Chapter 13.
Scheme Extensions Fa thru Hz

Topic: Ignore

face:bs

Scheme Extension: Debugging
Action: Returns the B—spline approximation information for a face.
Filename: kern/kern_scm/gfac_scm.cxx
APIs: None
Syntax: (face:bs in—face [extra—info=#f])
Arg Types: in—face face

extra—info boolean

Returns: real | real...
Errors: —1 when there is no B—spline to evaluate.
Description: Returns the number of control pointsumndv.

in—face specifies the face to be queried.

extra—info is an optional argument. If it is set to tru#)( then additional
B—spline information is returned. The default value is fa#$e (

Limitations: None

Kernel R10



Example:

face:check

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

: face:bs
; Create topology to demonstrate command.
(define path (edge:spline (list (position 0 0 0)
(position 10 0 0) (position 10 10 0))))
;; path
(define profile (edge:ellipse
(position 0 0 0) (gvector 1 0 0)
(gvector 0 0 1)))
;; profile
(define pipe (sweep:law profile path))
; pipe
(define face (list—ref (entity:faces pipe) 0))
:: face
; Get the B—spline approximation information.
(face:bs face)
5 (14 20)

Debugging
Determines if a face contains invalid loops.

kern/kern_scm/loop_scm.cxx

api_check_face_loops

(face:check face)

face entity

boolean

None

This returns text indicating how many of the various kinds of loops there
are in the given face and a Boolean flag indicating whether the check was
successful or not. Valid loop types include periphery loops, holes,

u—separation loopsi—separation loops, unknown loops, and “Closed face,
no loop”.

face specifies a face entity.

None

Kernel R10



Example: : face:check
: Create a face.
(define facel (face:law "vec(cos(x), y, x)”
—20 (law:eval "10*pi”) —10 10))
. facel
(face:check facel)
; 1 periphery loop.
5 Ht
face:conical?
Scheme Extension: Model Geometry
Action: Determines if a Scheme object is a conical face.
Filename: kern/kern_scm/gfac_scm.cxx
APlIs: None
Syntax: ( face:conical? object)
Arg Types: object scheme—object
Returns: boolean
Errors: None
Description: This extension return if the object is a conical face; otherwise, it
returns#f.
object specifies thescheme—object that has to be queried for a conical
face.
Limitations: None
Example: : face:conical?

Kernel R10

; Create a solid cylinder.
(define cyll
(solid:cylinder (position 5 0 0)
(position 25 25 0) 30))
;;cyll
; Get the faces of the cylinder.
(define face—list (entity:faces cyll))
. face—list
: Determine if the first face is a conical face.
(face:conical? (car face-list))
o Ht
(face:conical? (car (cdr face—list)))
; #E



face:cylinder—axis

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Construction Geometry
Gets the ray along the axis of a cylindrical-face entity.

kern/kern_scm/gfac_scm.cxx

None

( face:cylinder—axis entity)

entity cylindrical-face
ray

None

The returned ray is a gvector and position that specify the central axis of
the cylinder face supplied as thstity input. Note that the input argument
is cylinder face and notsolid:cylinder.

entity specifies a cylindrical—face.
None

; face:cylinder—axis

; Create a solid cylinder.

(define cyll
(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))

;;cyll

; Find the faces of the cylinder.

(define facesl (entity:faces cyll))

. facesl

; Determine the axis of a cylindrical face.

(face:cylinder—axis (car facesl))

; #[ray (4 4 4) (0.57735 0.57735 0.57735)]

face:cylinder—radius

Scheme Extension:
Action:

Filename:

APls:

Construction Geometry
Gets the radius of a cylindrical face entity.

kern/kern_scm/gfac_scm.cxx

None

Kernel R10



Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

( face:cylinder—radius entity)

entity cylindrical-face
real

None

The returnedeal specifies the radius of the cylinder face supplied as the
entity input. Note that the input argument is cylinder face and not a
solid:cylinder.

entity specifies a cylindrical—face.
None

; face:cylinder—radius
; Create a cylinder.
(define cyll
(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))
;;cyll
; Find the faces of the cylinder.
(define facesl (entity:faces cyll))
. facesl
; (#[entity 3 1] #[entity 4 1] #[entity 5 1])
; Find the radius of the cylindrical face.
(face:cylinder—radius (car facesl))
;32

face:cylindrical?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Kernel R10

Model Geometry
Determines if a Scheme object is a cylindrical face.

kern/kern_scm/gfac_scm.cxx

None

( face:cylindrical? object)

object scheme—object
boolean

None



Description:

Limitations:

Example:

The returnedoolean specifies whether the suppliedtity input is a
cylindrical face. Note that the input argument is cylinder face and not a
solid:cylinder.

object specifies thescheme—object that has to be queried for a
cylindrical-face.

None

; face:cylindrical?
; Create a solid cylinder.
(define cyll
(solid:cylinder (position 0 0 0)
(position 8 8 8) 32))
;;cyll
; Find the faces of the cylinder.
(define facesl (entity:faces cyll))
. facesl
; Determine whether cyl1 is a cylindrical face.
(face:cylindrical? cyll)
, H#
; Determine whether face 2 is a cylindrical face.
(face:cylindrical? (car facesl))
5 #Ht
; Determine whether face 3 is a cylindrical face.
(face:cylindrical? (car (cdr facesl)))
, #

face:derivtest

Scheme Extension:
Action:

Filename:
APls:

Syntax:

Model Geometry
Tests face quality by comparing the procedural derivatives with finite
difference derivatives up to the 4th derivatives.

kern/kern_scm/surf_scm.cxx
None

( face:derivtest face [num-u] [num—v] [start—u]
[end—u] [start—u] [start—v] [end—V] [file])

Kernel R10



Arg Types: face entity

num-u integer
num-v integer
start-u real
end-u real
start-v real
end—v real
file string
Returns: string
Errors: None
Description: This Scheme extension tests the face quality by comparing the procedural

derivatives with finite difference derivatives up to the 4th derivatives.
Output message can be sent to a optional data file.

face defines the face entity to test derivatives.

num-u defines the position number to test in the surfad@ection. The
default is 10.

num-v defines the position number to test in the surfadeection. The
default is 10.

start—u defines the start surfaceparameter. The default is the surface
parameter range.

end-u defines the end surfaceparameter.

start—v defines the start surfaseparameter. The default is the surface
parameter range.

end-v defines the end surfaeeparameter.
file defines the output file name. The defauldébug_file_ptr.
Limitations: None

Example: : face:derivtest
; Example not available at this time.

face:planar?
Scheme Extension: Model Geometry
Action: Determines if a Scheme object is a planar face.

Kernel R10



Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

kern/kern_scm/gfac_scm.cxx
None

( face:planar? object)
object

boolean

None

scheme—object

This extension returns #t if the specified object is a planar face.

object specifies thescheme—object that has to be queried for a planar

face.
None

; face:planar?
: Create a solid block.
(define blockl
(solid:block (position =10 —10 0)
(position 25 25 25)))
. block1
: Get a list of the solid block’s faces.
(define facesl (entity:faces block1))
. facesl
: Determine if one of these faces is
; actually a planar face.
(face:planar? (car (cdr (cdr facesl))))
; H#t

face:plane—normal

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:

Returns:

Construction Geometry
Gets the normal of a planar face.

kern/kern_scm/gfac_scm.cxx
None

( face:plane—normal entity)
entity

gvector

planar—face

Kernel R10



Errors:

Description:

Limitations:

Example:

None

This extension returns the normal of a planar face.
entity specifies a face entity.

None

; face:plane—normal
: Create a solid block.
(define blockl

(solid:block (position 0 0 0)

(position 40 40 40)))
. block1
: Get a list of the solid block’s faces.
(define facesl (entity:faces block1))
. facesl
; Get the normal of one of the planar faces.
(face:plane—normal (car (cdr facesl)))
;; #lgvector 0 0 —1]
; Get the normal of another planar face.
(face:plane—normal (car (cdr (cdr (cdr facesl)))))
;; #[gvector —1 0 0]

face:plane—ray

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Kernel R10

Construction Geometry
Gets the plane from a planar face as a ray.

kern/kern_scm/gfac_scm.cxx

None

( face:plane—ray entity)

entity planar—face

gvector

None

This extension represents the specified planar face as a ray.
entity specifies a face entity.

None



Example:

face:scar?

Scheme Extension:
Action:
Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

; face:plane—ray
: Create a solid block.
(define blockl

(solid:block (position 0 0 0)

(position 40 40 40)))
. block1
: Get a list of the solid block’s faces.
(define facesl (entity:faces block1))
. facesl
; Extract a plane from one of the faces and
; represent the face as a ray.
(face:plane—ray (car (cdr facesl)))
;; #[ray (20 20 0) (0 0 -1)]
; Do the same with a second face.
(face:plane—ray (car (cdr (cdr (cdr facesl)))))
;; #[ray (0 20 20) (-1 0 0)]

Debugging
Checks the input body or face for scars and returns list (or unspecified if
no scars exist).
kern/kern_scm/gfac_scm.cxx
None

(face:scar?  face | body)

face face | face ...
body body | body ...

(edge | edge ...) | unspecified

None

Refer to Action.

face specifies a face or a list of faces.
body specifies a body or a list of bodies.

None

Kernel R10



Example:

Kernel R10

: face:scar?
; Create four types of face/edge geometry to
: demonstrate command.
(define blockl (solid:block —40 -5 —15 -25 5 15))
. block1
(define edge (edge:linear (position —30 0 0)
(position =30 0 10)))
;; edge
(define bodyl (hh:combine (list blockl edge)))
;; bodyl
(face:scar? block1)
50
; Create a planar disk.
(define pdisk (face:planar—disk
(position 0 0 0) (gvector 0 0 10) 10))
;; pdisk
(define disk—edge (edge:linear
(position —10 0 0) (position 10 0 0)))
;; disk—edge
(define body2 (hh:combine (list pdisk disk—edge)))
;; body2
(face:scar? body?2)
50
(define block2 (solid:block 20 10 0 30 20 40))
;; block2
(define block2—edge (edge:linear
(position 27 10 0) (position 22 15 20)))
;; block2—edge
(define body3 (hh:combine (list block2 block2—edge)))
;; body3
(define cylinder (solid:cylinder
(position =5 0 —14) (position =5 0 —34) 5))
;; cylinder
(define cyl-edge (edge:linear
(position =3 5 —14) (position —3 5 —35)))
;; cyl-edge
(define body4 (hh:combine (list cylinder cyl-edge)))
;; body4



Figure 13-1. face:scar?

face:sphere—center

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Construction Geometry
Gets the center position of a spherical face.

kern/kern_scm/qgfac_scm.cxx

None

( face:sphere—center face)

face spherical-face

position

None

This extension returns the position of the center of a spherical face.
face specifies a spherical face entity.

None

Kernel R10



Example:

; face:sphere—center

; Create a solid sphere.

(define spherel (solid:sphere (position 0 0 0) 38))
;; spherel

; Find the faces of the solid sphere.

(define facesl (entity:faces spherel))

. facesl

; Find the center of the spherical face.
(face:sphere—center (car facesl))

;; #[position 0 0 O]

face:sphere—radius

Scheme Extension:

Action: Gets the radius of a spherical face.
Filename: kern/kern_scm/gfac_scm.cxx
APlIs: None
Syntax: ( face:sphere-radius face)
Arg Types: face spherical-face
Returns: real
Errors: None
Description: This extension returns the radius of the spherical face.
face specifies a spherical face entity.
Limitations: None
Example: ; face:sphere—radius
; Create a solid sphere.
(define spherel (solid:sphere (position 0 0 0) 38))
;; spherel
; Find the faces of the solid sphere.
(define facesl (entity:faces spherel))
. facesl
; Find the radius of a spherical face.
(face:sphere-radius (car facesl))
;; 38
face:spherical?

Scheme Extension:

Action:

Kernel R10

Construction Geometry

Model Geometry
Determines if a Scheme object is a spherical face.



Filename: kern/kern_scm/gfac_scm.cxx

APlIs: None

Syntax: ( face:spherical? object)

Arg Types: object scheme—object

Returns: boolean

Errors: None

Description: This extension returns #t if the specified object is a spherical face.

object specifies thescheme—object that has to be queried for a spherical

face.
Limitations: None
Example: ; face:spherical?

; Create a solid sphere.

(define spherel (solid:sphere (position 0 0 0) 20))
;; spherel

; Determine if the solid sphere is a

; spherical face.

(face:spherical? spherel)

; #E

; Find the faces of the solid sphere.
(define facesl (entity:faces spherel))
;; facesl

; Determine if the face is actually a

; spherical face.

(face:spherical? (car facesl))

;, Ht

face:spline?

Scheme Extension: Model Geometry, Spline Interface
Action: Determines if a Scheme object ifaae:spline.
Filename: kern/kern_scm/gfac_scm.cxx
APlIs: None
Syntax: ( face:spline? object)
Arg Types: object scheme—object

Kernel R10



Returns: boolean
Errors: None
Description: Refer to Action.

object specifies thescheme—object that has to be queried for a face

spline.
Limitations: None
Example: ; face:spline?

; Define a spline edge 1.

(define el (edge:spline (list (position 0 0 0)
(position 20 —20 0) (position 20 0 0))))

el

; Define linear edge 2.

(define e2 (edge:linear (position 20 0 0)
(position 20 20 0)))

5 e2

; Define linear edge 3.

(define e3 (edge:linear (position 20 20 0)
(position 0 20 0)))

5 e3

; Define linear edge 4.

(define e4 (edge:linear (position 0 20 0)
(position 0 0 0)))

5 ed

; Define a wire body from

; the spline and linear edges.

(define w (wire—body (list el e2 e3 e4)))

n W

; Create a solid by sweeping

; a planar wire along a vector.

(define ws (solid:sweep—wire w (gvector 0 0 20)))

5 WS

; Get the faces of the solid.

(define edgesl (entity:faces ws))

;; edgesl

; Determine if one of the faces is a spline face.

(face:spline? (car (cdr edgesl)))

 #

; Determine if another face is a spline face.

(face:spline? (car (cdr (cdr (cdr edgesl)))))

;y Ht

Kernel R10



face:toroidal?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

face:type

Scheme Extension:
Action:

Filename:
APls:

Syntax:

Model Geometry
Determines if a Scheme object is a toroidal face.

kern/kern_scm/gfac_scm.cxx

None

( face:toroidal? object)

object scheme—object
boolean

None

Refer to Action.

object specifies thescheme—object that has to be queried for a toroidal
face.

None

: face:toroidal?
: Create solid torus 1.
(define torusl
(solid:torus (position =10 —10 —10) 7 3))
;o torusl
: Get a list of the faces on torus 1.
(define facesl (entity:faces torusl))
. facesl
: Determine if the face is a toroidal face.
(face:toroidal? (car facesl))
;, Ht

Debugging
Returns the type of a face.

kern/kern_scm/gfac_scm.cxx
None

(face:itype  facel)

Kernel R10



Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

face:types

Scheme Extension:
Action:
Filename:
APIs:
Syntax:

Arg Types:
Returns:
Errors:
Description:

Limitations:

Kernel R10

facel entity
string
None

This returns a string that tells what type of face has been produced. Output
strings include “Plane”, “Cylinder”, “Cone”, “Sphere”, “Torus”, “Spline”,

and “Unknown type”. When the face is a spline, it also returns the subtype
for the spline.

facel specifies a face entity.

None

; face:type

: Create a face.

(define facel (face:law "vec (cos (x), y, X)”
—20 (law:eval "10*pi”) —10 10))

. facel

(face:type facel)
;» "Spline surface (lawsur—spline)”

Debugging
Prints a table of all faces in the current part, including their containing
entities and surface types.
kern/kern_scm/gfac_scm.cxx
api_get_active_part, api_get_faces
(face:types )
None
string
None

Refer to Action.

None



Example:

face?

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

; face:types

; create a solid cylinder

(define cylinder (solid:cylinder (position 0 0 0)
(position 0 0 30) 10))

;; cylinder

; request a list of all faces in current part

(face:types)

; entity:(entity 1 1)

; face:(entity 4 1) face—type:Cylinder

; face:(entity 5 1) face-type:Plane

; face:(entity 6 1) face-type:Plane

;s Ht

Model Geometry
Determines if a Scheme object is a face.

kern/kern_scm/gfac_scm.cxx

None

(face? object)

object scheme—object

boolean

None

The extension returng if the object is a face; otherwise, it retutis
object specifies thescheme—object that has to be queried for a face.
None

: face?

: Create a solid block.

(define blockl
(solid:block (position =10 -5 —15)
(position 10 5 15)))

. block1

: Get the block’s faces.

(define facesl (entity:faces block1))

. facesl

(face? blockl)

, H#

: Determine if face 2 is a face.

(face? (car (cdr facesl)))

; H#t

Kernel R10



filter:and

Scheme Extension: Filtering
Action: Computes an AND of two or more entity—filters.
Filename: kern/kern_scm/filt_scm.cxx
APIs: None
Syntax: (filter:and filtl ... filtn)
Arg Types: filtl entity—filter
filtn entity—filter
Returns: entity—filter
Errors: None
Description: Multiple filters can be combined using the Booleaud filter to form a

single filter that can be applied to a single entity or a list of entities. An
entity is selected if all parts of the combined filter rettrn

filtl is an entity—filter. The ellipsis ( ... ) indicates one or more
entity—filters.

Limitations: None

Kernel R10



Example:

: filter:and

: Create solid block 1.

(define blockl
(solid:block (position 10 0 10)
(position 20 30 40)))

. block1

; Create linear edge 2.

(define edgel (edge:linear (position 0 0 0)
(position 10 10 10)))

;; edgel

; Create circular edge 3.

(define edge2 (edge:circular (position 0 0 0) 20))

;; edge2

; Change the color of the existing entities to red.

(entity:set—color (part:entities) 1)

50

; Create solid sphere 4.

(define spherel (solid:sphere
(position 20 30 40) 30))

;; spherel

; Create solid sphere 5.

(define cyll (solid:cylinder
(position 40 0 0) (position 5 5 5) 8))

5 cyll

; Create linear edge 6.

(define edge3 (edge:linear (position 0 50 0)
(position 50 50 0)))

;; edge3

; Create spline edge 7.

(define edge4 (edge:spline (list
(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edged

; Define a filter for red curves.

(define red—curves (filter:and (filter:color 1)
(filter:type “edge:circular?”)))

;; red—curves

; List the red curve entities.

(filter:apply red—curves (part:entities))

;1 (#[entity 4 1])

; The following accomplishes the same thing.

(part:entities red—curves)

;1 (#[entity 4 1])

Kernel R10



filter:apply
Scheme Extension:
Action:
Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Kernel R10

Filtering
Applies a filter to an entity or list of entities.

kern/kern_scm/filt_scm.cxx
None
(filter:apply filter entity—or—list)

filter entity—filter
entity—or—list entity | (entity ...)

(entity ...)
None

Once a filter is created, the filter can be applied to obtain the particular
results. For example, if numerous entities are components of a part of
various colors, applying a color filter to the list of entities returns the list
of entities that match the filter’s color. When applying the filter to an
entity that does not meet the requirements for the filter, this extension
returns the empty list.

filter specifies an entity—filter.
entity—or-list specifies an entity or an entity list.
None

; filter:apply
: Create solid block 1.
(define blockl
(solid:block (position 10 0 10)
(position 20 30 40)))
. block1
; Create linear edge 2.
(define edgel (edge:linear (position 0 0 0)
(position 10 10 10)))
;; edgel
; Create circular edge 3.
(define edge2 (edge:circular (position 0 0 0) 20))
;; edge2
; Change the color of the entities so far to red.
(entity:set—color (part:entities) 1)

50



filter:not

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

; Create solid sphere 4.

(define spherel (solid:sphere
(position 20 30 40) 30))

;; spherel

; Create solid sphere 5.

(define cyll (solid:cylinder
(position 40 0 0) (position 5 5 5) 8))

;;cyll

; Create linear edge 6.

(define edge3 (edge:linear (position 0 50 0)
(position 50 50 0)))

;; edge3

; Create spline edge 7.

(define edge4 (edge:spline (list
(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edged

; Apply a green filter and obtain the entities.

(filter:apply (filter:color 2) (part:entities))

;; (#[entity 5 1] #[entity 6 1]

;; #lentity 7 1] #[entity 8 1])

; Apply a solid, red filter and obtain the entities.

(filter:apply (filter:and (filter:type "solid?”)
(filter:color 1)) (part:entities))

;; (#[entity 2 1)

; Apply a solid, green filter and

; obtain the entities.

(part:entities (filter:type "solid?"))

;; (#[entity 2 1] #[entity 5 1] #[entity 6 1])

(filter:apply (filter:type "solid?”) edgel)

50

Filtering
Computes the NOT of an input entity—filter.

kern/kern_scm/filt_scm.cxx
None
(filter:not filter)

filter entity—filter

Kernel R10



Returns:

Errors:

Description:

Limitations:

Example:

Kernel R10

entity—filter

None

Refer to Action.

filter specifies an entity—filter.
None

: filter:not

: Create solid block 1.

(define blockl
(solid:block (position 10 0 10)
(position 20 30 40)))

. block1

; Create linear edge 2.

(define edgel (edge:linear (position 0 0 0)
(position 10 10 10)))

;; edgel

; Create circular edge 3.

(define edge2 (edge:circular (position 0 0 0) 20))

;; edge2

; Change the color of the entities so far to red.

(entity:set—color (part:entities) 1)

50

; Create solid sphere 4.

(define spherel (solid:sphere
(position 20 30 40) 30))

;; spherel

; Create solid sphere 5.

(define cyll (solid:cylinder
(position 40 0 0) (position 5 5 5) 8))

5 cyll

; Create linear edge 6.

(define edge3 (edge:linear (position 0 50 0)
(position 50 50 0)))

;; edge3

; Create spline edge 7.

(define edge4 (edge:spline (list
(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edged

; Apply a green filter and obtain the entities.

(filter:apply (filter:color 2) (part:entities))

i (#[entity 5 1] #[entity 6 1] #[entity 7 1]



filter:or

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

;; #lentity 8 1])

; Define a yes—red filter.

(define yes—red (filter:color 1))

;; yes—red

(part:entities yes—red)

;) (#[entity 1 1] #[entity 2 1]

;; #lentity 3 1] #[entity 4 1])

: Define a not—red filter.

(define not-red (filter:not (filter:color 1)))
;> not—red

; Apply a not-red filter and obtain the entities.
(part:entities not-red)

;; (#[entity 5 1] #[entity 6 1] #[entity 7 1]
;; #entity 8 1])

Filtering
Computes the OR of two or more entity—filters.

kern/kern_scm/filt_scm.cxx
None
(filter:or filtl ... filtn)

filtl entity—filter
filtn entity—filter

entity—filter
None

Multiple filters can be combined using the Boolearfilter to form a
single filter that can be applied to a single entity or a list of entities. An
entity will be selected if at least one part of the combined filter retfirns

filtl is an entity—filter. The ellipsis ( ... ) indicates one or more
entity—filters.

None

Kernel R10



Example:

Kernel R10

: filter:or

: Create solid block 1.

(define blockl
(solid:block (position 10 0 10)
(position 20 30 40)))

. block1

; Create linear edge 2.

(define edgel (edge:linear (position 0 0 0)
(position 10 10 10)))

;; edgel

; Create circular edge 3.

(define edge2 (edge:circular (position 0 0 0) 20))

;; edge2

; Change the color of the entities so far to red.

(entity:set—color (part:entities) 1)

50

; Create solid sphere 4.

(define spherel (solid:sphere
(position 20 30 40) 30))

;; spherel

; Create solid sphere 5.

(define cyll (solid:cylinder
(position 40 0 0) (position 5 5 5) 8))

5 cyll

; Create linear edge 6.

(define edge3 (edge:linear (position 0 50 0)
(position 50 50 0)))

;; edge3

; Create spline edge 7.

(define edge4 (edge:spline (list
(position 20 20 20) (position 10 20 30)
(position 50 40 10))))

;; edged

; Define the green—or—solid filter.

(define green—or—solid (filter:or (filter:color 2)
(filter:type "solid?")))

;; green—or—solid

; Apply a green—or—solid filter and

; obtain the entities.

(part:entities green—or—solid)

5 (#[entity 2 1] #[entity 5 1] #[entity 6 1]

;; #lentity 7 1] #[entity 8 1])



filter:type

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Filtering
Creates a filter entity that selects for the type of an entity.

kern/kern_scm/filt_scm.cxx

None

(filter:type type—name)

type—name string
entity—filter

None

This extension creates the specifitgpe—name as a filter, which specifies
the type of entity to be used in another filter operation.

If a new type filter is created, it replaces the previously—defined type.

Refer tofilter:color for creating filters based on color, dfilter:types to
display the list of available filter types.

type—name specifies an entity—filter to be created. The possible string
values for theype—name are:

“edge:curve?”, “edge:linear?”, “edge:circular?”, “edge:elliptical?”,
“edge:spline?”, “edge?”, “body?”, “solid?”, “wire—body?”, “mixed—body?”,
“wire?”, “face?”, “face:planar?”, “face:spherical?”, “face:cylindrical?”,
“face:conical?”, “face:toroidal?”, “face:spline?”, “wcs?”, “text?”, “vertex?”,
or “point?”.

None

; filter:type

: Create a solid block.

(define partl
(solid:block (position 10 0 10)
(position 20 30 40)))

;) partl

; Create linear edge.

(define part2 (edge:linear (position 0 0 0)
(position 10 10 10)))

;) part2

; Create circular edge.

(define part3 (edge:circular (position 0 0 0) 20))

Kernel R10



filter:types

Scheme Extension:
Action:

Filename:

APls:

Kernel R10

;) part3
; Change the color of the existing entities to red.
(entity:set—color (part:entities) 1)
50
; Create solid sphere.
(define part4 (solid:sphere
(position 20 30 40) 30))
; part4
; Create solid cylinder.
(define part5 (solid:cylinder
(position 40 0 0) (position 5 5 5) 8))
5 parts
; Create another linear edge.
(define part6 (edge:linear (position 0 50 0)
(position 50 50 0)))
;) parté
; Create a spline edge.
(define part7 (edge:spline (list
(position 20 20 20) (position 10 20 30)
(position 50 40 10))))
;» part7
; Get a list of available filter types.
(filter:types)
;; ("point?” "vertex?” "text?” "wcs?” "face:spline?”
;; "face:toroidal?” "face:conical?”
;; "face:cylindrical?” "face:spherical?”

;; "face:planar?” "face?” "wire?” "mixed—body?”
;; "wire—body?” "solid?” "body?” "edge?”

;; "edge:spline?” "edge:elliptical?”

;; "edge:circular?” "edge:linear?” "edge:curve?”)
; Apply a solid filter and get entities.
(part:entities (filter:type "solid?"))

;; (#[entity 2 1] #[entity 5 1] #[entity 6 1])

; Apply edge:spline filter and get entities.
(part:entities (filter:type "edge:spline?”))

;; (#[entity 8 1])

Filtering
Gets a list of available filter types.

kern/kern_scm/filt_scm.cxx

None



Syntax:

Arg Types:
Returns:
Errors:
Description:
Limitations:

Example:

find:angle

Scheme Extension:

Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

(filter:types )

None

(string ... )

None

This extension returns all the valid filter types as a list of strings.
None

; filter:types

; Get a list of available filter types.

(filter:types)

;; ("point?” "vertex?” "text?” "wcs?” "face:spline?”
;; "face:toroidal?” "face:conical?”

;; "face:cylindrical?” "face:spherical?”

;; "face:planar?” "face?” "wire?” "mixed—body?”

;» "wire—body?” "solid?” "body?” "edge?”

;; "edge:spline?” "edge:elliptical?”

;; "edge:circular?” "edge:linear?” "edge:curve?”)

Physical Properties
Returns the angle between edges. Returns a list of angles if a
non—branched wire—body is submitted.

kern/kern_scm/find_scm.cxx

api_get_edges

(find:angle inputl [input2] [logical])

inputl vertex | edge | wire—body
input2 edge

logical real

real | (real ...)
None
Refer to Action.

inputl specifies a vertex, edge or a wire—body. A vertex@msl

computes the angles between the two edges around the vemgxiifis

a closed edge, the angle between the start and end is returinedtllfis

a non-branched, wire—body, a list of angles between each of the edges of
the wire—body is returned.

Kernel R10



Limitations:

Example:

find:bump

Scheme Extension:
Action:

Filename:
APls:

Syntax:

Arg Types:

Kernel R10

input2 specifies an edg@éput2 must be supplied ihputl is an open
edge. The angle between these two edges is returned.

A logical of false §f) returns the results in radians, the default is degrees.

Success is not guaranteed for branched wire—bodies, edges that do not
share a vertex, and vertices with more than two edges.

; find:angle

; Create an entity

(define p1 (wire—body:polygon
(position 0 0 0) (gvector 0 1 0)
(gvector 0 0 1) 5))

5 Pl

(define p2 (wire—body:polygon
(position 0 2 0) (gvector 0 —1 0)
(gvector 0 0 1) 5))

5 P2

(define unite (bool:unite pl p2))

o unite

(zoom-all)

;) #[view 25363466]

(define v (list—ref (entity:vertices p1)3))

nV

(entity:set—color v 1)

50

(find:angle v)

;; 108.0

Physical Properties
Finds the bump associated with the given face or loop.

kern/kern_scm/pattern_scm.cxx
api_pattern_find_bump

(find:bump  seed [return—type [no—cross—list
[show—loop=#f]]])

seed entity
return—type string
no—cross—list entity | (entity ...)
show-loop boolean



Returns:

Errors:

Description:

Limitations:

Example:

entity ...
None

Finds the bump associated with the face or loop specifiedyy, and
highlights the face of the bump in red.

seed specifies the entity to be searched.

return—type is an optional argument that could be used to have the
function return a list of entities in the bump. The optiongdarn-type
are "faces”, "loops”, and "all”. "faces” returns a list of all faces in the
bump. “loops” returns a list of all loops in the bump (e.g., those not
owned by faces on the bump). "all” returns a list consisting of both the
above. No list is returned unless this string is present.

no—cross—list allows for finer definition or limitation in the search.

show-loop set to true#t), highlights any limiting loops on the bump in
yellow.

None

; find:bump

; create a bump

(define blank (solid:block (position 0 0 0)
(position 10 10 -1)))

. blank

(define tool (solid:block (position 1 1 0)
(position 2 2 1)))

;; tool

(define unite (solid:unite blank tool))

o unite

; pick out one face on the bump

(define bump_face (car (entity:faces blank)))

;; bump_face

; pass in an empty string and list so that

; we highlight the default faces and loops

; belonging to the bump, but return no list

(find:bump bump_face ™ (list) #t)

50

; loop:(entity 14 1)

; face:(entity 3 1)

; face:(entity 7 1)

; face:(entity 4 1)

; face:(entity 5 1)

; face:(entity 6 1)

Kernel R10



find:pattern—index

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Kernel R10

Patterns
Finds the pattern index associated with a given entity.

kern/kern_scm/pattern_scm.cxx

None

( find:pattern—index entity)

entity entity
integer

An invalid entity was specified.

Finds the zero—based pattern index associated with the entity specified by
entity.

entity specifies the entity to be searched.
None

; find:pattern—index

; make a prism

(define height 1)

;; height

(define maj_rad 1)

;; maj_rad

(define min_rad 0.5)

;; min_rad

(define num-sides 3)

;; num-sides

(define prism (solid:prism height maj_rad min_rad
num-sides))

;) prism

; position the prism

(define origin (position 1 2 3))

;; origin

(define transform (entity:transform prism
(transform:axes origin
(gvector 1 0 0) (gvector 0 1 0))))

;; transform

; make a pattern

(define center origin)

;; center

(define normal (gvector 0 0 1))



> normal

(define num-radial 4)

> num-radial

(define num-angular 5)

;; num—angular

(define spacing 3)

;; spacing

(define pat (pattern:radial center normal
num-radial num-angular spacing))

» pat

; apply the pattern to the prism

(define body (entity:pattern prism pat))

;; body

; find the pattern index of a specific lump

(define lump (list-ref (entity:lumps body) 8))

;; lump

(define index (find:pattern—index lump))

;; index

; check the index

(law:equal—test index 8)

» Ht

graph:add—edge

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Graph Theory
Adds an edge to a graph.

kern/kern_scm/graph_scm.cxx
None

(graph:add—edge  output—graph vertex1 vertex2)

output—graph graph
vertexl string | entity
vertex2 string | entity
graph

None

This extension adds an edge to an existing graph between two existing
vertices.

output—graph specifies a graph. Treutput—graph is updated to show the
new connection between vertices.

Kernel R10



Limitations:

Example:

The vertex1 andvertex2 elements are required to be part of the
output—graph. If the output—graph was created using face entities as the
vertices, thesertex1 andvertex2 can be either the face entities or their
designation as part of the graph.

None

; graph:add—edge

; Create a simple example

(define g1 (graph "me-you us—them”))

» ol

; Add a new edge between two existing vertices
(define g2 (graph:add—edge g1 "'me” "them”))

5 92

graph:add—-vertex

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Kernel R10

Graph Theory
Adds a vertex to a graph.

kern/kern_scm/graph_scm.cxx

None
( graph:add—vertex in—graph in—name)
in—graph graph
in—-name string
graph
None

This adds thén—name string as a vertex iim—graph.
in—graph specifies a graph.

in—name is a string specifying the vertex that has to be added to the
in—graph.

None



Example:

; graph:add—vertex

; Create a simple example

(define g1 (graph "me-you us—them”))

» ol

: Add a vertex.

(define g2 (graph:add—vertex g1 "NEW_ONE"))

5 92

; CAREFUL: The order of the graph output may

: not be the same each time.

; Create an example using entities.

(define bl (solid:block (position -5 —10 —20)
(position 5 10 15)))

; bl

(define facesl (entity:faces b1l))

;; facesl

; Turn the block faces into vertices of the graph.

(define g3 (graph facesl))

5 93

; Add a vertex.

(define g4 (graph:add—vertex g3 "NEW_ONE"))

5 g4

graph:adjacent

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Graph Theory
Returns whether or not two vertices in a graph are connected with an edge.

kern/kern_scm/graph_scm.cxx

None

( graph:adjacent in—graph vertex1 vertex2)
in—graph graph
vertex1 string | entity
vertex2 string | entity
boolean

None

Refer to Action.
in—graph specifies a graph.

The vertex1 andvertex2 elements are required to be part ofitheraph.
They could be either entities or their designation as part ohtigeaph.

Kernel R10



Limitations:

Example:

None

; graph:adjacent
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:adjacent g1 "we” "FIDO”)
; #f
(graph:adjacent g1 "we” "they”)
;s Ht

graph:branch

Scheme Extension:

Action:
Filename:
APls:

Syntax:

Arg Types:

Returns:

Errors:

Description:

Kernel R10

Graph Theory
Returns a subgraph of the given input graph.

kern/kern_scm/graph_scm.cxx
None

(graph:branch  in—graph in—trunk
which—branch [keep—trunk=#f])

in—graph graph
in—trunk graph
which—branch integer
keep—trunk boolean
graph

None

This command returns a subgraph of the gimegraph that is made up of
all the branches that are connected to a given vertex in the ordered
in—trunk graph.

in—graph specifies a graph.
in—trunk specifies a graph showing all the connections to a given vertex.

which—branch is an integer signifying the vertex to be used.



Limitations:

Example:

The keep—trunk is an option to keep#) or not keep#f) the vertex from
the trunk.

Thein-trunk must be a linear ordered subgraph ofithgraph. The
which—branch must be a nonnegative integer less than the max order of
the trunk.

; graph:branch

; Create a simple graph.
(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
ol

(define g2 (graph "b—c"))

5 02

(graph:order—from g2 "b")

1

(graph:branch g1 g2 0)

; #[graph "a”

(graph:branch g1 g2 0 #t)

; #{graph "a—b’]

(graph:branch g1 g2 1)

;; #[graph "f—g f-h d e”]
(graph:branch g1 g2 1 #t)

;; #[graph "c—d c—e c—f f—g f=h"]

graph:component

Scheme Extension:

Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Graph Theory
Creates a new graph from all of the component elements of a given graph
specified by one of the component elements.

kern/kern_scm/graph_scm.cxx
None

(graph:component  in—graph in—which)

in—graph graph

in—which integer | string | entity
graph

None

This extension is useful if the givém-graph has multiple components. It
creates a new graph from just the elements of a single component.

Kernel R10



Limitations:

Example:

in—graph specifies a graph.

in—which specifies a component. The component is selected by providing
the integer of the component (hnumbering starts at 0), a string which is the
name of an element of the component, or an entity that is associated with
an element of the component.

None

; graph:component
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» 0l
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:components g1)
53
(define g2 (graph:component g1 "me”))
5 92
(define g3 (graph:component g1 "FIDQO"))
5 93
(define g4 (graph:component g1 1))
5 g4

graph:components

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Kernel R10

Graph Theory
Returns the number of independent components that are in a graph.

kern/kern_scm/graph_scm.cxx

None

(graph:components  in—graph)

in—graph graph
integer

None

Refer to Action.

in—graph specifies a graph.



Limitations:

Example:

None

; graph:components
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:components g1)
53
(define g2 (graph:component g1 "me”))
5 92
(define g3 (graph:component g1 "FIDQO"))
593
(define g4 (graph:component g1 1))
5 g4

graph:connected?

Scheme Extension:

Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Graph Theory
Determines whether or not the specified graph is connected, or all in one
component.
kern/kern_scm/graph_scm.cxx
None
( graph:connected? in—graph)
in—graph graph
boolean
None
Refer to Action.
in—graph specifies a graph.

None

Kernel R10



Example: ; graph:connected?
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
59l
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:connected? g1)

,(,gfz;ph:components gl)
,(,dzfine g2 (graph:component g1 "me”))
,(,dgﬁne g3 (graph:component g1 "FIDO"))
,(,dgﬁne g4 (graph:component g1 1))
,(,g?z:rph:connected? g4)
 Ht
graph:copy
Scheme Extension: Graph Theory
Action: Creates a new graph that is a copy of the specified graph.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: (graph:copy in—graph)
Arg Types: in—graph graph
Returns: graph
Errors: None
Description: Refer to Action.

in—graph specifies a graph.

Limitations: None

Kernel R10



Example: ; graph:copy
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(define g2 (graph:component g1 "FIDQO"))
5 92
(define g3 (graph:copy g2))
593
; CAREFUL: The order may not be the same as the
; original, but graphs are still equivalent.

graph:cut-edge?

Scheme Extension: Graph Theory
Action: Determines whether or not the specified edge is a cutting edge.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: (graph:cut-edge  ? in—graph in—edge)
Arg Types: in—graph graph
in—edge string
Returns: boolean
Errors: None
Description: A cutting edge is an edge whose removal creates more components in the

graph than are present when the edge is not removed.
in—graph specifies a graph.
in—edge specifies the edge to be queried.

Limitations: None

Kernel R10



Example:

; graph:cut—edge?

; Create a simple example

(define g1 (graph "me—you us—them
we—they them—they we—me us—me”))

» ol

; them—us they—we”]

; CAREFUL: The order of the graph output may

: not be the same each time.
(define g2 (graph:cut—edges g1l))
5 g2

(graph:cut—edge? gl "us—them”)
; #E

(graph:cut—edge? gl "me-you”)
;, Ht

graph:cut—edges

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Kernel R10

Graph Theory
Returns all of the cutting edges of a graph.

kern/kern_scm/graph_scm.cxx

None

( graph:cut—-edges in—graph)

in—graph graph
graph

None

A cutting edge is an edge whose removal creates more components in the
graph than are present when the edge is not removed.

in—graph specifies a graph.

None



Example:

; graph:cut—-edges

; Create a simple example

(define g1 (graph "me—you us—them
we—they them—they we—me us—me”))

» ol

; CAREFUL: The order of the graph output may

: not be the same each time.

(define g2 (graph:cut—edges g1l))

5 92

(graph:cut—edge? gl "us—them”)

, H#

(graph:cut—edge? gl "me-you”)

;s Ht

graph:cut—vertex?

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Graph Theory
Determines whether or not the specified vertex is a cutting vertex.

kern/kern_scm/graph_scm.cxx

None

( graph:cut-vertex? in—graph test-vertex)
in—graph graph
test—vertex string | entity |
boolean

None

A cutting vertex is vertex whose removal creates more components in the
graph than are present when the vertex is not removed.

in—graph specifies a graph.

test-vertex could be either the designation string in the graph or an entity
associated with that graph vertex.

None

Kernel R10



Example:

; graph:cut-vertex?
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(define g2 (graph:cut—vertices gl))
5 92
(graph:cut—vertex? gl "us”
, #
(graph:cut-vertex? gl "SPOT")
;s Ht

graph:cut—vertices

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

Kernel R10

Graph Theory
Returns all of the cutting vertices of a graph.

kern/kern_scm/graph_scm.cxx

None

( graph:cut—vertices in—graph)
in—graph graph
graph

None

A cutting vertex is vertex whose removal creates more components in the
graph than are present when the vertex is not removed.

in—graph specifies a graph.
None

; graph:cut—vertices
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
; not be the same each time.
(define g2 (graph:cut—vertices g1l))
» 92



graph:cycle—vertex?

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Graph Theory
Determines whether or not a given vertex is a cycle vertex.

kern/kern_scm/graph_scm.cxx

None

( graph:cycle—vertex? in—graph in—vertex)
in—graph graph
in—vertex string | entity
boolean

None

A cycle is defined as a connected group of vertices whose individual
removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex.

in—graph specifies a graph.

in—vertex could be the designated name string within the graph or the
model entity associated with the graph vertex.

None

Kernel R10



Example: ; graph:cycle—vertex?

; Create a simple example

(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))

» ol

; CAREFUL: The order of the graph output may

: not be the same each time.

(graph:cycle? g1)

, #

(define g2 (graph:component g1 "FIDQO"))

5 02

(graph:cycle? g2)

; #f

(define g3 (graph:component g1 "me”))

593

(graph:cycle? g3)

;s Ht

(graph:cycle—vertex? g1 "FIDO”)

;, #

(graph:cycle—vertex? g1 "me”)

 Ht

(graph:cycle—vertex? g3 "me”)

; Ht

graph:cycle?

Scheme Extension: Graph Theory
Action: Determines whether or not a graph has a cycle.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: ( graph:cycle? in—graph)
Arg Types: in—graph graph
Returns: boolean
Errors: None
Description: A cycle is defined as a connected group of vertices whose individual

removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex.

Kernel R10



in—graph specifies a graph.
Limitations: None

Example: ; graph:cycle?

; Create a simple example

(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))

59l

; CAREFUL: The order of the graph output may

: not be the same each time.

(graph:cycle? g1)

;o H#

(define g2 (graph:component g1 "FIDQO"))

5 92

(graph:cycle? g2)

;o H#f

(define g3 (graph:component g1 "me”))

593

(graph:cycle? g3)

5 Ht

graph:degree?
Scheme Extension: Graph Theory
Action: Returns the number of graph vertices that are connected with graph edges
to the specified vertex.

Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: (graph:degree?  in—graph in—vertex)

Arg Types: in—graph graph
in—vertex string | entity

Returns: integer

Errors: None

Description: Refer to Action.

in—graph specifies a graph.

Kernel R10



in—vertex could be either the designation name used as part of the graph or
the model entity associated with that graph vertex.

Limitations: None

Example: ; graph:degree?
; Create a simple example
(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:degree? g1 "me”
52
(graph:degree? gl "SPOT")
53
(graph:degree? gl "PETEY")
1
; Create an example using entities.
(define bl (solid:block
(position =5 —10 —20) (position 5 10 15)))
, bl
(define faces1 (entity:faces b1))
;; facesl
; Turn the block faces into vertices of the graph.
(define g3 (graph facesl))

5 g3

(graph:degree? g3 "(Face 0)")

na

(graph:degree? g3 (list-ref facesl 3))
n4

graph:edge—entities

Scheme Extension: Graph Theory
Action: Returns a list of model entities associated with the graph edges.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: ( graph:edge—entities in—graph)
Arg Types: in—graph graph

Kernel R10



Returns:

Errors:

Description:

Limitations:

Example:

(entity...)
None

The edges of a graph can have entities associated with them. An example
of this is the case of a wirebody. In a wirebody, the vertices of the
wireframe become vertices in the graph while the edges of the wirebody
become edges in the graph.

in—graph specifies a graph.
None

; graph:edge—entities

; Create an example using entities.

(define el (edge:linear (position 10 10 0)
(position 10 —10 0)))

el

(define e2 (edge:linear (position 10 —10 0)
(position =10 —10 0)))

5 e2

(define e3 (edge:linear (position =10 —10 0)
(position =10 10 0)))

;€3

(define e4 (edge:linear (position —10 10 0)
(position 10 10 0)))

;v ed

(define g1 (graph (list el e2 e3 e4)))

5ol

(graph:edge—entities g1)

;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]

;; #entity 2 1])

(graph:vertex—entities g1)

;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]

;; #lentity 9 1] #[entity 10 1] #[entity 11 1]

;; #lentity 12 1] #[entity 13 1])

(define b1l (solid:block (position =5 —10 —20)
(position 5 10 15)))

; bl

(define faces1 (entity:faces b1l))

;; facesl

; Turn the block faces into vertices of the graph.

(define g2 (graph facesl))

592

; (entity 16 65536)—(entity 19 65536)

(graph:edge—entities g2)

Kernel R10



50

(graph:vertex—entities g2)

;7 (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #lentity 17 1] #[entity 16 1] #[entity 15 1])
(define g3 (graph:unite g1 g2))

5 93

(graph:edge—entities g3)

;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]

;; #lentity 5 1])

(graph:vertex—entities g3)

;) (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;;» #[entity 10 1] #[entity 9 1] #[entity 8 1]

;; #lentity 7 1] #[entity 6 1] #[entity 15 1]

;; #lentity 16 1] #[entity 17 1] #[entity 18 1]
. #lentity 19 1] #[entity 20 1])

graph:edge—weight

Scheme Extension:

Action:
Filename:
APls:

Syntax:

Arg Types:

Returns:
Errors:

Description:

Kernel R10

Graph Theory
Sets the weight for an edge of a graph.

kern/kern_scm/graph_scm.cxx
None

( graph:edge—weight in—graph {edge—name weight} |
{vertex—namel vertex—name2 weight})

in—graph graph
edge—hame string
weight real
vertex—namel string
vertex—name2 string
graph

None

Refer to Action.
in—graph specifies a graph.
edge—name specifies the edge by name.

weight specifies the value to be assigned.



Limitations:

Example:

vertex—namel andvertex—name?2 specifies the edge by naming the two
bounding vertices.

None

; graph:edge—weight

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
ol

(graph:edge—weight g1 "a” "b” 3)

;; #[graph "a—b b—c c-d c—e c—f f—g f—h"]
(graph:edge—weight g1 "c—e” 5)

;; #[graph "a—b b—c c-d c—e c—f f—g f-h"]
(graph:total-weight g1)

58

graph:entities

Scheme Extension:

Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Graph Theory
Returns a list of model entities associated with the graph vertices and
edges.

kern/kern_scm/graph_scm.cxx

None

( graph:entities in—graph [use—ordering=#f])
in—graph graph
use—ordering boolean
(entity ...)

None

Refer to Action.
in—graph specifies a graph.

If use—ordering is true §t), sorts the result by graph order. The default
value is false#f).

None

Kernel R10



Example:

Kernel R10

; graph:entities

; Create an example using entities.

(define el (edge:linear (position 10 10 0)
(position 10 —10 0)))

el

(define e2 (edge:linear (position 10 —10 0)
(position =10 —10 0)))

5 e2

(define e3 (edge:linear (position =10 —10 0)
(position =10 10 0)))

;€3

(define e4 (edge:linear (position —10 10 0)
(position 10 10 0)))

5 ed

(define g1 (graph (list el e2 e3 e4)))

59l

(graph:entities g1)

;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]

;; #lentity 9 1] #[entity 10 1] #[entity 11 1]

;; #lentity 12 1] #[entity 13 1]

;; #lentity 5 1] #[entity 4 1] #[entity 3 1]



;; #lentity 2 1])

(graph:edge—entities g1)

;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]

;; #lentity 2 1])

(graph:vertex—entities g1)

;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]

;; #lentity 9 1] #[entity 10 1] #[entity 11 1]

;; #lentity 12 1] #[entity 13 1])

(define b1l (solid:block (position -5 —10 —20)
(position 5 10 15)))

; bl

(define facesl (entity:faces b1l))

. facesl

; Turn the block faces into vertices of the graph.

(define g2 (graph facesl))

592

(graph:entities g2)

;» (#[entity 20 1] #[entity 19 1] #[entity 18 1]

;; #lentity 17 1] #[entity 16 1] #[entity 15 1])

(graph:edge—entities g2)

50

(graph:vertex—entities g2)

;; (#[entity 20 1] #[entity 19 1] #[entity 18 1]

;; #lentity 17 1] #[entity 16 1] #[entity 15 1])

(define g3 (graph:unite gl g2))

5 93

(graph:entities g3)

;; (#[entity 13 1] #[entity 12 1] #[entity 11 1]

;; #[entity 10 1] #[entity 9 1] #[entity 8 1]

;; #lentity 7 1] #[entity 6 1] #[entity 15 1]

;; #lentity 16 1] #[entity 17 1] #[entity 18 1]

;; #lentity 19 1] #[entity 20 1] #[entity 2 1]

;; #lentity 3 1] #[entity 4 1] #[entity 5 1])

(graph:edge—entities g3)

;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]

;; #lentity 5 1])

(graph:vertex—entities g3)

5 (#[entity 13 1] #[entity 12 1] #[entity 11 1]

;» #lentity 10 1] #[entity 9 1] #[entity 8 1]

;» #lentity 7 1] #[entity 6 1] #[entity 15 1]

;; #lentity 16 1] #[entity 17 1] #[entity 18 1]

;; #lentity 19 1] #[entity 20 1])

Kernel R10



graph:get—order

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Returns a number representing the distance a given graph vertex is from
the 0 node in the given ordered graph.

kern/kern_scm/graph_scm.cxx

None

( graph:get—order in—graph in—vertex)
in—graph graph
in—vertex string | entity
integer

None

Refer to Action.
in—graph specifies a graph.

in—vertex could be either the designation name used as part of the graph or
the model entity associated with that graph vertex.

None

; graph:get—order

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
0l

(graph:order—from g1 "a”

w4

(graph:get—order g1 "a”

50

(graph:get—order g1 "b”)

1

(graph:get—order g1 "h”)

w4

(graph:show—order g1)

5 ("a0""b1""c2""e 3""d 3" "f3""g 4" "h 47)

graph:intersect

Scheme Extension:
Action:

Kernel R10

Graph Theory, Booleans
Performs a Boolean intersect operation of two graphs.



Filename: kern/kern_scm/graph_scm.cxx

APIs: None

Syntax: ( graph:intersect in—graphl in—graph2)

Arg Types: in—graphl graph
in—graph2 graph

Returns: graph

Errors: None

Description: Given two graphs, returns a new graph that is a Boolean intersection of the
two.

in—graph1 andin—graph2 specifies the graphs to be intersected.
Limitations: None

Example: ; graph:intersect

; Create some simple graphs.

(define g1 (graph "I-me me—myself myself-mine I-we
we—us us—-them”))

ol

(define g2 (graph "he-she it—thing they—those us—we
them-us”))

5 92

(define g3 (graph:intersect g1 g2))

g3

graph:is—subset

Scheme Extension: Graph Theory
Action: ReturnsTRUE if the small graph is a subset of the large graph.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: ( graph:is—subset small-graph large—graph)
Arg Types: small-graph graph
large—graph graph
Returns: boolean

Kernel R10



Errors:

Description:

Limitations:

Example:

graph:kind
Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Kernel R10

None

Refer to Action.

small-graph specifies the subset graph.

large—graph specifies the graph of whidmall-graph is a subset.
None

; graph:is—subset

; Create a graph

(define g1 (graph "a—b b—c c—e c—d c—f f—g f=h"))
ol

(define g2 (graph "b—c c—e"))
5 92

(define g3 (graph "h—i i—"))

5 93

(graph:is—subset g2 g1)

; H#t

(graph:is—subset g3 g1)

, H#

Graph Theory
Returns a graph containing the input graph elements that are of the
specified kind number and specified kind status.

kern/kern_scm/graph_scm.cxx
None

(graph:kind  in—graph kind on—off)

in—graph graph
kind integer
on—off boolean
graph

None

A graph can have multiple kinds assigned to it. Each kind can have a
status oftt or #f.

in—graph specifies a graph.



Limitations:

Example:

kind is an integer specifying the type.

on—off specifies the kind status.
None

; graph:kind

; Create some simple graphs.
(define g (graph "a—b b—c c—d c—e"))
9

(graph:set—kind g 3 #t "a—b")
;; #[graph "a—b b—c c—d c—e"]
(graph:set—kind g 3 #t "b—c”")
;; #[graph "a—b b—c c—d c—e"]
(graph:kind g 0 #f)

;; #[graph "a—b b—c c—d c—e"]
(graph:kind g 3 #f)

;; #[graph "c—d c—e a b”"]
(graph:kind g 3 #t)

; *** Error graph:kind: A bad edge was added

; to a graph

5 #f

(graph:kind? g 3 "a—b")
; H#t

(graph:kind? g 2 "a—b")
5 #f

(graph:kind? g 3 "b—c”)
)y #Ht

(graph:kind? g 3 "c—e")
 #

Kernel R10



; Create a selective boolean example.

(define blank (solid:block (position 0 0 0)
(position 25 10 10)))

. blank

(define b2 (solid:block (position 5 0 0)
(position 10 5 10)))

;b2

(define b3 (solid:block (position 15 0 0)
(position 20 5 10)))

;; b3

(define subtractl (solid:subtract blank b2))

;; subtractl

(define subtract2 (solid:subtract blank b3))

;; subtract2

(define tool (solid:cylinder
(position =5 2.5 5) (position 30 2.5 5)1))

;; tool

(define g (bool:selectl blank tool))

9

(define p (graph:kind g 0 #t))

P

(entity:set—color (graph:entities p) 6)

5 0

graph:kind?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Kernel R10

Graph Theory

Returns whether or not a graph with a given edge is of the specified kind.

kern/kern_scm/graph_scm.cxx
None

(graph:kind?  in—graph kind item1 [item2])

in—graph graph

kind integer

item1 string | entity
item2 entity
boolean

None

A graph can have any numberkifid types assigned to edges of the graph.
kind is a integer for the type and can take a Boolean value. If not
specified, it is assumed to B& The assignment &ind and its value is

done on a per edge basis.



Limitations:

Example:

This Scheme extension provides flexibility for the types of arguments and
how they are used.

in—graph specifies a graph.
kind is an integer representing a type that was assigned to a graph edge.

item1 argument can be either a string or an entity. When it is a string, it is
tested to see whether it represents the name of an edge in the graph or a
vertex in the graph.

item2 argument is only used whéem1 is an entity representing a vertex,
in which casetem2 must also be an entity representing a vertex.

None

; graph:kind?

; Create some simple graphs.
(define g (graph "a—b b—c c—d c—e"))
9

(graph:set—kind g 3 #t "a—b")
;; #[graph "a—b b—c c—d c—e"]
(graph:set—kind g 3 #t "b—c”")
;; #[graph "a—b b—c c—d c—e"]
(graph:kind? g 3 "a—b")

; Ht

(graph:kind? g 2 "a—b")

, #

(graph:kind? g 3 "b—c”)

; Ht

(graph:kind? g 3 "c—e")

;, #

; Create an example using entities.

(define el (edge:linear (position 10 10 0)
(position 10 —10 0)))

el

(define e2 (edge:linear (position 10 —10 0)
(position =10 —10 0)))

;€2

(define e3 (edge:linear (position =10 —10 0)
(position =10 10 0)))

5 e3

(define e4 (edge:linear (position —10 10 0)
(position 10 10 0)))

;€4

Kernel R10



Kernel R10

(define g1 (graph (list el e2 e3 e4)))
» ol
(define ve (graph:vertex—entities g1))
» VE
(graph:set—kind g1 0 #t

(list—ref ve 0) (list-ref ve 1))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;; (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)"]
(graph:set—kind g1 1 #t

(list—ref ve 2) (list—ref ve 3))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;» (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)”]
(graph:set—kind g1 2 #t

(list—ref ve 4) (list—ref ve 5))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;; (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)”]
(graph:kind? g1 0O (list-ref ve 0) (list—ref ve 1))
» Ht
(graph:kind? g1 1 (list-ref ve 0) (list—ref ve 1))
;, #
(graph:kind? g1 2 (list—ref ve 0) (list—ref ve 1))
;, #
(graph:kind? g1 0O (list-ref ve 2) (list—ref ve 3))
; #
(graph:kind? g1 1 (list—ref ve 2) (list—ref ve 3))
; Ht
(graph:kind? g1 2 (list-ref ve 2) (list—ref ve 3))
 #
(graph:kind? g1 0O (list-ref ve 4) (list—ref ve 5))
;, #
(graph:kind? g1 1 (list-ref ve 4) (list—ref ve 5))
 #
(graph:kind? g1 2 (list-ref ve 4) (list—ref ve 5))
s Ht



graph:kinds?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Returns a list of all the kinds on a vertex or edge.

kern/kern_scm/graph_scm.cxx
None

( graph:kinds? in—graph item1 [item2])

in—graph graph

item1 string | entity
item2 entity
boolean

None

Given a graph and a vertex or edge, returns a list containing all kinds on
that vertex or edge. A graph can have any numbkindftypes assigned

to edges of the graphind is an integer for the type and can take a
Boolean value. If not specified, it is assumed tath& he assignment of
kind and its value is done on a per edge basis.

in—graph specifies a graph.

item1 could be either a string or an entity. When it is a string, it is tested to
see whether it represents the name of an edge in the graph or a vertex in
the graph.

item2 is only used wheitem1 is an entity representing a vertex, in which
caseitem2 must also be an entity representing a vertex.

None

; graph:kinds?

; Create some simple graphs.
(define g (graph "a—b b—c c—d c—e"))
9

(graph:set—kind g 3 #t "a—b")
;; #[graph "a—b b—c c-d c—e"]
(graph:set—kind g 3 #t "b—”)
;; #[graph "a—b b—c c—d c—e"]
(graph:kinds? g "a—b")

5 (B #1 #1 #1)

(graph:kinds? g "b—c”)

5 (B #1 #f #1)

(graph:kinds? g "c—d")

50

Kernel R10



graph:lightest—path

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Kernel R10

Graph Theory
Returns a graph representing the lightest path between two vertices of a
graph.

kern/kern_scm/graph_scm.cxx

None

( graph:lightest—path in—graph in—vertexl in—vertex2)
in—graph graph

in—vertex1 string | entity
in—vertex2 string | entity

graph

None

After all edges have a weight assigned, this Scheme extension returns a
graph representing the path with the lightest total weight from one given
vertex to another.

in—graph specifies a graph.

in—vertex1 could be either a vertex or a string representing the vertex in
the graph.

in—vertex2 could be either a vertex or a string representing the vertex in
the graph.

All edges of the graph require a weight.

; graph:lightest—path

; Create a simple graph.

(define g1 (graph "a—b1l a—b2 bl-c b2—c c-d")
59l

(graph:edge—weight g1 "a” "b1” 3)

;; #lgraph "a—b1 a—b2 bl-c b2—c c—d"]
(graph:edge—weight g1 "a—b2” 5)

;; #lgraph "a—b1 a—b2 bl-c b2—c c—d"]
(graph:edge—weight g1 "b1-c” 1)

;; #lgraph "a—b1 a—b2 bl-c b2—c c—d"]
(graph:edge—weight g1 "b2—c” 1)

;; #lgraph "a—b1 a—b2 bl-c b2—c c—d”]
(graph:edge—weight g1 "c—d” 1)

;; #lgraph "a—b1 a—b2 bl-c b2—c c—d"]
(graph:lightest—path g1 "a” "d”)

;; #]graph "a—b1 bl—c c—d”]



graph:linear?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Determines whether or not a graph is linear.

kern/kern_scm/graph_scm.cxx

None

( graph:linear? in—graph)

in—graph graph

boolean

None

This extension returni if the graph is linear.

in—graph specifies a graph.

None

; graph:linear?

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))

ol

(graph:linear? g1)

, #

(define g2 (graph "me—you you—-us us—them
them-they”))

5 92

(graph:linear? g2)

;s Ht

graph:negate

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Graph Theory
Negates an ordered graph.

kern/kern_scm/graph_scm.cxx

None

(graph:negate  in—graph)

in—graph graph

Kernel R10



Returns:

Errors:

Description:

Limitations:

Example:

graph
None

For noncyclic ordered graphs, the highest numbered vertices are assigned
0 and new numbering for the vertices commences from there. For cyclic
ordered graphs, the 0 vertex remains the same, but sequence or direction
around the cycle changes.

in—graph specifies a graph.
None

; graph:negate

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))

0l

(graph:order—from g1 "a”

n4

(graph:show—order g1)

n("a0”""b1""c2""e 3""d 3" "f 3" "g 4" "h 4")

(define g2 (graph:negate g1))

5 92

(graph:show-order g2)

s (ad"’3""c2""e1”"d 1" "f 1" "g 0" "h 0”)

; Create a simple cyclic example

(define g3 (graph "me—you you—-us us—them
them—they me-they”))

5 93

; CAREFUL: The order of the graph output may

; hot be the same each time.

(graph:cycle? g3)

; H#t

(graph:order—cyclic g3 "me” "you”)

na

(graph:show-order g3)

;; ("'me 0" "you 4” "us 3” "them 2" "they 1")

(define g4 (graph:negate g3))

5 g4

(graph:show-order g4)

;; ("'me 0" "you 1" "us 2" "them 3" "they 4”)

graph:order—cyclic

Scheme Extension:

Action:

Kernel R10

Graph Theory
Assigns a sequence order to the vertices of a cyclic graph.



Filename:
APls:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

kern/kern_scm/graph_scm.cxx

None

( graph:order—cyclic in—graph in—first in—last)
in—graph graph
in—first string | entity
in—last string | entity
integer

None

A cycle is defined as a connected group of vertices whose individual
removal from the graph results in a linear graph and the same number of
components. In other words, none of the vertices of the cycle are cut
vertices and none have edges to more than one vertex. The extension
returns the number of vertices in the graph.

in—graph specifies a graph.

in—first could be either a vertex or a string representing the vertex in the
graph.

in—last could be either a vertex or a string representing the vertex in the
graph.

None

; graph:order—cyclic

; Create a simple example

(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))

» ol

; CAREFUL: The order of the graph output may

: not be the same each time.

(define g2 (graph:component g1 "me”))

5 02

(graph:cycle? g2)

;s Ht

(graph:order—cyclic g2 "me” "them”)

w4

(graph:show-order g2)

;; ("they 4” "them 3” "us 2" "you 1” "me Q")

Kernel R10



graph:order—from

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Sets the order of a graph starting at O for the specified vertex.

kern/kern_scm/graph_scm.cxx

None

( graph:order—from in—graph in—vertex)
in—graph graph
in—vertex string | entity
integer

None

When ordering the graph starting at O for the specifiedertex, each
subsequent vertex receives a number based on how far away it is (e.g.,
how many edges) from the starting vertex. The integer returned is the
maximum number of “hops” that one or more vertices are from the
starting vertex.

in—graph specifies a graph.

in—vertex could be either the designation string for a vertex of the graph or
a model entity associated with the graph vertex.

None

; graph:order—from

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
0l

(graph:order—from g1 "a”

w4

(graph:show—order g1)

5 ('a0"’b1""c2""e 3" "d 3" "f 3" "g 4" "h 4”)

graph:order—with

Scheme Extension:
Action:

Filename:

Kernel R10

Graph Theory
Sets the order of one graph onto another and rescales the ordering to
remove gaps.

kern/kern_scm/graph_scm.cxx



APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

None

( graph:order—with in—graphl in—graph2)

in—graphl graph
in—graph2 graph
integer

None

This extension orders the-graphl with respect tan—graph2. The
integer returned is the maximum order number.

in—graph1 andin—-graph?2 specifies the graph.
None

; graph:order—with

; Create a simple example
(define g1 (graph "a—b b—c c—d d—e”"))
0l

(graph:order—from g1 "a”

w4

(graph:show—order g1)
;»('a0""b 1" "c 2" "d 3" "e 47)
(graph:negate g1)

;; #[lgraph "a—b b—c c—d d—e”]
(graph:show—order g1)

5 ("ad4”’b3""c2""d 1" "e 0”)
(define s1 (graph "a c €”))

5 sl

(graph:order—with s1 g1)

52

(graph:show—order s1)
n('a2""c1""e 07)

graph:set—kind

Scheme Extension:

Action:

Filename:

APls:

Graph Theory
Specifies theind type and its on/off value for an edge of the given graph.

kern/kern_scm/graph_scm.cxx

None

Kernel R10



Syntax:
Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

Kernel R10

( graph:set—kind in—graph kind on—off item1 [item2])

in—graph graph

kind integer
on—off boolean
item1 string | entity
item2 entity

graph

None

A graph can have any numberkifid types assigned to edges of the graph.
kind is a integer for the type and can take a Bootmasoff value. If not
specified, it is assumed to B& The assignment &ind and itson—off

value is done on a per edge basis.

in—graph specifies a graph.

kind is an integer representing a type that was assigned to an element of
the graph, either a vertex or edge.

on—off argument is &oolean used to establish whether théid number
is on or off.

item1 argument could be either a string or an entity. When it is a string, it
is tested to see whether it represents the name of an edge in the graph or a
vertex in the graph.

item2 is only used wheitem1 is an entity representing a vertex, in which
caseitem2 must also be an entity representing a vertex.

None

; graph:set—kind

; Create a simple graph.
(define g (graph "a—b b—c c—d c—e"))
9

(graph:set—kind g 3 #t "a—b")
;; #[graph "a—b b—c c—d c—e"]
(graph:set—kind g 3 #t "b—c”")
;; #[graph "a—b b—c c—d c—e"]
(graph:kind? g 3 "a—b")

;s Ht

(graph:kind? g 2 "a—b")

; #f

(graph:kind? g 3 "b—c”)

5 Ht

(graph:kind? g 3 "c—e")

;, #



; Create an example using entities.
(define el (edge:linear (position 10 10 0)
(position 10 —10 0)))
el
(define e2 (edge:linear (position 10 —10 0)
(position =10 —10 0)))
; e2
(define e3 (edge:linear (position =10 —10 0)
(position =10 10 0)))
5 e3
(define e4 (edge:linear (position —10 10 0)
(position 10 10 0)))
v ed
(define g1 (graph (list el e2 e3 e4)))
ol
(define ve (graph:vertex—entities g1))
» Ve
(graph:set—kind g1 O #t
(list—ref ve 0) (list—ref ve 1))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;; (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)”]
(graph:set—kind g1 1 #t
(list—ref ve 2) (list—ref ve 3))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;; (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)”]
(graph:set—kind g1 2 #t
(list—ref ve 4) (list-ref ve 5))
;; #[graph "(entity 10 65536)—(entity 11 65536)
;; (entity 12 65536)—(entity 13 65536)
;; (entity 6 65536)—(entity 7 65536)
;; (entity 8 65536)—(entity 9 65536)”]
(graph:kind? g1 0O (list-ref ve 0) (list—ref ve 1))
;s Ht
(graph:kind? g1 1 (list-ref ve 0) (list—ref ve 1))
;, #
(graph:kind? g1 2 (list-ref ve 0) (list—ref ve 1))
5 #
(graph:kind? g1 O (list-ref ve 2) (list—ref ve 3))
, #
(graph:kind? g1 1 (list-ref ve 2) (list—ref ve 3))
; Ht

Kernel R10



(graph:kind? g1 2 (list—ref ve 2) (list—ref ve 3))
,(,gfz:ph:kind? g1 0 (list—ref ve 4) (list-ref ve 5))
,(,gfz:ph:kind? g1 1 (list-ref ve 4) (list-ref ve 5))
,(,gfz:ph:kind? g1 2 (list-ref ve 4) (list-ref ve 5))
s #t

graph:shortest—cycle

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Kernel R10

Graph Theory
Returns the shortest cycle graph that includes the specified graph vertex.

kern/kern_scm/graph_scm.cxx

None

( graph:shortest—cycle in—graph in—vertex)
in—graph graph
in—vertex string | entity
graph

None

This extension can be used to trim away branches off of a cyclic graph.
in—graph specifies a graph.

in—vertex could be either a designation string of the graph or a model
entity associated with a graph vertex.

None

; graph:shortest—cycle
; Create a simple example
(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» ol
; CAREFUL: The order of the graph output may
: not be the same each time.
(define g2 (graph:shortest—cycle g1 "me”))
5 92
(define g3 (graph:shortest—cycle g1 "FIDO"))
593



graph:shortest—path

Scheme Extension:
Action:
Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Returns the shortest path graph that includes the two specified graph
vertices.

kern/kern_scm/graph_scm.cxx

None

( graph:shortest—path in—graph in—vertexl in—vertex2)
in—graph graph

in—vertex1 string | entity
in—vertex2 string | entity

graph

None

This extension can be used to trim away branches off of a cyclic graph.
in—graph specifies a graph.

in—vertex1 could be either a designation string of the graph or a model
entity associated with a graph vertex.

in—vertex2 could be either a designation string of the graph or a model
entity associated with a graph vertex.

None

; graph:shortest—path

; Create a simple example

(define g1 (graph "me—you you—us us—them
them—-they me—they
FIDO-SPOT SPOT-KING SPOT-PETEY"))

» ol

; CAREFUL: The order of the graph output may

: not be the same each time.

(define g2 (graph:shortest—path g1 "me” "us”))

592

(define g3 (graph:shortest—path g1 "me” "FIDQO"))
593

(define g4 (graph:shortest—path g1 "PETEY” "FIDQ"))
. g4

Kernel R10



graph:show—order

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory
Creates a list of a vertices in a graph and their respective distance from the
starting vertex.

kern/kern_scm/graph_scm.cxx

None

( graph:show—order in—graph)

in—graph graph
text

None

Refer to Action.

in—graph specifies a graph.

None

; graph:show—order

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
ol

(graph:order—from g1 "a”

w4

(graph:show—order g1)

5 ('a0"’b1""c2""e 3" "d 3" "f 3" "g 4" "h 4”)

graph:split-branches

Scheme Extension:
Action:

Filename:
APlIs:
Syntax:
Arg Types:

Returns:

Kernel R10

Graph Theory
Decomposes a graph into components that do not have branches.

kern/kern_scm/graph_scm.cxx

None

( graph:split-branches in—graph)
in—graph graph
graph



Errors: None

Description: This command breaks the branches of a graph into components. It splits
the graph into set of subgraphs that are either linear or cyclic with no
branches. No edge will belong to more than one subgraph. The union of
the subgraphs is the original graph.

in—graph specifies a graph.
Limitations: None

Example: ; graph:split-branches;
; Create a simple example
(define blockl (solid:block (position =10 -5 0)
(position 5 10 15)))
. block1
(define e (entity:edges block1))
» €
(define v (entity:vertices block1))
nV
(define g (graph €))
9
(define b-list (graph:split-branches g))
;» b—list
(define gO (list-ref b-list 0))
5 g0
(define g1 (list-ref b-list 1))
5ol
(define g2 (list-ref b-list 2))
5 92
(define g3 (list-ref b-list 3))
5 93
(define g4 (list-ref b-list 4))
5 g4
(define g5 (list-ref b-list 5))
)

graph:subset

Scheme Extension: Graph Theory
Action: Creates a subgraph from a given graph using either two integers or a law.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None

Kernel R10



Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

Kernel R10

( graph:subset in—graph {subset—law |
low—bounds up—bounds})

in—graph graph
subset-law law
low—bounds integer
up—bounds integer
graph

None

Given an ordered graph, a subgraph may be formed using one of two
techniques. One method takes in two integers and the other takes a law
pointer.

in—graph specifies a graph.

subset—law specifies a law. This extensionth subset-law returns the set
of all vertices such that their order evaluates as true along with the all
edges that have both of their adjacent vertices evaluating as true orders.

This extensiomwith low—bounds andup—bounds returns a subgraph in one
of two ways.

1. If low-bounds<up—bounds, then the set of all vertices with orders
betweenow-bounds andup—bounds is returned along with all
edges that have both of their adjacent vertices in this set.

2. If up—bounds<low—bounds, then the set of all vertices with orders
not betweenow-bounds andup-bounds is returned along with all
edges that have both of their adjacent vertices in this set.

None

; graph:subset

; Create a simple graph

(define g1 (graph "a—b b—c c—e c—d c—f f—g f—=h"))
0l

(graph:order—from g1 "a”

w4

(define g2 (graph:subset g1 1 3))

5 92

(define g3 (graph:subset g1 "x>2"))
5 93

(define lawl (law "(x>2)or(x=0)"))

o lawl

(define g4 (graph:subset g1 law1l))
5 g4



graph:subtract

Scheme Extension: Graph Theory, Booleans

Action: Performs a Boolean subtract operation of two graphs.

Filename: kern/kern_scm/graph_scm.cxx

APlIs: None

Syntax: ( graph:subtract in—graphl in—graph2 in—keep)

Arg Types: in—graphl graph
in—graph2 graph
in—keep boolean

Returns: graph

Errors: None

Description: Refer to Action.

in—graph1 andin—graph?2 specifies the graph.

Thein—keep argument with a value truétf specifies that the edges going
to common elements are kept.

Limitations: None

Example: ; graph:subtract

; Create some simple graphs.

(define g1 (graph "I-me me—myself myself-mine I-we
we—us us—-them”))

59l

(define g2 (graph "he-she it-thing they—those us—we
them-us”))

5 92

(define g3 (graph:subtract g1 g2 #f))

5 93

(define g4 (graph:subtract g2 g1 #f))

5 g4

(define g5 (graph:subtract g2 g1 #t))

R

graph:subtract—edges

Scheme Extension: Graph Theory
Action: Subtracts the edges of graphl from graph?2 returning the result.

Kernel R10



Filename:
APls:
Syntax:

Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

kern/kern_scm/graph_scm.cxx

None

( graph:subtract—edges in—graphl in—graph2)
in—graphl1 graph
in—graph?2 graph
graph

None

Refer to Action.

in—graph1 andin—graph?2 specifies the graph.
None

; graph:subtract—edges

; Create a simple graph.
(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))

0l

(define g2 (graph "c—f f-g f—h"))

592

(define g3 (graph:subtract—edges gl g2))
593

graph:total—weight

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Kernel R10

Graph Theory
Returns the total weight associated with the edges of a graph.

kern/kern_scm/graph_scm.cxx

None

( graph:total-weight in—graph)
in—graph graph
real

None

If weights are assigned to individual edges of a graph, this returns the total
weight for all of the edges.



in—graph specifies a graph.

Limitations: None
Example: ; graph:total-weight
; Create a simple graph.
(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
0l
(graph:edge—weight g1 "a” "b” 3)
;; #[graph "a—b b—c c-d c—e c—f f—g f—h"]
(graph:edge—weight g1 "c—e” 5)
;; #[graph "a—b b—c c-d c—e c—f f—g f—=h"]
(graph:total-weight g1)
graph:tree?
Scheme Extension: Graph Theory
Action: Determines whether or not a given graph is a tree structure.
Filename: kern/kern_scm/graph_scm.cxx
APIs: None
Syntax: ( graph:tree? in—graph)
Arg Types: in—graph graph
Returns: boolean
Errors: None
Description: Refer to Action.
in—graph specifies a graph.
Limitations: None
Example: ; graph:tree?

; Create a simple graph.

(define g1 (graph "a—b b-c c—e c—d c—f f—g f=h"))
59l

(graph:tree? g1)

;s Ht

(graph:linear? g1)

;o H#f

(graph:cycle? g1)

, #f

Kernel R10



graph:unite
Scheme Extension:
Action:
Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Graph Theory, Booleans
Performs a Boolean unite operation of two graphs.

kern/kern_scm/graph_scm.cxx
None

( graph:unite in—graphl in—graph2)

in—graphl graph
in—graph2 graph
graph
None

Given two graphs, this extension returns a new graph that is a Boolean
union of the two.

in—graph1 andin—-graph?2 specifies the graph.
None

; graph:unite

; Create some simple graphs.

(define g1 (graph "I-me me—myself myself-mine I-we
we—us us—them”))

59l

(define g2 (graph "he-she it-thing they—those us—-we
them-us”))

5 92

(define g3 (graph:unite g1 g2))

593

graph:vertex—entities

Scheme Extension:
Action:

Filename:
APls:

Syntax:

Kernel R10

Graph Theory
Returns a list of entities that are associated with the vertices of a graph.

kern/kern_scm/graph_scm.cxx
None

( graph:vertex—entities in—graph [use—ordering=#f])



Arg Types:

Returns:

Errors:

Description:

Limitations:

Example:

in—graph graph
use—ordering boolean

(entity ...)
None

A graph can be created using faces, cells, or wires, which become vertices
of the graph.

in—graph specifies a graph.

If use—ordering is true §t), sorts the result by graph order. The default
value is false#f).

None

; graph:vertex—entities

; Create an example using entities.

(define el (edge:linear (position 10 10 0)
(position 10 —10 0)))

el

(define e2 (edge:linear (position 10 —10 0)
(position =10 —10 0)))

, e2

(define e3 (edge:linear (position =10 —10 0)
(position =10 10 0)))

;€3

(define e4 (edge:linear (position —10 10 0)
(position 10 10 0)))

5 ed

(define g1 (graph (list el e2 e3 e4)))

59l

(graph:edge—entities g1)

;; (#[entity 5 1] #[entity 4 1] #[entity 3 1]

;; #entity 2 1])

(graph:vertex—entities g1)

;; (#[entity 6 1] #[entity 7 1] #[entity 8 1]

;; #lentity 9 1] #[entity 10 1] #[entity 11 1]

;; #lentity 12 1] #[entity 13 1])

(define b1l (solid:block (position =5 —10 —20)
(position 5 10 15)))

; bl

(define facesl (entity:faces bl))

;; facesl

; Turn the block faces into vertices of the graph.

Kernel R10



(define g2 (graph facesl))

5 92

(graph:edge—entities g2)

5 0

(graph:vertex—entities g2)

;7 (#[entity 20 1] #[entity 19 1] #[entity 18 1]
;; #lentity 17 1] #[entity 16 1] #[entity 15 1])
(define g3 (graph:unite g1 g2))

5 93

(graph:edge—entities g3)

;; (#[entity 2 1] #[entity 3 1] #[entity 4 1]

;; #lentity 5 1])

(graph:vertex—entities g3)

;» (#[entity 13 1] #[entity 12 1] #[entity 11 1]
;; #[entity 10 1] #[entity 9 1] #[entity 8 1]

;; #lentity 7 1] #[entity 6 1] #[entity 15 1]

;; #lentity 16 1] #[entity 17 1] #[entity 18 1]
;; #lentity 19 1] #[entity 20 1])

graph:which—component

Scheme Extension:

Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:

Errors:

Description:

Kernel R10

Graph Theory
Returns the number of the component that a given graph element belongs
to.

kern/kern_scm/graph_scm.cxx

None

( graph:which—component in—graph in—object)
in—graph graph
in—object string | entity
integer

None

This extension is useful if the givém-graph has multiple components. It
determines which component a givierobject is part of and returns its
component number. Thgraph:component command then creates a new
graph from just the elements of a single component.

in—graph specifies a graph.

in—object specifies a component. The component is selected by providing
a string which is the name of an element of the component or an entity
which is associated with an element of the component.



Limitations:

Example:

gvector

Scheme Extension:

Action:
Filename:
APIs:
Syntax:

Arg Types:

Returns:

Errors:

Description:

None

; graph:which—component
; Create a simple example
(define g1 (graph "me—you us—them
we—they them-they
FIDO-SPOT SPOT-KING SPOT-PETEY"))
» 0l
; CAREFUL: The order of the graph output may
: not be the same each time.
(graph:components g1)
53
(graph:which—component g1 "me”
52
(define g2 (graph:component g1 2))
5 92
(define g3 (graph:component g1 "me”))
593

Mathematics
Creates a new gvector given coordinates andz

kern/kern_scm/gvec_scm.cxx
None

(gvector xy z [space=model])

X real
y real

z real
space string
gvector

None

Refer to Action.
x defines thex—coordinate relative to the active coordinate system.
y defines the/—~coordinate relative to the active coordinate system.

z defines thez—coordinate relative to the active coordinate system.

Kernel R10



Limitations:

Example:

gvector:+

Scheme Extension:
Action:

Kernel R10

The optionakpace argument defaults toNVCS”. If no active WCS exists,
space defaults to‘model”. The other optionadpace arguments return a
gvector in the new coordinate system. The values forspiaee argument
are:

—  “wes” is the default if an active WCS exists. Otherwise, the default is

“model”.

—  “model” means that thg, y, andz values are with respect to the
model. If the model has an origin other than the active WCS, this
returns the position relative to the active coordinate system in
rectangular Cartesian coordinates.

—  “polar” or “cylindrical” mean that the, y, andz values are interpreted
as the radial distance from tkeaxis, the polar angle in degrees
measured from thez plane (using right—-hand rule), and the
coordinate, respectively. This returns #)g, andzterms with
respect to the active coordinate system.

—  ‘“spherical” means that the providedly, andz values are the radial
distance from the origin, the angle of declination fromzkexis in
degrees, and the polar angle measured fromzpéane in degrees,
respectively. This returns they, andzterms with respect to the
active coordinate system.

None

; gvector

; Create gvectors of various types.

(gvector 3 3 3)

;; #lgvector 3 3 3]

(gvector 55 5 "wcs”

;; #[gvector 5 5 5]

(gvector 5 5 5 "model”)

;; #[gvector 5 5 5]

(gvector 5 5 5 "polar”)

;; #[gvector 4.98097349045873 0.435778713738291 5]
(gvector 5 5 5 "cylindrical”)

;; #{gvector 4.98097349045873 0.435778713738291 5]
(gvector 5 5 5 "spherical”)

;; #[gvector 0.434120444167326 0.0379806174694798
5 4.98097349045873]

Mathematics
Adds two gvectors.



Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

gvector:—

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

kern/kern_scm/gvec_scm.cxx
None

(gvector:+  gvectorl gvector2)

gvectorl gvector
gvector2 gvector
gvector

None

This extension returns the result giiéctorl + gvector2) as agvector.
gvectorl defines the first gvector.

gvector2 defines the second gvector.

None

; gvector:+

; Add two gvectors by components.
(gvector:+ (gvector 1 3 2) (gvector 2 2 2))
;; #lgvector 3 5 4]

Mathematics
Subtracts two gvectors.

kern/kern_scm/gvec_scm.cxx
None
(gvector:i—  gvectorl gvector2)

gvectorl gvector
gvector2 gvector

gvector
None
This extension returns the result gi’éctorl —gvector2) as agvector.

gvectorl defines the start location.

Kernel R10



Limitations:

Example:

gvector2 defines the end location for both gvectors.
None

; gvector:i—

; Subtract two gvectors by components.
(gvector:— (gvector 1 3 2) (gvector 2 2 2))
;; #lgvector =1 1 0]

gvector:copy

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

Mathematics
Creates a gvector by copying an existing gvector.

kern/kern_scm/gvec_scm.cxx

None

( gvector:copy gvector)

gvector gvector
gvector

None

Refer to Action.

gvector specifies a gvector.

None

; gvector:copy
; Create a gvector by copying an existing gvector.
(define copy (gvector:copy (gvector 6 5 2)))

;» COpy

gvector:cross

Scheme Extension:

Action:
Filename:

APls:

Kernel R10

Mathematics
Gets the cross product of two gvectors.

kern/kern_scm/gvec_scm.cxx

None



Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

gvector:dot

Scheme Extension:
Action:

Filename:
APls:

Syntax:

( gvector:cross gvectorl gvector2)

gvectorl gvector
gvector2 gvector
gvector

None

If thei, j, k components of vecta are <1, a2, a3>, and thd, |, k
components of vectdy are 91, b2, b3>, the cross produe x b is:

|a2 a3 | [al a3 | lal a2 |
axb=]| i - i+ | |k
b2 b3 | bl b3 | bl b2 |
axbs= [(@2)(b3)—(b2)(a3)]i

— [(a1)(b3)—(b1)(@3)];
+ [(a1)(b2)—(b1)(a2)]k

The resulting cross product vector is perpendicular to both input vectors.
The cross produd@ x bis not the same as the cross produxtg they
point in opposite directions (180 degrees from one another).

gvectorl specifies the first vector.
gvector2 specifies the second vector.
None

; gvector:cross

; Compute the cross product of two gvectors.
(gvector:cross (gvector 2 2 2) (gvector 5 3 8))
;; #[gvector 10 —6 —4]

(gvector:cross (gvector 5 3 8) (gvector 2 2 2))
;; #[gvector —10 6 4]

Mathematics
Gets the dot product of two gvector.

kern/kern_scm/gvec_scm.cxx
None

( gvector:dot gvectorl gvector2)

Kernel R10



Arg Types: gvectorl gvector

gvector2 gvector
Returns: real
Errors: None
Description: If thei, j, k components of vecta are <1, a2, a3>, and thd, |, k

components of vectdy are 91, b2, b3>, the dot produca . b is:

gvectorl = (ala2ald) = a
gvector2 = (b1b2b3) = b

a.b = (al*bl + a2*b2 + a3*b3)
a.b = |allbJcosq

; where q is the angle
: between aand b

The result of a dot product is a scalar value.

gvectorl specifies the first vector.

gvector2 specifies the second vector.
Limitations: None

Example: ; gvector:dot
; Compute the dot product of two gvectors.
(gvector:dot (gvector 3 5 1) (gvector 2 4 7))
5 33

gvector:from—to

Scheme Extension: Mathematics

Action: Creates a gvector between two positions.

Filename: kern/kern_scm/gvec_scm.cxx

APlIs: None

Syntax: ( gvector:from—to positionl position2)

Arg Types: positionl position
position2 position

Returns: gvector

Errors: None

Kernel R10



Description:

Limitations:

Example:

This extension returns the gvector freositionl to position2.

positionl specifies the start location of the gvector.
position2 specifies the end location of the gvector.
None

; gvector:from—to

; Create a gvector from one position to another.
(gvector:from—to (position 0 0 0) (position 5 1 6))
;; #lgvector 5 1 6]

gvector:length

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Mathematics, Analyzing Models
Gets the length of a gvector.

kern/kern_scm/gvec_scm.cxx

None

( gvector:length gvector)

gvector gvector
real

None

Returns the length of a gvector as a real value.
gvector specifies a gvector.

None

; gvector:length

; Determine the length of two gvectors.
(gvector:length (gvector 0 6 0))

5 6

(gvector:length (gvector 4 4 4))

;; 6.92820323027551

gvector:parallel?

Scheme Extension:
Action:

Mathematics, Analyzing Models
Determines if two gvectors are parallel.

Kernel R10



Filename: kern/kern_scm/gvec_scm.cxx

APIs: None
Syntax: ( gvector:parallel? gvectorl gvector2)
Arg Types: gvectorl gvector
gvector2 gvector
Returns: boolean
Errors: None
Description: This extension returni if gvectorl andgvector2 are parallel; otherwise,

it returns#f. A zerogvector is not parallel to anything, including itself, so
it causes the extension to retutn

gvectorl specifies the first vector.
gvector2 specifies the second vector.
Limitations: None

Example: ; gvector:parallel?
; Determine if two gvectors are parallel.
(gvector:parallel? (gvector 3 5 0) (gvector 6 10 0))
5 #t
(gvector:parallel? (gvector 1 0 0) (gvector 0 1 0))
, #

gvector:perpendicular?

Scheme Extension: Mathematics

Action: Determines if two gvectors are perpendicular.

Filename: kern/kern_scm/gvec_scm.cxx

APIs: None

Syntax: ( gvector:perpendicular? gvectorl gvector2)

Arg Types: gvectorl gvector
gvector2 gvector

Returns: boolean

Errors: None

Kernel R10



Description: This extension returni if the gvectors are perpendicular; otherwise, it
returns#f. A zero gvector is perpendicular to all gvectors, including itself,
and it causes the extension to ret#fn

gvectorl specifies the first vector.
gvector2 specifies the second vector.
Limitations: None

Example: ; gvector:perpendicular?

; Determine if two gvectors are perpendicular.

(gvector:perpendicular? (gvector 3 5 0)
(gvector 6 10 0))

;o H#

(gvector:perpendicular? (gvector 1 0 0)
(gvector 0 1 0))

;s Ht

gvector:reverse

Scheme Extension: Mathematics
Action: Reverses the direction of a gvector.
Filename: kern/kern_scm/gvec_scm.cxx
APIs: None
Syntax: ( gvector:reverse gvector)
Arg Types: gvector gvector
Returns: gvector
Errors: None
Description: Refer to Action.

gvector specifies a gvector.
Limitations: None

Example: ; gvector:ireverse
; Reverses the direction of a gvector.
(gvector:reverse (gvector 0 1 0))
;; #lgvector 0 -1 0]

Kernel R10



gvector:scale

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Mathematics
Multiplies a gvector by a scalar number to produce a new gvector.

kern/kern_scm/gvec_scm.cxx
None
( gvector:scale gvector scale)

gvector gvector
scale real

gvector

None

The resultinggvector is the original gvector scaled by the number.
gvector specifies the original gvector to be scaled by the scaling factor.
scale specifies the scaling factor.

None

; gvector:scale

; Multiply two gvectors by a scaling factor.
(gvector:scale (gvector 0 —1 0) 3)

;; #lgvector 0 -3 0]

(gvector:scale (gvector 0 —1 0) —7)

;; #[gvector 0 7 0]

gvector:set!

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Kernel R10

Mathematics
Sets a gvector’s direction given componentg,gf andz

kern/kern_scm/gvec_scm.cxx

None

( gvector:set! gvector {xy z})

gvector gvector
X real

y real

z real



Returns:
Errors:

Description:

Limitations:

Example:

gvector

None

The coordinates are computed relative to the active coordinate system.
gvector specifies the originat—, y—, andz—components.

x specifies the value to replace the origiradalue specified imgvector.

y specifies the value to replace the origipatalue specified igvector.

z specifies the value to replace the origiratalue specified imgvector.
None

; gvector:set!

; Set new x—, y—, and z—components
; in an existing gvector.

(define vectorl (gvector 1 0 0))
. vectorl

(gvector:set! vectorl 0 7 3)

;; #lgvector 0 7 3]

vectorl

;; #[gvector 0 7 3]

(define outline (gvector 0 0 1))
;» outline

(gvector:set! outline 3 5 4)

;; #lgvector 3 5 4]

gvector:set—x!

Scheme Extension:
Action:

Filename:
APls:
Syntax:

Arg Types:

Returns:

Errors:

Mathematics
Sets thex—direction component of a gvector.

kern/kern_scm/gvec_scm.cxx
None
( gvector:set—x! gvector x)

gvector gvector
X real

real

None

Kernel R10



Description:

Limitations:

Example:

The coordinates are computed relative to the active coordinate system.
This extension returns thevalue as a real.

gvector specifies the originat—, y—, andzvalues.
x specifies the value to replace the origiradalue specified imgvector.
None

; gvector:set—x!

; Set new x—, y—, and z—components

; in an existing gvector.

(define vectorl (gvector 1 0 0))

. vectorl

; Set a new x—component in an existing gvector.
(gvector:set—x! vectorl 3)

53

gvector:set—y!

Scheme Extension:

Action:
Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Kernel R10

Mathematics
Sets they—direction component of a gvector.

kern/kern_scm/gvec_scm.cxx
None
( gvector:set—y! gvector y)

gvector gvector
y real

real
None

The coordinates are computed relative to the active coordinate system.
This extension returns thevalue as a real.

gvector identifies the originak—, y—, andzvalues.
y specifies the value to replace the origipatalue specified igvector.
None

; gvector:set—y!

; Set new x—, y—, and z—components

; in an existing gvector.

(define vectorl (gvector 1 0 0))

. vectorl

; Set a new y—component in an existing gvector.
(gvector:set—y! vectorl 6)

5 6



gvector:set-z!

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:
Errors:

Description:

Limitations:

Example:

Mathematics
Sets the—direction component of a gvector.

kern/kern_scm/gvec_scm.cxx
None
( gvector:set—z! gvector z)

gvector gvector
z real

real

None

The coordinates are computed relative to the active coordinate system.

This extension returns tteevalue as a real.

gvector identifies the originak—, y—, andzvalues.

z specifies the value to replace the origiratalue specified imgvector.

None

; gvector:set-z!

; Set new x—, y—, and z—components
; in an existing gvector.

(define vectorl (gvector 1 0 0))

. vectorl

; Set a new z—component in an existing gvector.

(gvector:set-z! vectorl 2)
52

gvector:transform

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:

Mathematics, Transforms
Applies a transform to a gvector.

kern/kern_scm/gvec_scm.cxx

None

( gvector:transform gvector transform)
gvector gvector
transform transform

Kernel R10



Returns: gvector

Errors: None

Description: Refer to Action.
gvector specifies the gvector to apply the transformation.
transform could be any valid transform.

Limitations: None

Example: ; gvector:transform

; Create a gvector.

(define vectorl (gvector 1 1 0))

:; vectorl

; Apply a transform to a gvector.

(gvector:transform vectorl
(transform:reflection (position 0 0 0)
(gvector 1 0 0)))

;; #lgvector =1 1 0]

gvector:unitize

Scheme Extension: Mathematics
Action: Creates a new gvector as a unit vector in the same direction as the
specified gvector.
Filename: kern/kern_scm/gvec_scm.cxx
APIs: None
Syntax: ( gvector:unitize gvector)
Arg Types: gvector gvector
Returns: gvector
Errors: None
Description: Refer to Action.

gvector defines the vector to be unitized.
Limitations: None

Example: ; gvector:unitize
; Create a gvector.
(define vectorl (gvector 7 3 0 "model”))
:; vectorl
; Create a gvector as a unit vector.
(gvector:unitize vectorl)
;; #[gvector 0.919145030018058 0.393919298579168 0]

Kernel R10



gvector:x

Scheme Extension:

Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

gvector:y

Scheme Extension:

Action:

Filename:
APIs:
Syntax:
Arg Types:

Returns:

Mathematics
Gets thex-component of a gvector relative to the active coordinate
system.

kern/kern_scm/gvec_scm.cxx
None
(gvector:x  gvector)
gvector gvector
real

None

This extension returns the-coordinate of the gvector, transformed to the
active WCS.

gvector specifies a gvector.
None

; gvector:x

; Create a gvector.

(define vectorl (gvector 7 5 0 "spherical”))
:; vectorl

; Determine the x—component of a gvector.
(gvector:x vectorl)

;; 0.610090199233607

Mathematics
Gets they—component of a gvector relative to the active coordinate
system.

kern/kern_scm/gvec_scm.cxx
None

(gvector:y  gvector)
gvector gvector

real

Kernel R10



Errors: None

Description: This extension returns the-coordinate of the gvector, transformed to the
active WCS.

gvector specifies a gvector.
Limitations: None

Example: ; gvectory
; Create a gvector.
(define vectorl (gvector 7 5 0 "spherical”))
:; vectorl
; Determine the y—component of a gvector.
(gvector:y vectorl)

» 0
gvector:z
Scheme Extension: Mathematics
Action: Gets thez-component of a gvector relative to the active coordinate
system.
Filename: kern/kern_scm/gvec_scm.cxx
APIs: None
Syntax: (gvector:iz  gvector)
Arg Types: gvector gvector
Returns: real
Errors: None
Description: This extension returns tteecoordinate of the gvector, transformed to the
active WCS.
gvector specifies a gvector.
Limitations: None
Example: ; gvector:z

; Create a gvector.

(define vectorl (gvector 7 5 0 "spherical”))
:; vectorl

; Determine the z—component of a gvector.
(gvector:z vectorl)

;; 6.97336288664222

Kernel R10



gvector?

Scheme Extension:
Action:

Filename:
APIs:
Syntax:
Arg Types:
Returns:
Errors:

Description:

Limitations:

Example:

Mathematics
Determines if a Scheme object is a gvector.

kern/kern_scm/gvec_scm.cxx

None

(gvector? object)

object scheme—object

boolean

None

Refer to Action.

object specifies thescheme—object that has to be queried for a gvector.
None

; gvector?

; Create a gvector.

(define vectorl (gvector 7 5 0 "spherical”))
:; vectorl

; Determine if the following objects are gvectors.
(gvector? vectorl)

5 #Ht

(gvector? (position 0 0 0))

, H#

(gvector? —4)

, H#

history:ensure—empty—root—state

Scheme Extension:
Action:
Filename:
APls:

Syntax:

History and Roll
Adds empty delta state to the beginning of the history stream so that users
can roll to a state with no entities.

kern/kern_scm/hist_scm.cxx
api_ensure_empty_root_state, api_get_state_id

( history:ensure—empty—root—state [history])

Kernel R10



Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

history history
integer
None

This routine examines the root delta state of the specified history stream.
If the root state is empty (no bulletin boards), then it does nothing. If the
root state is not empty, then it adds a new, empty, root state immediately
beforethe original root state. In either case, it returns the ID number of the
(empty) root state.

history specifies a history stream.
None

; history:ensure—empty-root—state
; No example available at this time

history:.get—active—state—id

Scheme Extension:

Action:
Filename:
APlIs:
Syntax:
Arg Types:
Returns:

Errors:

Description:

Limitations:

Example:

Kernel R10

History and Roll
Returns an integer representing the active state.

kern/kern_scm/hist_scm.cxx

api_get_active_state, api_get_state_id, api_note_state

( history:get—active—state—id [history])
history history
integer

None

Returns an integer representing the active state’s id in the active history
stream. An optionahistory stream may be specified, causing its associated
active state to be returned. If no stream is specified, the default history
stream is used.

history specifies a history stream.
None

; history:get—active—state—id
; Example not available for this release



history:get—default

Scheme Extension: History and Roll
Action: Returns the default history stream.
Filename: kern/kern_scm/hist_scm.cxx
APIs: api_get_default_history
Syntax: ( history:get—default )
Arg Types: none
Returns: integer
Errors: None
Description: Refer to Action.
Limitations: None
Example: ; history:get—default

; get the default history stream
(history:get—default)
;; #[(deleted) history —1]

history:get—entity—from—id

Scheme Extension: History and Roll

Action: Returns an ENTITY from a given tag id.

Filename: kern/kern_scm/hist_scm.cxx

APIs: api_get_entity_from_id

Syntax: ( history:get—entity—from—id id [history])

Arg Types: id integer
history history

Returns: integer

Errors: The id must be valid.

Description: Returns an ENTITY from a given tag id in the HISTORY_STREAM
specified. If no stream is specified, the default stream is used.

id specifies an entity identifier.

Kernel R10



history specifies a history stream.
Limitations: None

Example: ; history:get—entity—from—id

: Create a block

(define b (solid:block (position =10 —10 —10)
(position 10 10 10)))

b

(define lop (lop:offset—-body b 5))

; lop

(define f (pick:face (ray (position 0 0 0)
(gvector 1 0 0))))

s f

(entity:set—color f BLUE)

50

(define id (entity:get—id f))

; id

(roll)

=l

(roll)

=1

(entity:set—color (history:get—entity—from—id
id) RED)

50

history:validate—streams

Scheme Extension: History and Roll
Action: Checks all history streams for validity.
Filename: kern/kern_scm/hist_scm.cxx
APIs: api_check_histories
Syntax: ( history:validate—streams )
Arg Types: None
Returns: boolean
Errors: None
Description: Checks all history streams for mixing and bad entity ids. Returns #t if all

are OK, or #f otherwise (also reports error to debug_file_ptr).

Kernel R10



Limitations:

Example:

None

; history:validate—streams

: make a stream

(define block (solid:block 0 0 0 10 10 10))
. block

(define sphere (solid:sphere 0 0 0 10))

;; sSphere

; verify that it (and all other streams) are valid
(history:validate—streams)

; 1 history streams checked.

;s Ht

Kernel R10



