) (list–ref ve 3))
;; #f
(graph:kind? g1 0 (list–ref ve 4) (list–ref ve 5))
;; #f
(graph:kind? g1 1 (list–ref ve 4) (list–ref ve 5))
;; #f
(graph:kind? g1 2 (list–ref ve 4) (list–ref ve 5))
;; #t



Kernel  R10

graph:kinds?
Scheme Extension: Graph Theory

Action: Returns a list of all the kinds on a vertex or edge.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:kinds?  in–graph item1 [item2])

Arg Types: in–graph graph
item1 string | entity
item2 entity

Returns: boolean

Errors: None

Description: Given a graph and a vertex or edge, returns a list containing all kinds on
that vertex or edge. A graph can have any number of kind types assigned
to edges of the graph. kind is an integer for the type and can take a
Boolean value. If not specified, it is assumed to be #f. The assignment of
kind and its value is done on a per edge basis.

in–graph specifies a graph.

item1 could be either a string or an entity. When it is a string, it is tested to
see whether it represents the name of an edge in the graph or a vertex in
the graph.

item2 is only used when item1 is an entity representing a vertex, in which
case item2 must also be an entity representing a vertex.

Limitations: None

Example: ; graph:kinds?
; Create some simple graphs.
(define g (graph ”a–b b–c c–d c–e”))
;; g
(graph:set–kind g 3 #t ”a–b”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:set–kind g 3 #t ”b–c”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:kinds? g ”a–b”)
;; (#f #f #f #t)
(graph:kinds? g ”b–c”)
;; (#f #f #f #t)
(graph:kinds? g ”c–d”)
;; ()



Kernel  R10

graph:lightest–path
Scheme Extension: Graph Theory

Action: Returns a graph representing the lightest path between two vertices of a
graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:lightest–path  in–graph in–vertex1 in–vertex2)

Arg Types: in–graph graph
in–vertex1 string | entity
in–vertex2 string | entity

Returns: graph

Errors: None

Description: After all edges have a weight assigned, this Scheme extension returns a
graph representing the path with the lightest total weight from one given
vertex to another.

in–graph specifies a graph.

in–vertex1 could be either a vertex or a string representing the vertex in
the graph.

in–vertex2 could be either a vertex or a string representing the vertex in
the graph.

Limitations: All edges of the graph require a weight.

Example: ; graph:lightest–path
; Create a simple graph.
(define g1 (graph ”a–b1 a–b2 b1–c b2–c c–d”))
;; g1
(graph:edge–weight g1 ”a” ”b1” 3)
;; #[graph ”a–b1 a–b2 b1–c b2–c c–d”]
(graph:edge–weight g1 ”a–b2” 5)
;; #[graph ”a–b1 a–b2 b1–c b2–c c–d”]
(graph:edge–weight g1 ”b1–c” 1)
;; #[graph ”a–b1 a–b2 b1–c b2–c c–d”]
(graph:edge–weight g1 ”b2–c” 1)
;; #[graph ”a–b1 a–b2 b1–c b2–c c–d”]
(graph:edge–weight g1 ”c–d” 1)
;; #[graph ”a–b1 a–b2 b1–c b2–c c–d”]
(graph:lightest–path g1 ”a” ”d”)
;; #[graph ”a–b1 b1–c c–d”]



Kernel  R10

graph:linear?
Scheme Extension: Graph Theory

Action: Determines whether or not a graph is linear.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:linear?  in–graph)

Arg Types: in–graph graph

Returns: boolean

Errors: None

Description: This extension returns #t if the graph is linear.

in–graph specifies a graph.

Limitations: None

Example: ; graph:linear?
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:linear? g1)
;; #f
(define g2 (graph ”me–you you–us us–them

them–they”))
;; g2
(graph:linear? g2)
;; #t

graph:negate
Scheme Extension: Graph Theory

Action: Negates an ordered graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:negate  in–graph)

Arg Types: in–graph graph



Kernel  R10

Returns: graph

Errors: None

Description: For noncyclic ordered graphs, the highest numbered vertices are assigned
0 and new numbering for the vertices commences from there. For cyclic
ordered graphs, the 0 vertex remains the same, but sequence or direction
around the cycle changes.

in–graph specifies a graph.

Limitations: None

Example: ; graph:negate
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(graph:show–order g1)
;; (”a 0” ”b 1” ”c 2” ”e 3” ”d 3” ”f 3” ”g 4” ”h 4”)
(define g2 (graph:negate g1))
;; g2
(graph:show–order g2)
;; (”a 4” ”b 3” ”c 2” ”e 1” ”d 1” ”f 1” ”g 0” ”h 0”)
; Create a simple cyclic example
(define g3 (graph ”me–you you–us us–them

them–they me–they”))
;; g3
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:cycle? g3)
;; #t
(graph:order–cyclic g3 ”me” ”you”)
;; 4
(graph:show–order g3)
;; (”me 0” ”you 4” ”us 3” ”them 2” ”they 1”)
(define g4 (graph:negate g3))
;; g4
(graph:show–order g4)
;; (”me 0” ”you 1” ”us 2” ”them 3” ”they 4”)

graph:order–cyclic
Scheme Extension: Graph Theory

Action: Assigns a sequence order to the vertices of a cyclic graph.



Kernel  R10

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:order–cyclic  in–graph in–first in–last)

Arg Types: in–graph graph
in–first string | entity
in–last string | entity

Returns: integer

Errors: None

Description: A cycle is defined as a connected group of vertices whose individual
removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex. The extension
returns the number of vertices in the graph.

in–graph specifies a graph.

in–first could be either a vertex or a string representing the vertex in the
graph.

in–last could be either a vertex or a string representing the vertex in the
graph.

Limitations: None

Example: ; graph:order–cyclic
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:component g1 ”me”))
;; g2
(graph:cycle? g2)
;; #t
(graph:order–cyclic g2 ”me” ”them”)
;; 4
(graph:show–order g2)
;; (”they 4” ”them 3” ”us 2” ”you 1” ”me 0”)



Kernel  R10

graph:order–from
Scheme Extension: Graph Theory

Action: Sets the order of a graph starting at 0 for the specified vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:order–from  in–graph in–vertex)

Arg Types: in–graph graph
in–vertex string | entity

Returns: integer

Errors: None

Description: When ordering the graph starting at 0 for the specified in–vertex, each
subsequent vertex receives a number based on how far away it is (e.g.,
how many edges) from the starting vertex. The integer returned is the
maximum number of “hops” that one or more vertices are from the
starting vertex.

in–graph specifies a graph.

in–vertex could be either the designation string for a vertex of the graph or
a model entity associated with the graph vertex.

Limitations: None

Example: ; graph:order–from
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(graph:show–order g1)
;; (”a 0” ”b 1” ”c 2” ”e 3” ”d 3” ”f 3” ”g 4” ”h 4”)

graph:order–with
Scheme Extension: Graph Theory

Action: Sets the order of one graph onto another and rescales the ordering to
remove gaps.

Filename: kern/kern_scm/graph_scm.cxx



Kernel  R10

APIs: None

Syntax: ( graph:order–with  in–graph1 in–graph2)

Arg Types: in–graph1 graph
in–graph2 graph

Returns: integer

Errors: None

Description: This extension orders the in–graph1 with respect to in–graph2. The
integer returned is the maximum order number.

in–graph1 and in–graph2 specifies the graph.

Limitations: None

Example: ; graph:order–with
; Create a simple example
(define g1 (graph ”a–b b–c c–d d–e”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(graph:show–order g1)
;; (”a 0” ”b 1” ”c 2” ”d 3” ”e 4”)
(graph:negate g1)
;; #[graph ”a–b b–c c–d d–e”]
(graph:show–order g1)
;; (”a 4” ”b 3” ”c 2” ”d 1” ”e 0”)
(define s1 (graph ”a c e”))
;; s1
(graph:order–with s1 g1)
;; 2
(graph:show–order s1)
;; (”a 2” ”c 1” ”e 0”)

graph:set–kind
Scheme Extension: Graph Theory

Action: Specifies the kind type and its on/off value for an edge of the given graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None



Kernel  R10

Syntax: ( graph:set–kind  in–graph kind on–off item1 [item2])

Arg Types: in–graph graph
kind integer
on–off boolean
item1 string | entity
item2 entity

Returns: graph

Errors: None

Description: A graph can have any number of kind types assigned to edges of the graph.
kind is a integer for the type and can take a Boolean on–off value. If not
specified, it is assumed to be #f. The assignment of kind and its on–off
value is done on a per edge basis.

in–graph specifies a graph.

kind is an integer representing a type that was assigned to an element of
the graph, either a vertex or edge.

on–off argument is a boolean used to establish whether that kind number
is on or off.

item1 argument could be either a string or an entity. When it is a string, it
is tested to see whether it represents the name of an edge in the graph or a
vertex in the graph.

item2 is only used when item1 is an entity representing a vertex, in which
case item2 must also be an entity representing a vertex.

Limitations: None

Example: ; graph:set–kind
; Create a simple graph.
(define g (graph ”a–b b–c c–d c–e”))
;; g
(graph:set–kind g 3 #t ”a–b”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:set–kind g 3 #t ”b–c”)
;; #[graph ”a–b b–c c–d c–e”]
(graph:kind? g 3 ”a–b”)
;; #t
(graph:kind? g 2 ”a–b”)
;; #f
(graph:kind? g 3 ”b–c”)
;; #t
(graph:kind? g 3 ”c–e”)
;; #f



Kernel  R10

; Create an example using entities.
(define e1 (edge:linear (position 10 10 0)

(position 10 –10 0)))
;; e1
(define e2 (edge:linear (position 10 –10 0)

(position –10 –10 0)))
;; e2
(define e3 (edge:linear (position –10 –10 0)

(position –10 10 0)))
;; e3
(define e4 (edge:linear (position –10 10 0)

(position 10 10 0)))
;; e4
(define g1 (graph (list e1 e2 e3 e4)))
;; g1
(define ve (graph:vertex–entities g1))
;; ve
(graph:set–kind g1 0 #t

(list–ref ve 0) (list–ref ve 1))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:set–kind g1 1 #t

(list–ref ve 2) (list–ref ve 3))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:set–kind g1 2 #t

(list–ref ve 4) (list–ref ve 5))
;; #[graph ”(entity 10 65536)–(entity 11 65536)
;; (entity 12 65536)–(entity 13 65536)
;; (entity 6 65536)–(entity 7 65536)
;; (entity 8 65536)–(entity 9 65536)”]
(graph:kind? g1 0 (list–ref ve 0) (list–ref ve 1))
;; #t
(graph:kind? g1 1 (list–ref ve 0) (list–ref ve 1))
;; #f
(graph:kind? g1 2 (list–ref ve 0) (list–ref ve 1))
;; #f
(graph:kind? g1 0 (list–ref ve 2) (list–ref ve 3))
;; #f
(graph:kind? g1 1 (list–ref ve 2) (list–ref ve 3))
;; #t



Kernel  R10

(graph:kind? g1 2 (list–ref ve 2) (list–ref ve 3))
;; #f
(graph:kind? g1 0 (list–ref ve 4) (list–ref ve 5))
;; #f
(graph:kind? g1 1 (list–ref ve 4) (list–ref ve 5))
;; #f
(graph:kind? g1 2 (list–ref ve 4) (list–ref ve 5))
;; #t

graph:shortest–cycle
Scheme Extension: Graph Theory

Action: Returns the shortest cycle graph that includes the specified graph vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:shortest–cycle  in–graph in–vertex)

Arg Types: in–graph graph
in–vertex string | entity

Returns: graph

Errors: None

Description: This extension can be used to trim away branches off of a cyclic graph.

in–graph specifies a graph.

in–vertex could be either a designation string of the graph or a model
entity associated with a graph vertex.

Limitations: None

Example: ; graph:shortest–cycle
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:shortest–cycle g1 ”me”))
;; g2
(define g3 (graph:shortest–cycle g1 ”FIDO”))
;; g3



Kernel  R10

graph:shortest–path
Scheme Extension: Graph Theory

Action: Returns the shortest path graph that includes the two specified graph
vertices.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:shortest–path  in–graph in–vertex1 in–vertex2)

Arg Types: in–graph graph
in–vertex1 string | entity
in–vertex2 string | entity

Returns: graph

Errors: None

Description: This extension can be used to trim away branches off of a cyclic graph.

in–graph specifies a graph.

in–vertex1 could be either a designation string of the graph or a model
entity associated with a graph vertex.

in–vertex2 could be either a designation string of the graph or a model
entity associated with a graph vertex.

Limitations: None

Example: ; graph:shortest–path
; Create a simple example
(define g1 (graph ”me–you you–us us–them

them–they me–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:shortest–path g1 ”me” ”us”))
;; g2
(define g3 (graph:shortest–path g1 ”me” ”FIDO”))
;; g3
(define g4 (graph:shortest–path g1 ”PETEY” ”FIDO”))
;; g4



Kernel  R10

graph:show–order
Scheme Extension: Graph Theory

Action: Creates a list of a vertices in a graph and their respective distance from the
starting vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:show–order  in–graph)

Arg Types: in–graph graph

Returns: text

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

Limitations: None

Example: ; graph:show–order
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(graph:show–order g1)
;; (”a 0” ”b 1” ”c 2” ”e 3” ”d 3” ”f 3” ”g 4” ”h 4”)

graph:split–branches
Scheme Extension: Graph Theory

Action: Decomposes a graph into components that do not have branches.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:split–branches  in–graph)

Arg Types: in–graph graph

Returns: graph



Kernel  R10

Errors: None

Description: This command breaks the branches of a graph into components. It splits
the graph into set of subgraphs that are either linear or cyclic with no
branches. No edge will belong to more than one subgraph. The union of
the subgraphs is the original graph.

in–graph specifies a graph.

Limitations: None

Example: ; graph:split–branches;
; Create a simple example
(define block1 (solid:block (position –10 –5 0)

(position 5 10 15)))
;; block1
(define e (entity:edges block1))
;; e
(define v (entity:vertices block1))
;; v
(define g (graph e))
;; g
(define b–list (graph:split–branches g))
;; b–list
(define g0 (list–ref b–list 0))
;; g0
(define g1 (list–ref b–list 1))
;; g1
(define g2 (list–ref b–list 2))
;; g2
(define g3 (list–ref b–list 3))
;; g3
(define g4 (list–ref b–list 4))
;; g4
(define g5 (list–ref b–list 5))
;; g5

graph:subset
Scheme Extension: Graph Theory

Action: Creates a subgraph from a given graph using either two integers or a law.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None



Kernel  R10

Syntax: ( graph:subset  in–graph {subset–law |
low–bounds up–bounds})

Arg Types: in–graph graph
subset–law law
low–bounds integer
up–bounds integer

Returns: graph

Errors: None

Description: Given an ordered graph, a subgraph may be formed using one of two
techniques. One method takes in two integers and the other takes a law
pointer.

in–graph specifies a graph.

subset–law specifies a law. This extension with subset–law returns the set
of all vertices such that their order evaluates as true along with the all
edges that have both of their adjacent vertices evaluating as true orders.

This extension with low–bounds and up–bounds returns a subgraph in one
of two ways.

1. If low–bounds<up–bounds, then the set of all vertices with orders
between low–bounds and up–bounds is returned along with all
edges that have both of their adjacent vertices in this set.

2. If up–bounds<low–bounds, then the set of all vertices with orders
not between low–bounds and up–bounds is returned along with all
edges that have both of their adjacent vertices in this set.

Limitations: None

Example: ; graph:subset
; Create a simple graph
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:order–from g1 ”a”)
;; 4
(define g2 (graph:subset g1 1 3))
;; g2
(define g3 (graph:subset g1 ”x>2”))
;; g3
(define law1 (law ”(x>2)or(x=0)”))
;; law1
(define g4 (graph:subset g1 law1))
;; g4



Kernel  R10

graph:subtract
Scheme Extension: Graph Theory, Booleans

Action: Performs a Boolean subtract operation of two graphs.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:subtract  in–graph1 in–graph2 in–keep)

Arg Types: in–graph1 graph
in–graph2 graph
in–keep boolean

Returns: graph

Errors: None

Description: Refer to Action.

in–graph1 and in–graph2 specifies the graph.

The in–keep argument with a value true (#t) specifies that the edges going
to common elements are kept.

Limitations: None

Example: ; graph:subtract
; Create some simple graphs.
(define g1 (graph ”I–me me–myself myself–mine I–we

we–us us–them”))
;; g1
(define g2 (graph ”he–she it–thing they–those us–we

them–us”))
;; g2
(define g3 (graph:subtract g1 g2 #f))
;; g3
(define g4 (graph:subtract g2 g1 #f))
;; g4
(define g5 (graph:subtract g2 g1 #t))
;; g5

graph:subtract–edges
Scheme Extension: Graph Theory

Action: Subtracts the edges of graph1 from graph2 returning the result.



Kernel  R10

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:subtract–edges  in–graph1 in–graph2)

Arg Types: in–graph1 graph
in–graph2 graph

Returns: graph

Errors: None

Description: Refer to Action.

in–graph1 and in–graph2 specifies the graph.

Limitations: None

Example: ; graph:subtract–edges
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(define g2 (graph ”c–f f–g f–h”))
;; g2
(define g3 (graph:subtract–edges g1 g2))
;; g3

graph:total–weight
Scheme Extension: Graph Theory

Action: Returns the total weight associated with the edges of a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:total–weight  in–graph)

Arg Types: in–graph graph

Returns: real

Errors: None

Description: If weights are assigned to individual edges of a graph, this returns the total
weight for all of the edges.



Kernel  R10

in–graph specifies a graph.

Limitations: None

Example: ; graph:total–weight
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:edge–weight g1 ”a” ”b” 3)
;; #[graph ”a–b b–c c–d c–e c–f f–g f–h”]
(graph:edge–weight g1 ”c–e” 5)
;; #[graph ”a–b b–c c–d c–e c–f f–g f–h”]
(graph:total–weight g1)
;; 8

graph:tree?
Scheme Extension: Graph Theory

Action: Determines whether or not a given graph is a tree structure.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:tree?  in–graph)

Arg Types: in–graph graph

Returns: boolean

Errors: None

Description: Refer to Action.

in–graph specifies a graph.

Limitations: None

Example: ; graph:tree?
; Create a simple graph.
(define g1 (graph ”a–b b–c c–e c–d c–f f–g f–h”))
;; g1
(graph:tree? g1)
;; #t
(graph:linear? g1)
;; #f
(graph:cycle? g1)
;; #f



Kernel  R10

graph:unite
Scheme Extension: Graph Theory, Booleans

Action: Performs a Boolean unite operation of two graphs.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:unite  in–graph1 in–graph2)

Arg Types: in–graph1 graph
in–graph2 graph

Returns: graph

Errors: None

Description: Given two graphs, this extension returns a new graph that is a Boolean
union of the two.

in–graph1 and in–graph2 specifies the graph.

Limitations: None

Example: ; graph:unite
; Create some simple graphs.
(define g1 (graph ”I–me me–myself myself–mine I–we

we–us us–them”))
;; g1
(define g2 (graph ”he–she it–thing they–those us–we

them–us”))
;; g2
(define g3 (graph:unite g1 g2))
;; g3

graph:vertex–entities
Scheme Extension: Graph Theory

Action: Returns a list of entities that are associated with the vertices of a graph.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:vertex–entities  in–graph [use–ordering=#f])



Kernel  R10

Arg Types: in–graph graph
use–ordering boolean

Returns: (entity ...)

Errors: None

Description: A graph can be created using faces, cells, or wires, which become vertices
of the graph.

in–graph specifies a graph.

If use–ordering is true (#t), sorts the result by graph order. The default
value is false (#f).

Limitations: None

Example: ; graph:vertex–entities
; Create an example using entities.
(define e1 (edge:linear (position 10 10 0)

(position 10 –10 0)))
;; e1
(define e2 (edge:linear (position 10 –10 0)

(position –10 –10 0)))
;; e2
(define e3 (edge:linear (position –10 –10 0)

(position –10 10 0)))
;; e3
(define e4 (edge:linear (position –10 10 0)

(position 10 10 0)))
;; e4
(define g1 (graph (list e1 e2 e3 e4)))
;; g1
(graph:edge–entities g1)
;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]
;; #[entity 2 1])
(graph:vertex–entities g1)
;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]
;; #[entity 9 1] #[entity 10 1] #[entity 11 1]
;; #[entity 12 1] #[entity 13 1])
(define b1 (solid:block (position –5 –10 –20)

(position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.



Kernel  R10

(define g2 (graph faces1))
;; g2
(graph:edge–entities g2)
;; ()
(graph:vertex–entities g2)
;; (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #[entity 17 1] #[entity 16 1] #[entity 15 1])
(define g3 (graph:unite g1 g2))
;; g3
(graph:edge–entities g3)
;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]
;; #[entity 5 1])
(graph:vertex–entities g3)
;; (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;; #[entity 10 1] #[entity 9 1] #[entity 8 1]
;; #[entity 7 1] #[entity 6 1] #[entity 15 1]
;; #[entity 16 1] #[entity 17 1] #[entity 18 1]
;; #[entity 19 1] #[entity 20 1])

graph:which–component
Scheme Extension: Graph Theory

Action: Returns the number of the component that a given graph element belongs
to.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:which–component  in–graph in–object)

Arg Types: in–graph graph
in–object string | entity

Returns: integer

Errors: None

Description: This extension is useful if the given in–graph has multiple components. It
determines which component a given in–object is part of and returns its
component number. The graph:component command then creates a new
graph from just the elements of a single component.

in–graph specifies a graph.

in–object specifies a component. The component is selected by providing
a string which is the name of an element of the component or an entity
which is associated with an element of the component.



Kernel  R10

Limitations: None

Example: ; graph:which–component
; Create a simple example
(define g1 (graph ”me–you us–them

we–they them–they
FIDO–SPOT SPOT–KING SPOT–PETEY”))

;; g1
; CAREFUL: The order of the graph output may
; not be the same each time.
(graph:components g1)
;; 3
(graph:which–component g1 ”me”)
;; 2
(define g2 (graph:component g1 2))
;; g2
(define g3 (graph:component g1 ”me”))
;; g3

gvector
Scheme Extension: Mathematics

Action: Creates a new gvector given coordinates x, y, and z.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector  x y z [space=model])

Arg Types: x real
y real
z real
space string

Returns: gvector

Errors: None

Description: Refer to Action.

x defines the x–coordinate relative to the active coordinate system.

y defines the y–coordinate relative to the active coordinate system.

z defines the z–coordinate relative to the active coordinate system.



Kernel  R10

The optional space argument defaults to “WCS”. If no active WCS exists,
space defaults to “model”. The other optional space arguments return a
gvector in the new coordinate system. The values for the space argument
are:

– “wcs” is the default if an active WCS exists. Otherwise, the default is
“ model” .

– “ model”  means that the x, y, and z values are with respect to the
model. If the model has an origin other than the active WCS, this
returns the position relative to the active coordinate system in
rectangular Cartesian coordinates.

– “polar” or “cylindrical” mean that the x, y, and z values are interpreted
as the radial distance from the z–axis, the polar angle in degrees
measured from the xz plane (using right–hand rule), and the z
coordinate, respectively. This returns the x, y, and z terms with
respect to the active coordinate system.

– “spherical” means that the provided x, y, and z values are the radial
distance from the origin, the angle of declination from the z–axis in
degrees, and the polar angle measured from the xz plane in degrees,
respectively. This returns the x, y, and z terms with respect to the
active coordinate system.

Limitations: None

Example: ; gvector
; Create gvectors of various types.
(gvector 3 3 3)
;; #[gvector 3 3 3]
(gvector 5 5 5 ”wcs”)
;; #[gvector 5 5 5]
(gvector 5 5 5 ”model”)
;; #[gvector 5 5 5]
(gvector 5 5 5 ”polar”)
;; #[gvector 4.98097349045873 0.435778713738291 5]
(gvector 5 5 5 ”cylindrical”)
;; #[gvector 4.98097349045873 0.435778713738291 5]
(gvector 5 5 5 ”spherical”)
;; #[gvector 0.434120444167326 0.0379806174694798
;; 4.98097349045873]

gvector:+
Scheme Extension: Mathematics

Action: Adds two gvectors.



Kernel  R10

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:+  gvector1 gvector2)

Arg Types: gvector1 gvector
gvector2 gvector

Returns: gvector

Errors: None

Description: This extension returns the result of (gvector1 + gvector2) as a gvector.

gvector1 defines the first gvector.

gvector2 defines the second gvector.

Limitations: None

Example: ; gvector:+
; Add two gvectors by components.
(gvector:+ (gvector 1 3 2) (gvector 2 2 2))
;; #[gvector 3 5 4]

gvector:–
Scheme Extension: Mathematics

Action: Subtracts two gvectors.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:–  gvector1 gvector2)

Arg Types: gvector1 gvector
gvector2 gvector

Returns: gvector

Errors: None

Description: This extension returns the result of (gvector1 – gvector2) as a gvector.

gvector1 defines the start location.



Kernel  R10

gvector2 defines the end location for both gvectors.

Limitations: None

Example: ; gvector:–
; Subtract two gvectors by components.
(gvector:– (gvector 1 3 2) (gvector 2 2 2))
;; #[gvector –1 1 0]

gvector:copy
Scheme Extension: Mathematics

Action: Creates a gvector by copying an existing gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:copy  gvector)

Arg Types: gvector gvector

Returns: gvector

Errors: None

Description: Refer to Action.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:copy
; Create a gvector by copying an existing gvector.
(define copy (gvector:copy (gvector 6 5 2)))
;; copy

gvector:cross
Scheme Extension: Mathematics

Action: Gets the cross product of two gvectors.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None



Kernel  R10

Syntax: ( gvector:cross  gvector1 gvector2)

Arg Types: gvector1 gvector
gvector2 gvector

Returns: gvector

Errors: None

Description: If the i, j, k components of vector a are <a1, a2, a3>, and the i, j, k
components of vector b are <b1, b2, b3>, the cross product a x b is:

|a2 a3 | |a1 a3 | |a1 a2 |
a x b = | |i – | |j + | |k

|b2 b3 | |b1 b3 | |b1 b2 |

a x b =  [(a2)(b3)–(b2)(a3)]i
– [(a1)(b3)–(b1)(a3)]j
+ [(a1)(b2)–(b1)(a2)]k

The resulting cross product vector is perpendicular to both input vectors.
The cross product a x b is not the same as the cross product b x a; they
point in opposite directions (180 degrees from one another).

gvector1 specifies the first vector.

gvector2 specifies the second vector.

Limitations: None

Example: ; gvector:cross
; Compute the cross product of two gvectors.
(gvector:cross (gvector 2 2 2) (gvector 5 3 8))
;; #[gvector 10 –6 –4]
(gvector:cross (gvector 5 3 8) (gvector 2 2 2))
;; #[gvector –10 6 4]

gvector:dot
Scheme Extension: Mathematics

Action: Gets the dot product of two gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:dot  gvector1 gvector2)



Kernel  R10

Arg Types: gvector1 gvector
gvector2 gvector

Returns: real

Errors: None

Description: If the i, j, k components of vector a are <a1, a2, a3>, and the i, j, k
components of vector b are <b1, b2, b3>, the dot product a . b is:

gvector1 = (a1 a2 a3) = a
gvector2 = (b1 b2 b3) = b
a . b = (a1*b1 + a2*b2 + a3*b3)
a . b = |a||b|cosq

; where q is the angle
; between a and b

The result of a dot product is a scalar value.

gvector1 specifies the first vector.

gvector2 specifies the second vector.

Limitations: None

Example: ; gvector:dot
; Compute the dot product of two gvectors.
(gvector:dot (gvector 3 5 1) (gvector 2 4 7))
;; 33

gvector:from–to
Scheme Extension: Mathematics

Action: Creates a gvector between two positions.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:from–to  position1 position2)

Arg Types: position1 position
position2 position

Returns: gvector

Errors: None



Kernel  R10

Description: This extension returns the gvector from position1 to position2.

position1 specifies the start location of the gvector.

position2 specifies the end location of the gvector.

Limitations: None

Example: ; gvector:from–to
; Create a gvector from one position to another.
(gvector:from–to (position 0 0 0) (position 5 1 6))
;; #[gvector 5 1 6]

gvector:length
Scheme Extension: Mathematics, Analyzing Models

Action: Gets the length of a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:length  gvector)

Arg Types: gvector gvector

Returns: real

Errors: None

Description: Returns the length of a gvector as a real value.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:length
; Determine the length of two gvectors.
(gvector:length (gvector 0 6 0))
;; 6
(gvector:length (gvector 4 4 4))
;; 6.92820323027551

gvector:parallel?
Scheme Extension: Mathematics, Analyzing Models

Action: Determines if two gvectors are parallel.



Kernel  R10

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:parallel?  gvector1 gvector2)

Arg Types: gvector1 gvector
gvector2 gvector

Returns: boolean

Errors: None

Description: This extension returns #t if gvector1 and gvector2 are parallel; otherwise,
it returns #f. A zero gvector is not parallel to anything, including itself, so
it causes the extension to return #t.

gvector1 specifies the first vector.

gvector2 specifies the second vector.

Limitations: None

Example: ; gvector:parallel?
; Determine if two gvectors are parallel.
(gvector:parallel? (gvector 3 5 0) (gvector 6 10 0))
;; #t
(gvector:parallel? (gvector 1 0 0) (gvector 0 1 0))
;; #f

gvector:perpendicular?
Scheme Extension: Mathematics

Action: Determines if two gvectors are perpendicular.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:perpendicular?  gvector1 gvector2)

Arg Types: gvector1 gvector
gvector2 gvector

Returns: boolean

Errors: None



Kernel  R10

Description: This extension returns #t if the gvectors are perpendicular; otherwise, it
returns #f. A zero gvector is perpendicular to all gvectors, including itself,
and it causes the extension to return #f.

gvector1 specifies the first vector.

gvector2 specifies the second vector.

Limitations: None

Example: ; gvector:perpendicular?
; Determine if two gvectors are perpendicular.
(gvector:perpendicular? (gvector 3 5 0)

(gvector 6 10 0))
;; #f
(gvector:perpendicular? (gvector 1 0 0)

(gvector 0 1 0))
;; #t

gvector:reverse
Scheme Extension: Mathematics

Action: Reverses the direction of a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:reverse  gvector)

Arg Types: gvector gvector

Returns: gvector

Errors: None

Description: Refer to Action.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:reverse
; Reverses the direction of a gvector.
(gvector:reverse (gvector 0 1 0))
;; #[gvector 0 –1 0]



Kernel  R10

gvector:scale
Scheme Extension: Mathematics

Action: Multiplies a gvector by a scalar number to produce a new gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:scale  gvector scale)

Arg Types: gvector gvector
scale real

Returns: gvector

Errors: None

Description: The resulting gvector is the original gvector scaled by the number.

gvector specifies the original gvector to be scaled by the scaling factor.

scale specifies the scaling factor.

Limitations: None

Example: ; gvector:scale
; Multiply two gvectors by a scaling factor.
(gvector:scale (gvector 0 –1 0) 3)
;; #[gvector 0 –3 0]
(gvector:scale (gvector 0 –1 0) –7)
;; #[gvector 0 7 0]

gvector:set!
Scheme Extension: Mathematics

Action: Sets a gvector’s direction given components of x, y, and z.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:set!  gvector {x y z})

Arg Types: gvector gvector
x real
y real
z real



Kernel  R10

Returns: gvector

Errors: None

Description: The coordinates are computed relative to the active coordinate system.

gvector specifies the original x–, y–, and z–components.

x specifies the value to replace the original x–value specified in gvector.

y specifies the value to replace the original y–value specified in gvector.

z specifies the value to replace the original z–value specified in gvector.

Limitations: None

Example: ; gvector:set!
; Set new x–, y–, and z–components
; in an existing gvector.
(define vector1 (gvector 1 0 0))
;; vector1
(gvector:set! vector1 0 7 3)
;; #[gvector 0 7 3]
vector1
;; #[gvector 0 7 3]
(define outline (gvector 0 0 1))
;; outline
(gvector:set! outline 3 5 4)
;; #[gvector 3 5 4]

gvector:set–x!
Scheme Extension: Mathematics

Action: Sets the x–direction component of a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:set–x!  gvector x)

Arg Types: gvector gvector
x real

Returns: real

Errors: None



Kernel  R10

Description: The coordinates are computed relative to the active coordinate system.
This extension returns the x–value as a real.

gvector specifies the original x–, y–, and z–values.

x specifies the value to replace the original x–value specified in gvector.

Limitations: None

Example: ; gvector:set–x!
; Set new x–, y–, and z–components
; in an existing gvector.
(define vector1 (gvector 1 0 0))
;; vector1
; Set a new x–component in an existing gvector.
(gvector:set–x! vector1 3)
;; 3

gvector:set–y!
Scheme Extension: Mathematics

Action: Sets the y–direction component of a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:set–y!  gvector y)

Arg Types: gvector gvector
y real

Returns: real

Errors: None

Description: The coordinates are computed relative to the active coordinate system.
This extension returns the y–value as a real.

gvector identifies the original x–, y–, and z–values.

y specifies the value to replace the original y–value specified in gvector.

Limitations: None

Example: ; gvector:set–y!
; Set new x–, y–, and z–components
; in an existing gvector.
(define vector1 (gvector 1 0 0))
;; vector1
; Set a new y–component in an existing gvector.
(gvector:set–y! vector1 6)
;; 6



Kernel  R10

gvector:set–z!
Scheme Extension: Mathematics

Action: Sets the z–direction component of a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:set–z!  gvector z)

Arg Types: gvector gvector
z real

Returns: real

Errors: None

Description: The coordinates are computed relative to the active coordinate system.
This extension returns the z–value as a real.

gvector identifies the original x–, y–, and z–values.

z specifies the value to replace the original z–value specified in gvector.

Limitations: None

Example: ; gvector:set–z!
; Set new x–, y–, and z–components
; in an existing gvector.
(define vector1 (gvector 1 0 0))
;; vector1
; Set a new z–component in an existing gvector.
(gvector:set–z! vector1 2)
;; 2

gvector:transform
Scheme Extension: Mathematics, Transforms

Action: Applies a transform to a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:transform  gvector transform)

Arg Types: gvector gvector
transform transform



Kernel  R10

Returns: gvector

Errors: None

Description: Refer to Action.

gvector specifies the gvector to apply the transformation.

transform could be any valid transform.

Limitations: None

Example: ; gvector:transform
; Create a gvector.
(define vector1 (gvector 1 1 0))
;; vector1
; Apply a transform to a gvector.
(gvector:transform vector1

(transform:reflection (position 0 0 0)
(gvector 1 0 0)))

;; #[gvector –1 1 0]

gvector:unitize
Scheme Extension: Mathematics

Action: Creates a new gvector as a unit vector in the same direction as the
specified gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:unitize  gvector)

Arg Types: gvector gvector

Returns: gvector

Errors: None

Description: Refer to Action.

gvector defines the vector to be unitized.

Limitations: None

Example: ; gvector:unitize
; Create a gvector.
(define vector1 (gvector 7 3 0 ”model”))
;; vector1
; Create a gvector as a unit vector.
(gvector:unitize vector1)
;; #[gvector 0.919145030018058 0.393919298579168 0]



Kernel  R10

gvector:x
Scheme Extension: Mathematics

Action: Gets the x–component of a gvector relative to the active coordinate
system.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:x  gvector)

Arg Types: gvector gvector

Returns: real

Errors: None

Description: This extension returns the x–coordinate of the gvector, transformed to the
active WCS.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:x
; Create a gvector.
(define vector1 (gvector 7 5 0 ”spherical”))
;; vector1
; Determine the x–component of a gvector.
(gvector:x vector1)
;; 0.610090199233607

gvector:y
Scheme Extension: Mathematics

Action: Gets the y–component of a gvector relative to the active coordinate
system.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:y  gvector)

Arg Types: gvector gvector

Returns: real



Kernel  R10

Errors: None

Description: This extension returns the y–coordinate of the gvector, transformed to the
active WCS.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:y
; Create a gvector.
(define vector1 (gvector 7 5 0 ”spherical”))
;; vector1
; Determine the y–component of a gvector.
(gvector:y vector1)
;; 0

gvector:z
Scheme Extension: Mathematics

Action: Gets the z–component of a gvector relative to the active coordinate
system.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:z  gvector)

Arg Types: gvector gvector

Returns: real

Errors: None

Description: This extension returns the z–coordinate of the gvector, transformed to the
active WCS.

gvector specifies a gvector.

Limitations: None

Example: ; gvector:z
; Create a gvector.
(define vector1 (gvector 7 5 0 ”spherical”))
;; vector1
; Determine the z–component of a gvector.
(gvector:z vector1)
;; 6.97336288664222



Kernel  R10

gvector?
Scheme Extension: Mathematics

Action: Determines if a Scheme object is a gvector.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector?  object)

Arg Types: object scheme–object

Returns: boolean

Errors: None

Description: Refer to Action.

object specifies the scheme–object that has to be queried for a gvector.

Limitations: None

Example: ; gvector?
; Create a gvector.
(define vector1 (gvector 7 5 0 ”spherical”))
;; vector1
; Determine if the following objects are gvectors.
(gvector? vector1)
;; #t
(gvector? (position 0 0 0))
;; #f
(gvector? –4)
;; #f

history:ensure–empty–root–state
Scheme Extension: History and Roll

Action: Adds empty delta state to the beginning of the history stream so that users
can roll to a state with no entities.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_ensure_empty_root_state, api_get_state_id

Syntax: ( history:ensure–empty–root–state  [history])



Kernel  R10

Arg Types: history history

Returns: integer

Errors: None

Description: This routine examines the root delta state of the specified history stream.
If the root state is empty (no bulletin boards), then it does nothing. If the
root state is not empty, then it adds a new, empty, root state immediately
before the original root state. In either case, it returns the ID number of the
(empty) root state.

history specifies a history stream.

Limitations: None

Example: ; history:ensure–empty–root–state
; No example available at this time

history:get–active–state–id
Scheme Extension: History and Roll

Action: Returns an integer representing the active state.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_get_active_state, api_get_state_id, api_note_state

Syntax: ( history:get–active–state–id  [history])

Arg Types: history history

Returns: integer

Errors: None

Description: Returns an integer representing the active state’s id in the active history
stream. An optional history stream may be specified, causing its associated
active state to be returned. If no stream is specified, the default history
stream is used.

history specifies a history stream.

Limitations: None

Example: ; history:get–active–state–id
; Example not available for this release



Kernel  R10

history:get–default
Scheme Extension: History and Roll

Action: Returns the default history stream.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_get_default_history

Syntax: ( history:get–default )

Arg Types: none

Returns: integer

Errors: None

Description: Refer to Action.

Limitations: None

Example: ; history:get–default
; get the default history stream
(history:get–default)
;; #[(deleted) history –1]

history:get–entity–from–id
Scheme Extension: History and Roll

Action: Returns an ENTITY from a given tag id.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_get_entity_from_id

Syntax: ( history:get–entity–from–id  id [history])

Arg Types: id integer
history history

Returns: integer

Errors: The id must be valid.

Description: Returns an ENTITY from a given tag id in the HISTORY_STREAM
specified. If no stream is specified, the default stream is used.

id specifies an entity identifier.



Kernel  R10

history specifies a history stream.

Limitations: None

Example: ; history:get–entity–from–id
; Create a block
(define b (solid:block (position –10 –10 –10)

(position 10 10 10)))
;; b
(define lop (lop:offset–body b 5))
;; lop
(define f (pick:face (ray (position 0 0 0)

(gvector 1 0 0))))
;; f
(entity:set–color f BLUE)
;; ()
(define id (entity:get–id f))
;; id
(roll)
;; –1
(roll)
;; –1
(entity:set–color (history:get–entity–from–id

id) RED)
;; ()

history:validate–streams
Scheme Extension: History and Roll

Action: Checks all history streams for validity.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_check_histories

Syntax: ( history:validate–streams )

Arg Types: None

Returns: boolean

Errors: None

Description: Checks all history streams for mixing and bad entity ids. Returns #t if all
are OK, or #f otherwise (also reports error to debug_file_ptr).



Kernel  R10

Limitations: None

Example: ; history:validate–streams
;; make a stream
(define block (solid:block 0 0 0 10 10 10))
;; block
(roll)
;; –1
(define sphere (solid:sphere 0 0 0 10))
;; sphere
; verify that it (and all other streams) are valid
(history:validate–streams)
; 1 history streams checked.
;; #t


