Chapter 16.
Functions Aa thru Az

Topic:

The function interface is a set of Application Procedural Interface (API) and Direct Interface
(DI) functions that an application can invoke to interact with ACIS. API functions, which
combine modeler functionality with application support features such as argument error
checking and roll back, are the main interface between applications and ACIS. The DI
functions provide access to modeler functionality, but do not provide the additional
application support features, and, unlike APIs, are not guaranteed to remain consistent from
release to release. Refer to 8i2 ACIS Online Help User’s Guider a description of the

Ignore

fields in the reference template.

angle_between

Function:
Action:

Prototype:

Includes:

Kernel R10

Mathematics, Analyzing Models

Gets the angle (in radians) between two vectors or two unit vectors in the

range 0 <= angle < 2.

double angle_between (
const SPAunit_vector& v1, /I first vector
const SPAunit_vector& v2, /I second vector
const SPAunit_vector& z /l normal to plane
=*(SPAunit_vector*)NULL_REF

)

double angle_between (
const SPAvector& v1, /I first vector
const SPAvector& v2, /I second vector

const SPAunit_vector& z // normal to plane
=*(SPAunit_vector*)NULL_REF

);

#include "kernel/acis.hxx”

#include “kernel/geomhusk/geom_utl.hxx”
#include "baseutil/vector/unitvec.hxx”
#include "baseutil/vector/vector.hxx”

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

This function is overloaded and can accept two vectors or two unit vectors
as arguments.

The third vector is the plane in which the angle is measured, and is
required. It also defines a direction, from the first to the second vector. To
simply get the angle in 3—space, pass the normalized cross product of the
two input vectors as the third vector.

None
None
kernel
kern/kernel/geomhusk/geom_utl.hxx

Read-only

api_abort_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:

Filename:

History and Roll
Deletes the current delta state and rolls model to the state before the
current state.

outcome api_abort_state (
HISTORY_STREAM* hs /I use default stream
= NULL /I'if NULL

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Deletes the current delta state rolling the model to the state before
construction of the current state was started.

If no stream is supplied, the default stream is used.
None
None
kernel

kern/kernel/kernapi/api/kernapi.hxx

Kernel R10

Effect: Changes model

api_add_state

Function: History and Roll
Action: Merges eéDELTA_STATE instance into &ISTORY_STREAM.
Prototype: outcome api_add_state (
DELTA_STATE* ds, /I state to add
HISTORY_STREAM* hs /] stream to add
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: This API grafts @©ELTA_STATE into aHISTORY_STREAM following
the activeDELTA_STATE of the stream. This is used to in conjunction
with api_note_state andapi_remove_state to build multiple independent
history streams. After noting a state, it can be moved the an alternate
stream by removing it from the default stream, veitih remove_state,
and adding it to the stream it is to become a part of.

Errors: Either input pointer is NULL.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_alternating_keep_pattern

Function: Patterns
Action: Creates a new pattern by applying an alternating keep—filter to an existing
pattern.
Prototype: outcome api_alternating_keep_pattern (
pattern*& pat, /I created pattern
const pattern& in_pattern,// input pattern
logical keepl, /I 1st keep value
logical keep2, /I 2nd keep value
int which_dim, /I dimension for filter
logical merge = TRUE, /I merge or replace flag
AcisOptions* ao = NULL // acis options
);

Kernel R10

Includes:

Description:

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include "kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Applies an alternating keep—filter to an existing pattern, merging with any
existing filter or, optionally (withmerge = FALSE), replacing it. The
argumentskeepl andkeep2 are successive Boolean keep values.
which_dim specifies the dimension in which the filter is applied.

The following code snippet gives an example of using this API.

/I Create a pattern

pattern* pat = NULL,

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

logical keepl = FALSE;

logical keep2 = TRUE;

int which_dim = 1;

check_outcome(result =
api_alternating_keep_pattern(mod_pat, *pat, keepl,
keep2, which_dim));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prismcheck outcome(result
= api_set_entity pattern(prism, mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

Kernel R10

Errors: The keep iNULL, the period is less than one, or the specified dimension
is not consistent with the pattern dimensionality.

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

api_alternating_scale pattern

Function: Patterns
Action: Creates a new pattern by applying an alternating scale to an existing
pattern.
Prototype: outcome api_alternating_scale_pattern (
pattern*& pat, /I pattern returned
const pattern& in_pattern,// input pattern
double scalel, /I 1st scale value
double scale2, /I 2nd scale value
int which_dim, // dimension for scaling

const SPAposition& root, // position about which
/I scaling is applied

logical merge = TRUE, /I merge or replace flag
AcisOptions* ao = NULL // acis options
);
outcome api_alternating_scale_pattern(
pattern*& pat, /I pattern returned
const pattern& in_pattern, // input pattern
const SPAvector& scalel, /I 1st scale value
const SPAvector& scale2, /I 2nd scale value
int which_dim, /I scaling dimension
const SPAposition& root, /I position about
/I which scaling is
/I applied
logical merge = TRUE, /I merge/replace flag
AcisOptions* ao = NULL /I acis options
);

Kernel R10

Includes:

Description:

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "baseutil/vector/vector.hxx”

#include "kernel/kernapi/api/acis_options.hxx”

Applies an alternating scale to an existing pattern, merging with any
existing scaling or, optionally (witmerge = FALSE), replacing it. The
argumentscalel andscale2 give the alternating scale values, and can be
given as vectors when nonuniform scaling is desimbith_dim specifies

the dimension in which the scale is applied. The positionspecifies the
neutral point about which the scaling takes place (i.e., the point on the
seed entity that remains fixed while the entity’s dimensions are altered).
All scale values must be greater than zero.

The following code snippet gives an example of using this API.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

double scalel = 0.8;

double scale2 = 1.2;

int which_dim = 1,

SPAposition root(0, 0, 0);

check_outcome(result =
api_alternating_scale_pattern(mod_pat, *pat,
scalel, scale2, which_dim, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

Kernel R10

/I Apply the pattern to the prism
check_outcome(result = api_set_entity_pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

Errors: A scale value is negative or zero.
Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

api_apply_transf

Function: Transforms, Modifying Models
Action: Changes the transform entity attached to a body.
Prototype: outcome api_apply_transf (
ENTITY* entity, /I entity to get new

/I transform
SPAtransf const& trans, // new transform
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include “baseutil/vector/transf.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: When transformations are applied to a body in ACIS, the underlying
geometries of all the subordinate entities are not changed. This API simply
attaches the transformation to the body entity and indicates that
calculations should pipe the geometry through the transform. Each body’s
transformation matrix gives the relationship between its internal
coordinate system and the coordinate system of the world.

If you want the transform actually applied to the geometry, use the
api_change_body_trans function. One way is to apply the transformation
first:

Kernel R10

BODY* my_body;
api_apply_transf(my_body, transf);

Then change the geometry of the object according to the transformation
and set the body’s transform to an empty transformation. (This does
increase the risk of introducing round—off errors to the geometry.)

api_change_body_trans(my_body,NULL);

Use transformations with caution. Scaling and translation effects can
combine to produce increasingly severe gaps in the geometry. Scaling
transforms not only scale up or down the geometry, but also scale up or
down gaps in the geometry. If you translate the geometry, you can move it
far enough away from the origin that a gap is represented with O bits of
resolution, and you cannot resolve it. SilsfAresabs doesn't change, at
some point geometric operations fail.

Errors: The pointer to an entity iSULL.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Changes model

api_bb begin

Function: History and Roll
Action: Starts the API bulletin board.
Prototype: void api_bb_begin (
logical linear /I linear or distributed
= TRUE /I history stream
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "baseutil/logical.h”

Description: This API function is not intended to be called directly by the application,
but rather via thé\PI_BEGIN macro.

This routine may be used witlpi_bb_end to bracket a sequence of API
calls so that they produce a single bulletin board. Its effect is cumulative
so that when there are nested callagb bb_begin andapi_bb_end, only

the outermost pair of calls takes effect. In this way a new API routine may
call existing API routines and appears to the caller like any other API
routine in its handling of bulletin boards.

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

It should normally be called with an argumenfT&UE, but if called with
FALSE, the current bulletin—board (if any) is "stacked”, and a new one
started anyway. The correspondimg_bb_end rolls back and deletes this
bulletin board, and reinstates the stacked one for more changes.

None
None
kernel
kern/kernel/kernapi/api/api.hxx

System routine

api_bb delete

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

History and Roll
Deletes bulletin boards.

void api_bb_delete ();

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”

This API is not intended to be called directly by the application. If a
current bulletin board exists and has been ended and marked as
unsuccessful, this function rolls back the model by undoing the changes
recorded in the bulletin board, and then deletes the bulletin board (so
freeing up the space occupied by old versions of records).

None
None
kernel
kern/kernel/kernapi/api/api.hxx

System routine

api_bb end

Function:
Action:

Kernel R10

History and Roll
Terminates the API bulletin board.

Prototype: void api_bb_end (

outcome& result, /I outcome
logical linear /I linear or distributed
= TRUE, /I history stream
logical delete_stacked_bb /I deleted a stacked
= FALSE /Il bulletin board
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "baseutil/logical.h”

Description: This API function is not intended to be called directly by the application,
but rather via thé\PI_END macro.

It is used withapi_bb_begin to bracket a sequence of API calls so that

they produce a single bulletin board. Its effect is cumulative so that when
there are nested calls @4pi_bb_begin andapi_bb_end, only the

outermost pair of calls takes effect. In this way a new API routine may call
existing API routines and appears to the caller like any other API routine
in its handling of bulletin boards. It should normally be called with the
second argument true.

Provided optioriogging is on and a bulletin board is already being
constructed and it matches the initial calbfd_bb_begin, this routine

ends the current bulletin board, setting the success or not as recorded in
the given outcome, into the bulletin board, and setting a reference to the
bulletin board into the outcome. It should normally be called with the
second argument true.

It then decrements a flag to say that a bulletin board is being constructed
(unless the second argument is false).

If delete_stacked_bb is TRUE, a stacked bulletin board that results from
a successfulPI_TRIAL block will be deleted.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/api.hxx
Effect: System routine

api_calculate _edge tolerance

Function: Precision and Tolerance, Tolerant Modeling
Action: Calculates the tolerance of an edge.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_calculate_edge_tolerance (

EDGE* edge, /I edge to test
double& tol, /I resulting tolerance
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/edge.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This function calculates the tolerance of EDGE or aTEDGE and
returns a tolerance value. It does not use the tolerance value on the
TEDGE.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_calculate vertex_tolerance

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Precision and Tolerance, Tolerant Modeling
Calculates the tolerance of a vertex.

outcome api_calculate_vertex_tolerance (

VERTEX* vertex, // input vertex / tvertex
double& tol, /I resulting tolerance
AcisOptions* ao = NULL // acis options

)

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/vertex.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This function calculates the tolerance ofBRTEX or aTVERTEX and
returns a tolerance value. It does not use the tolerance value on the
TVERTEX.

Errors:
Limitations:
Library:
Filename:

Effect:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_change body trans

Function:
Action:

Prototype:

Includes:

Description:

Transforms, Modifying Models
Substitutes the given transform for the existing transform of the body.

outcome api_change_body_trans (
BODY* body, // body to get new
/I transform
TRANSFORM* new_transform, /I new transform

logical negate = FALSE, /I negate the body
AcisOptions* ao = NULL /I acis options
)i

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/geom/transfrm.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "baseutil/logical.h”

#include "kernel/kernapi/api/acis_options.hxx”

This API changes the geometry to leave the body unaltered in its global
coordinate space. Each body contains a transformation matrix that gives
the relationship between the internal coordinate system and that of the
world coordinate system. This API transforms the geometric definitions
within the object so that with the new transformation set in the body
transformation, the shape and position of the object are unchanged.

If negate is TRUE, this API negates the body by reflecting it about the
origin and reversing all directions.

Calling this API with aNULL transform pointer leaves the body with a
NULL transform, and any existing transforms are applied to the body
geometry. For example, to scale the body’s geometry, first call this API
with the scaling transform and then call it again witkld L transform.

Kernel R10

Use transformations with caution. Scaling and translation effects can
combine to produce increasingly severe gaps in the geometry. Scaling
transforms not only scale up or down the geometry, but also scale up or
down gaps in the geometry. If you translate the geometry, you can move it
far enough away from the origin that a gap is represented with O bits of
resolution, and you cannot resolve it. SilsfAresabs doesn't change, at
some point geometric operations fail.

Call api_change_body_trans afterapi_transform_entity.

Errors: The pointer to a body IMULL or does not point to BODY.
The pointer to a transform does not point RANSFORM.

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Changes model

api_change_state

Function: History and Roll
Action: Modifies the modeler state by applying a delta state.
Prototype: outcome api_change_state (
DELTA_STATE* ds /I delta state to be
/I applied
)
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: This API modifies the modeler’s state to a different state using the given
delta state. For example, the delta state carries the modeler frorA state
stateB and is applied only when the modeler is in state

Errors: The pointer tads is NULL.
Limitations: None
Library: kernel

Kernel R10

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read—only

api_change to_state

Function: History and Roll
Action: Modifies the modeler state by applying zero or nugka_states.
Prototype: outcome api_change_to_state (
HISTORY_STREAM* hs, /I history state to be
/I applied
DELTA_STATE* ds, /I delta state to be
/I applied
int& n_actual /I Number of delta states
/I rolled returned
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: This API modifies the modeler’s state to match that when the given delta
state was first noted. The system finds the appropriate path through the
history stream of which the delta state is a member.

Errors: The pointer to the delta stateN&JLL.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_checking

Function: Debugging
Action: Sets the pointer argument checking for an API call to on or off.
Prototype: outcome api_checking (
logical on_off /I TRUE for on
);

Kernel R10

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "baseutil/logical.h”

Description: With argument checking on, pointer arguments to an API are tested to
determine whether they aMJLL. If they areNULL, a message is printed
and the API returns asutcome with a nonzero error code.

Checks are also made on certain distances and angles supplied to APIs.
Some APIs make more extensive checks internally, but the effect is the
same. When there is @n error a message prints and the API returns an
outcome with a nonzero error code.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_check _edge_errors
Function: Debugging, Tolerant Modeling
Action: Checks whether edges have errors that require them to be made tolerant,
and optionally performs this conversion.

Prototype: outcome api_check_edge_errors (
ENTITY_LIST const& edges, /I input edges
ENTITY_LIST& bad_edges, // bad edge list
ENTITY*& worst_entity, /I worst entity
double& worst_error, /I worst error
double tol /I given tolerance
= SPAresabs,
logical stop_immediately /I'if TRUE, stop
= FALSE, /I after first bad
/I edge is found
ENTITY_LIST& new_edges /I tolerant edges

=*(ENTITY_LIST*)NULL_REF,
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Checks the edges in the given list for gaps worse than the specified
tolerance. Any such edges are added td#te edges list. If new_edges

is given, such edges are converted into tolerant edges, and the end vertices
are converted to tolerant vertices if necessary.

Thebad_edges andnew_edges lists are mapped so thiadd_edges]i] is
converted intanew_edges]i].

If the stop_immediately flag isTRUE, processing stops after the first bad
edge is found.

Theworst_entity andworst_error always get set, even if the error in
guestion was sufficiently small that the entity reported is not actually
Hbad”.

Note thatapi_check_edge_errors normally converts "bad” edges into
tolerant ones. This function is only needed to check for "bad” edges where
none of the adjacent edges there needed to be made tolerant.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_check face loops

Function:
Action:

Prototype:

Debugging, Model Topology
Checks a face to see that it contains valid loops.

outcome api_check _face_loops (

FACE* in_face, /I face to test

int ai_info[] /I where test results
= NULL, /I stored

AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/face.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This function checks that the direction of a face’s loops are correct. It
eliminates the need to calculate the area of a face to determine the validity
of the face. (If the area calculation for a face was negative, it was
indicative of a problem usually in the direction of loops.)

This API returns outcome to indicate if the input face contains invalid
loops. An error message is contained in the outcome.

ai_info[0]: number of periphery loops
ai_info[1]: number of holes

ai_info[2]: number of u separation loops
ai_info[3]: number of v separation loops
ai_info[4]: number of unknown loops
ai_info[5]: contains useful information

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_check_histories

Function:
Action:

Prototype:

Includes:

Kernel R10

History and Roll
Checks alHISTORY_STREAMs for problems.

outcome api_check_histories (
HISTORY_STREAM_LIST* insane_list// list of

= NULL, /I questionable streams
FILE* fptr /I file for
= stdout /I check output

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Checks alHISTORY_STREAMSs for mixing and improper entity IDs.
Problems are reported totr, standard output by default, and
HISTORY_STREAMS with errors are returned in thresane_list, if
non-NULL.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_check _on

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Debugging

Determines the status of checking and retdiRBE if it is on; otherwise,
it returnsFALSE.

logical api_check_on ();

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include "baseutil/logical.h”

Used withset_api_checking.
None

None

kernel
kern/kernel/kernapi/api/api.hxx

System routine

api_check_vertex_errors

Function:
Action:

Debugging, Tolerant Modeling
Checks the vertices in the given list for gaps worse than the specified
tolerance.

Kernel R10

Prototype: outcome api_check_vertex_errors (
ENTITY_LIST const& vertices,// input vertex list
ENTITY_LIST& bad_vertices, // bad vertex list

ENTITY*& worst_entity, /I worst entity
double& worst_error, /I worst error
double tol /I given tolerance
= SPAresabs,
logical stop_immediately /I'if TRUE, stop
= FALSE, /I after first bad

/I vertex is found
ENTITY_LIST& new_vertices /[tolerant vertices
=*(ENTITY_LIST*)NULL_REF,

AcisOptions* ao = NULL /I acis options
)
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: Checks the vertices in the given list for gaps worse than the specified
tolerance. Any such vertices are added tobti vertices list. If
new_vertices is given, such edges are converted into tolerant edges, and
the end vertices are converted to tolerant vertices if necessary.

Thebad_vertices andnew_vertices lists are mapped so that
bad_vertices][i] is converted intmew_vertices]i].

If the stop_immediately flag isTRUE, processing stops after the first bad
vertex is found.

The worst_entity andworst_error always get set, even if the error in
guestion was sufficiently small that the entity reported is not actually
“bad.”

api_check_edge_errors normally converts “bad” vertices into tolerant
ones. This function is only needed to check for “bad” vertices where none
of the adjacent edges needed to be made tolerant.

Errors: None
Limitations: None
Library: kernel

Kernel R10

Filename:

Effect:

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_clear_annotations

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Feature Naming
Clears annotation entities from the currently active bulletin board.

outcome api_clear_annotations (
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Searches the global list of annotations and loses them. This should be
called at some point after a modeling operation, such as sweeping or
blending. Once the annotation information has been handled, it must be
cleared from the active bulletin board usaq_clear_annotations before

the next modeling operation. Ideally, the operation to be annotated should
be wrapped in aAPI_BEGIN/END block so the call to

api_clear_annotations will restore the bulletin board to a state as if
annotations had never been created.

Not callingapi_clear_annotations can lead to a bloated bulletin board as
well as incorrect links between separate modeling operations when option
unhook_annotations is FALSE.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_copy_body

Function:
Action:

Model Geometry, Model Object
Creates a copy of a body.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_copy_body (

BODY* body, /l body to be copied
BODY*& new_body, /I copy returned
AcisOptions* ao = NULL // acis options

)i

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Given a body as input, copies the given body and all its associated
(“connected”) entities, if any, using each entity’s copy and fix-up methods
(e.g.,copy_scan, copy_data, fix_pointers, etc.). This includes entities that

are above and/or below the given body in the topological hierarchy. For
example, copying an edge copies the coedges, loops, faces, shells, etc., as
well as all the associated curves, vertices, points, attributes, etc. If there
are no associated entities, only the given body is copied.

The pointer to an original body MULL or does not point to BODY.
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_copy_entity

Function:
Action:

Prototype:

Includes:

Kernel R10

Model Geometry, Model Object
Creates a copy of an entity and all its associated entities.

outcome api_copy_entity (

ENTITY* entity, /I entity to be copied
ENTITY*& new_entity, /I copy returned
AcisOptions* ao = NULL // acis options

)i

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

This API copies the given entity and all its associated (“connected”)
entities, if any, using each entity’s copy and fix-up methods (e.g.,
copy_scan, copy_data, fix_pointers, etc.). This includes entities that are
above and/or below the given entity in the topological hierarchy. For
example, copying an edge copies the coedges, loops, faces, shells, etc., as
well as all the associated curves, vertices, points, attributes, etc. If there
are no associated entities, only the given entity is copied.

The NULL pointer is given to entity.
Refer to description.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_copy_entity contents

Function:
Action:

Prototype:

Includes:

Description:

Model Geometry, Model Object
Creates a copy of a topological entity all its associated subentities.

outcome api_copy_entity _contents (

ENTITY* in_ent, /I entity to be copied
ENTITY*& copy, /I copy returned
SPAtransfé& tr I/l optional

=*(SPAtransf*)NULL_REF,// transformation
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “baseutil/vector/transf.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

This API copies the given entity and all its associated subentities, if any.
Subentities are those that &elow the given entity in the topological
hierarchy. It does not copy entities that are above the given entity. The
optional transformation is applied to the copied entity, if applicable.

Note This special-case function only operatesuRTEX, EDGE,
COEDGE, WIRE, LOOP, FACE, SHELL, andLUMP entities; for
all other entity types, it callapi_copy_entity.

Kernel R10

Errors:
Limitations:
Library:
Filename:

Effect:

The pointer to an original entity is NULL
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_copy_entity list

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Kernel R10

Model Geometry
Creates a copy of all entities in an entity list and all their associated
entities.

outcome api_copy_entity_list (
ENTITY_LIST& entity_list, /I list to copy
ENTITY_LIST& copied_entity_list,// copy returned
AcisOptions* ao = NULL /I acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API copies the entities in the given entity list and all their associated
("connected”) entities, if any, using each entity’s copy and fix-up methods
(e.g. ,copy_scan, copy_data, fix_pointers, etc.). This includes entities

that are above and/or below the given entity in the topological hierarchy.
For example, copying an edge copies the coedges, loops, faces, shells,
etc., as well as all the associated curves, vertices, points, attributes, etc. If
there are no associated entities, only the given entities are copied. The
returned entity list’'s entities are in the same order as the given entity list.

The entity_list is empty.

Refer to description.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_create_history

Function: History and Roll
Action: Returns a newly creatédl STORY_STREAM on the heap.
Prototype: outcome api_create_history (
HISTORY_STREAM*& hs /I created history stream
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

Kernel R10

api_curve_pattern

Function: Patterns
Action: Creates a pattern parallel to a curve.
Prototype: outcome api_curve_pattern (
pattern*& pat, /I pattern returned

const curve& in_curve, // guiding curve
const SPAinterval& param_range, // range
int num_elements, /I number of elements
/l'in the pattern
const SPAposition& root, // position mapped
/I to the pattern sites

logical on_endpoints /I flag for beginning and

= FALSE, /I ending on endpoints
law* rail_law // rail law

= NULL, /I to follow

const SPAvector& rail_dir// direction mapped
=*(SPAvector*)NULL_REF,// to rail direction
const SPAvector& tangent_dir// direction mapped
=*(SPAvector*)NULL_REF,// to tangent
/I direction
const SPAtransf& in_trans// check for
=*(SPAtransf*)NULL_REF,// transform
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include "baseutil/vector/interval.hxx”
#include "baseutil/vector/position.hxx”
#include “baseutil/vector/transf.hxx”
#include “baseutil/vector/vector.hxx”
#include “kernel/kernapi/api/api.hxx”
#include "kernel/kerngeom/curve/curdef.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "lawutil/law_base.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Creates a one—dimensional pattern of number elements, equally spaced in
parameter space, along the curve specified byntteirve argument, over

the interval given byaram_range. The argumentoot specifies the

position (which can be on or off the pattern seed entity, as desired) to be
mapped to the pattern sites. The pattern can be extended to the endpoints
of the edge by settingn_endpoints to TRUE. By default, pattern

members are oriented identically to one another. They will follow a rail

law if rail_law is provided. In that case, the vectaad_dir and

tangent_dir specify the directions, relative to the seed entity, that are
mapped to the rail law and tangent directions of the edge.

The following code snippet gives an example of using this API.

/I Create a spiral curve

EDGE* edge = NULL;

SPAposition center(0, 0, 0);

SPAvector normal(0, 0, 1);

SPAposition start_position(3, 0, 0);

double width = 3.0;

double angle = 6.0 * M_PI;

check_outcome(result = api_edge_spiral(center,
normal, start_position, width, angle, edge));
const curve& crv = edge—>geometry()—>equation();
SPAinterval param_range = edge—>param_range();
if (edge—>sense() == REVERSED) param_range.negate();

/I Create a pattern

pattern* pat = NULL,

int number = 36;

SPAposition root(0, 0, 0);

check_outcome(result = api_curve_pattern(pat, crv,
param_range, number, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism

check_outcome(result = api_set_entity pattern(prism,
pat));

Kernel R10

/I Clean up
pat—>remove();
check_outcome(result = api_del_entity(edge));

Errors: The number of elements is less than one, or the rail direction was specified
without specifying a tangent direction.

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

api_cylindrical_pattern

Function: Patterns
Action: Creates a pattern with cylindrical symmetry.
Prototype: outcome api_cylindrical_pattern (
pattern*& pat, /I created pattern
const FACE* in_face, /I face defining pattern
/I axis and radius
int num_angular, /I # of pattern elements
/I about cylinder axis
int num_axial /I # of pattern elements
=1, /I along cylinder axis
double ring_spacing /I distance between
= 0.0, /[circular pattern
/I layers
logical alternating /I flag to stagger angle
= FALSE, /I between layers
AcisOptions* ao = NULL // acis options
)i

Kernel R10

outcome api_cylindrical_pattern (
pattern*& pat, /I created pattern
const SPAposition& center,// starting position

for
/I cylinder axis
const SPAvector& normal, // direction of the
/I cylinder axis
int num_angular, /I # of pattern elements
/I about cylinder axis
int num_axial /I # of pattern elements
=1, /I along cylinder axis
double ring_spacing /I distance between
= 0.0, /[circular pattern
/I layers
logical alternating /I flag to stagger angle
= FALSE, /I between layers
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include "baseutil/vector/position.hxx”
#include “baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kerndata/top/face.hxx”
#include "kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: Creates a two—dimensional pattern with cylindrical symmetry, with a
radius and axis defined either by the center position and normal vector or
by the cylindrical facén_face. The numbers of angular and axial elements
in the pattern are set lmpm_angular andnum_axial, respectively, and the
distance between circular pattern layers by the spacing argument. If
alternating is TRUE, adjacent layers are staggered in angle. The pattern
coordinates are specified in the order (angular, axial).

The following code snippet gives an example of using this API.

Kernel R10

/I Create a pattern

pattern* pat = NULL,

SPAposition center(5, 0, 0);

SPAvector normal(0, 1, 0);

int num_angular = 8;

int num_axial = 5;

double spacing = 5.0;

check_outcome(result = api_cylindrical_pattern(pat,
center, normal, num_angular, num_axial, spacing));

/I Create a cylinder

BODY* cylinder = NULL;

SPAposition bottom(0, 0, 0);

SPAposition top(0.5, 0, 0);

double maj_rad = 1.0;

double min_rad = 0.5;

check_outcome(result =
api_solid_cylinder_cone(bottom, top, maj_rad,
min_rad, maj_rad, NULL, cylinder));

/I Apply the pattern to the prism
check_outcome(result =
api_set_entity_pattern(cylinder, pat));

/I Clean up
pat—>remove();

Errors: The number of angular or axial elements is less than one, or the face that
is specified is not cylindrical.

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

Kernel R10

api_deep copy_entity

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

Model Geometry, Model Object
Creates a deep copy of an entity and all its associated entities.

outcome api_deep_copy_entity (

ENTITY* entity, /I entity to copy
ENTITY*& new_entity, /I deep copy returned
logical dpcpy_skip /I flag to skip

= FALSE, /I attributes not

/I deep—copyable
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

This API deep copies the given entity and all its associated (connected)
entities, if any, using each entity’s copy and fix-up methods (e.g.,
copy_scan, copy_data, fix_pointers, etc.). The difference between a deep
copy and a regular copy is that a regular copy may contain references to
shared underlying associated entities, but a deep copy will not. This
includes entities that are above and/or below the given entity in the
topological hierarchy. For example, deep copying an edge deep copies the
coedges, loops, faces, shells, etc., as well as all the associated curves,
vertices, points, attributes, etc. If there are no associated entities, only the
given entity is deep copied.

Attempting to copy an entity that has associated entities that do not
support a deep copy routine. TRELL pointer is given to the entity.

Refer to description.
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

Kernel R10

api_deep copy_entity list

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

Kernel R10

Model Geometry
Creates a deep copy of all entities in an entity list and all their associated
entities.

outcome api_deep_copy_entity_list (
ENTITY_LIST& entity_list, /I entities to copy
ENTITY_LIST& new_entity_list,// copies returned
logical dpcpy_skip /I flag to skip
= FALSE, /I attributes not
/I deep—copyable
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API deep copies the entities in the given entity list and all their
associated (connected) entities, if any, using each entity’s copy and fix-up
methods (e.g.cgopy_scan, copy_data, fix_pointers, etc.). The difference
between a deep copy and a regular copy is that a regular copy may contain
references to shared underlying associated entities, but a deep copy will
not. This includes entities that are above and/or below the given entity in
the topological hierarchy. For example, deep copying an edge deep copies
the coedges, loops, faces, shells, etc. , as well as all the associated curves,
vertices, points, attributes, etc. If there are no associated entities, only the
given entities are deep copied. The returned entity list's entities are in the
same order as the given entity list.

Attempting to copy an entity that has associated entities that do not
support a deep copy routine.

Theentity_list is empty.

Refer to Description.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_delent

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Model Topology
Deletes an entity and subentities, which are entities below the given entity
in the topological hierarchy.

outcome api_delent (
ENTITY* given_entity, /I entity to be deleted
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API deletes an entity and all entities below it in the topological
hierarchy.

Pointer to entity iSNULL or not to topologyBODY, LUMP, WIRE, etc.).

Pointers above the deleted entity in the topological hierarchy are not
guaranteed to be setMJLL. For example, when a lump is deleted, the
body pointer to the lump may or may not be st L. This function

loses the given topological entity, all lower-level topological entities
comprising the given entity, and reduces the use count. It could possibly
remove any associated geometry. It does not affect any pointers that were
pointing to any of the objects. When using this API, pointers that used to
point to the entity need to be fixed, or the item could be unhooked and
then deleted.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_delete_ds

Function:
Action:

Prototype:

History and Roll
Deletes a delta state and dependent data.

outcome api_delete_ds (
DELTA_STATE* ds /I delta state to be
/I deleted

);

Kernel R10

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

This API deletes delta_state; i.e., the recorded information that enables
the modeler to change between two particular states.

NULL pointer to delta state.

Delta states should be deleted starting with those furthest away and
working toward the current state to ensure that delete bulletins (and rolled
back create bulletins) are deleted last.

kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_delete history

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:

Library:

Kernel R10

History and Roll
Deletes theHISTORY_STREAM and allENTITYs in the stream.

outcome api_delete_history (
HISTORY_STREAM* hs /l input history stream
= NULL

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Deletes theHISTORY_STREAM and allENTITYs associated with
BULLETIN on theHISTORY_STREAM. Therefore, nENTITYs will be
deleted when logging is off. Uses the def&iBTORY_STREAM if none
is supplied.

Fails when unable to remove &NTITYs referred to in the stream.
Logging must be used.

kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: System routine

api_del_entity

Function: Model Topology
Action: Deletes the given entity.
Prototype: outcome api_del_entity (

ENTITY* given_entity, /I entity to be deleted
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This API deletes an entity and all its associated entities. This loses all
entities that are connected to the given entity. It will lose multiple bodies
if they are connected by attributes. It does not affect any pointers that were
pointing to any of the objects. This allows you to delete an entire entity
from anywhere in the entity’s topological hierarchy without having to
traverse to the top of the topology chain.

Errors: Pointer to entity iSNULL.

Limitations: Deletes entities above as well as below the specified entity in the
hierarchy.

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Changes model

api_del_entity list

Function: Model Topology
Action: Deletes the given list of entities.
Prototype: outcome api_del_entity_list (

ENTITY_LIST& given_list, // entities to be deleted
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API deletes all the entities in an entity list and all their associated
entities. This loses all entities that are connected to the given entities. It
will lose multiple bodies if they are connected by attributes. It does not
affect any pointers that were pointing to any of the objects. This allows
deletion of an entire entity from anywhere in the entity’s topological
hierarchy without having to traverse to the top of the topology chain.

Use this API instead afpi_del_entity when you need to delete more than

one entity at a time, since calliagi_del_entity repeatedly could be

dangerous as the user has to keep track of what in the list has already been
deleted.

None

Deletes entities above as well as below the specified entities in the
hierarchy.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_distribute state to streams

Function:
Action:

Prototype:

Kernel R10

History and Roll
DistributesBULLETINS in aDELTA_STATE to one or more
HISTORY_STREAMS as directed by &treamFinder.

outcome api_distribute_state_to_streams (
DELTA_STATE* pState, /I delta state to be
/I distributed
StreamFinder* pStreamFinder,// used to direct
/I distribution

logical clearDelta, /I TRUE to delta
/I undistributed
/I bulletins
logical hideStates /l TRUE to mark new

/I states as hidden

);

Includes:

Description:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include “kernel/sg_husk/history/history.hxx”
#include "baseutil/logical.h”

This API distributes the giveds to one or morélISTORY_STREAMS as
directed by the giveStreamFinder. In each stream distributed to, a new
DELTA_STATE will be created to hold thBULLETINS. StreamFinder is a

class with one pure virtual functiofindStream, which must return the
HISTORY_STREAM* associated with the given entity. ThedStream

function may be called more than once for each entity. In a topology based
search, the stream finder can cache data in an early pass, that can be used
in a later pass. This is necessary bec®@& T, CURVE, PCURVE, and
SURFACE do not know their owners. When the stream is found for the

the correspondinyERTEX, EDGE, COEDGE andFACE, the stream for

the subordinate entity can be saved and used in a later pass.

The basestreamFinder class provides functions for finding the stream
based on an attach@dTRIB_HISTORY and for maintaining a mapping
of entities to streams.

As an example, here is tls@reamFinder used by the Part Management
Component.

class StreamFinderPM : public StreamFinder {
/I A StreamFinder for the PM_HUSK.
/I Implements a nested approach to
/I distribution in which bulletins go to
/I the most specific stream available.
/I Part streams are more specific than
/l the default stream. Body streams are more
/I specific than part streams.
public:
virtual HISTORY_STREAM?* findStream(ENTITY*);
I3

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

Kernel R10

HISTORY_STREAM*
StreamFinderPM::findStream(

}

The clearDelta argument tells how to handBJLLETINS for which a
target stream could not be foundTRUE they are deleted along with the
input delta state. IFALSE, they are left in the input state.

The hideStates argument tells whether to mark the resulting states as
hidden in the target streamapi_pm_roll_n_states does not count hidden
states. Hidden states are useful for operations that should appear read only
to the user. For example, a pick or display operation may calculate boxes
and creat®ELTA_STATEs. One can hide these states so they are not

ENTITY* pEntity
)

HISTORY_STREAM* pStream = NULL,;

/I Look for a ATTRIB_HISTORY. If found add
/l the entity and associated geometry to

/I the stream map.

pStream = findStreamFromAttribute(pEntity);

if(!pStream) {
/I Still no stream?.
/I Look for a stream on the part
/I the entity is in.
PART* part = get_part(pEntity);
if(part) {
pStream = part—>history_stream();
}

}

if(pStream) {
addToStreamMap(pEntity, pStream);
}

return pStream;

apparent to the user.

The pointer tads is NULL.

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

System routine

api_edge pattern

Function: Patterns

Action: Creates a pattern parallel to an edge.

Prototype: outcome api_edge_pattern (
pattern*& pat, /I created pattern
COEDGE* in_coedge, /I coedge
int number, /I number of elements
const SPAposition& root, // start position
logical on_endpoints /I extend to endpoints

= FALSE, Il or not
const SPAvector& normal_dir// use normal to

=*(SPAvector*)NULL_REF,// edge face
const SPAvector& tangent_dir// for rail law

=*(SPAvector*)NULL_REF,
AcisOptions* ao = NULL // acis options

);
outcome api_edge_pattern (
pattern*& pat, /I created pattern
EDGE* in_edge, /I edge
FACE* in_face, /I face
int number, /I number of elements
const SPAposition& root, // start position
logical on_endpoints /I extend to endpoints

= FALSE, I or not
const SPAvector& normal_dir// use normal to

=*(SPAvector*)NULL_REF,// edge face
const SPAvector& tangent_dir// for rail law

=*(SPAvector*)NULL_REF,
AcisOptions* ao = NULL // acis options

);

Kernel R10

outcome api_edge_pattern (

pattern*& pat, /I created pattern
EDGE* in_edge, /I edge
int number, /I number of elements
const SPAposition& root, // start position
logical on_endpoints /I extend to endpoints

= FALSE, /I or not

const SPAvector& rail_dir// for rail law
=*(SPAvector*)NULL_REF,

const SPAvector& tangent_dir// for rail law
=*(SPAvector*)NULL_REF,

AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include “baseutil/vector/position.hxx”
#include “baseutil/vector/vector.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kerndata/top/coedge.hxx”
#include “kernel/kerndata/top/edge.hxx”
#include “kernel/kerndata/top/face.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: Creates a one—dimensional pattern of number elements, equally spaced in
parameter space, parallel to the edge or coedge specified iny édge
or in_coedge argument. The argumerdot specifies the position (which
can be on or off the pattern seed entity, as desired) to be mapped to the
pattern sites. The pattern can be extended to the endpoints of the edge by
settingon_endpoints to TRUE. By default, the orientations of pattern
members are identical. ifi_edge alone is given, they will instead follow
the edge’s rail law ifail_dir andtangent_dir are specified; ifn_face is
also furnished, or ifn_coedge is specified instead, they will follow the
normal to the edge’s facenbrmal_dir andtangent_dir are given.

The following code snippet shows an example of how this API can be
used.

Kernel R10

Errors:

Limitations:
Library:

Filename:

/I Create a spline edge

EDGE* edge = NULL;

SPAposition pts[7];

pts[0] = SPAposition(0, 0, 0);

pts[1] = SPAposition(10, 5, 0);

pts[2] = SPAposition(20, 2, 0);

pts[3] = SPAposition(30, 8, 0);

pts[4] = SPAposition(40, 2, 0);

pts[5] = SPAposition(50, 5, 0);

pts[6] = SPAposition(60, 0, 0);

SPAunit_vector dir_start(0, 1, 0);

SPAunit_vector dir_end(0, -1, 0);

check_outcome(result = api_curve_spline(7, pts,
&dir_start, &dir_end, edge));

/I Create a pattern

pattern* pat = NULL,

int number = 20;

SPAposition root(0, 0, 0);

check_outcome(result = api_edge_pattern(pat, edge,
number, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
pat));

/I Clean up
pat—>remove();
check_outcome(result = api_del_entity(edge));

The number of elements is less than one, or the normal (or rail) direction
was specified without specifying a tangent direction, NiUaL entity was
specified.

None
kernel

kern/kernel/kernutil/law/pattern_api.hxx

Kernel R10

Effect: Changes model

api_elliptical _pattern

Function: Patterns
Action: Creates an elliptical pattern.
Prototype: outcome api_elliptical_pattern (
pattern*& pat, /I created pattern

const SPAposition& center,// center of pattern
const SPAvector& normal, // normal to pattern

/Il plane
int num_elements, /I # of pattern elements
logical not_rotate /l TRUE eliminates
= FALSE, /I rotation of elements

const SPAposition& root // position mapped to

=*(SPAposition*)NULL_REF,// pattern sites

double angle /I angular extent
= 2.0* 3.14159265358979323846,// of pattern
double ratio /I ratio of major/minor
=1.0, /I radii

const SPAvector& major_axis// orientation of

=*(SPAvector*)NULL_REF,// major axis

AcisOptions* ao = NULL // acis options

);

Includes: #include
#include
#include
#include
#include
#include
#include
#include

Kernel R10

"kernel/acis.hxx”

"baseutil/logical.h”
"baseutil/vector/position.hxx”
"baseutil/vector/vector.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernutil/law/pattern.hxx”
"kernel/kernutil/law/pattern_api.hxx”
"kernel/kernapi/api/acis_options.hxx”

Description: Creates a one—dimensional elliptical pattern defined by an axis of rotation.
The center andnormal arguments indicate the (global) position and
orientation of the axis. Theumber argument defines the number of
entities in the pattern. These elements are kept in a fixed relative
orientation ifnot_rotate is TRUE, in which caseoot, the position that is
mapped to the pattern sites, must be specified.afble argument fixes
the angular extent of the pattern, with positive or negative values
indicating a pattern proceeding clockwise or counter—clockwise about the
normal vector. Theatio argument sets the ratio of minor/major radii of the
pattern. Ifmajor_axis is given, it specifies the major axis of the pattern;
otherwise, this axis is directed fraranter to root.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,

SPAposition center(10, 0, 0);

SPAvector normal(0, 0, 1);

int number = 12;

check_outcome(result = api_elliptical_pattern(pat,
center, normal, number));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity_pattern(prism,

pat));

/I Clean up
pat—>remove();

Errors: The number of elements is less than one, or the user failed to supply a root
position withnot_rotate set toTRUE.

Limitations: None
Library: kernel
Filename: kern/kernel/kernutil/law/pattern_api.hxx

Kernel R10

Effect:

Changes model

api_end_journal

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

ACIS Journal
Sets the status flag off journalizing and finishes the snapshot journaling
mechanism.

outcome api_end_journal (
AcisOptions* ao /I acis options such as
/I version, journal

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Sets the status flag to off and writes down the script footer.
None

None

kernel

kern/kernel/kernapi/api/acis_journal.hxx

System routine

api_ensure_empty root_state

Function:
Action:

Prototype:

Includes:

Kernel R10

History and Roll
If necessary, adds an empty delta state to the beginning of the history
stream so that users can roll to a state with no entities.

outcome api_ensure_empty_root_state (
HISTORY_STREAM* history, // history stream to be
/I modified
DELTA_STATE*& root_state // pointer to the (empty)
/l root delta state

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: This routine examines the root delta state of the specified history stream.
If the root state is empty (no bulletin boards), then it does nothing. If the
root state is non-empty, then it adds a new, empty, root state immediately
"before” the original root state. In either case, it returns (through the
root_state argument) a pointer to the resulting empty root state.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Changes model

api_extract_coed_info
Function: Object Relationships
Action: Computes the given number of equidistant points in the parametric space
of the underlying curve for the coedge.

Prototype: outcome api_extract_coed_info (
COEDGE* coedge, /I coedge of face
logical forward, /I forward direction of
/I evaluation
logical outward, /I tangents point off of
/I face
int num_pts, /I size of arrays/number
/I of points where to
/I evaluate
SPAposition* pts, /I points along edge

/I returned (user

/I allocates arrays)
SPAunit_vector* tans /I surface tangents along

/I edge at positions

/I returned

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/coedge.hxx”
#include "baseutil/logical.h”
#include "baseutil/vector/position.hxx”
#include “baseutil/vector/unitvec.hxx”

Kernel R10

Description: This API returns surface tangents perpendicular to the curve. Sense flag
forward controls the direction for ordering of points. Sense flag outward
indicates whether the face tangent points away from or into the face. This
function is useful for interpolating surfaces to join with the face.

Errors: Entity NULL or not a coedge.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read-only

api_find_annotations

Function: Feature Naming
Action: Finds all annotation entities of a given type.
Prototype: outcome api_find_annotations (
ENTITY_LIST&, /I list of annotation
/I entities
is_fun /I test for specific
= is_ ANNOTATION, /I type of annotation
BULLETIN_BOARD* bb /I obsolete, ignored
= NULL,
AcisOptions* = NULL /I acis options
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: When the annotations option is turned on, certain modeling operations like
blending or sweeping produédNNOTATION class instances in internal
ENTITY_LIST. Theapi_find_annotations function can be used to acquire
a list of those annotations for user—defined processing. Generally,
annotations are cleared manually from the list by using
api_clear_annotations before the next modeling operation.

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

The flag foris_fun defaults tas_ ANNOTATION. However, anys_

function for a class can be used. So, for example, to get the top vertex
annotations from a sweep operation, this function can be passed

is_ SWEEP_ANNO_VERTEX_TOP as an argument.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_find_named_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

History and Roll
Rolls to the start of a named state.

outcome api_find_named_state (

const char* name, /I name of state to which

/l to roll
HISTORY_STREAM* hs, /I history stream to use
DELTA_STATE_LIST& dslist// states found returned
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

This API find states in the stream with the given name and adds them to
the givenDELTA_STATE_LIST.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

Kernel R10

api_get_active_entities

Function: History and Roll
Action: Finds all active entities associated with a history stream.
Prototype: outcome api_get_active_entities (
HISTORY_STREAM const* hs, /I stream to search
ENTITY_LIST& ents, /I list into which active
/I entities are placed
logical unowned_only /I filter flag
= FALSE,
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This API finds all of the “active” entities associated with a history stream
(i.e. created and not yet deleted in the main line). These entities are added
to the entity listents. Note thatents is not cleared by this routine, since
this routine has “append to” syntax.

A TRUE unowned_only flag indicates that the user is only interested in a
minimal set of highest level entities, typically a list of bodies. It filters out
any entities which are not top—level, as well any points, curves, surfaces,
transforms, annotations, or attributes found by scanning the remaining
entities with aSCAN_DISTRIBUTE flag. (It ignores any entities which

are owned.)
Errors: None
Limitations: None
Library: kernel
Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read-only

Kernel R10

api_get_active_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

History and Roll
Returns the activBELTA_STATE in the giverHISTORY_STREAM.

outcome api_get_active_state (
DELTA_STATE*& active_ds, // returned delta state
HISTORY_STREAM* hs /l input history stream
= NULL

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”

Returns the activBELTA_STATE in the giverHISTORY_STREAM. The
active DELTA_STATE is either the most recently closed state in the
stream, made by callingpte_state, or the state just rolled to. If no
HISTORY_STREAM is supplied, the default stream is used.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_all user_attributes

Function:
Action:

Prototype:

History and Roll
Finds all attributes of a specified user type in a history stream.

outcome api_get_all_user_attributes (
HISTORY_STREAM const* hs, /I stream to search
int derivation_level, /I number of levels
int attrib_type_code, /'id of attrib type
ENTITY_LIST& attribs, /I list to add to

logical active_only /I backup type flag
= TRUE,

AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This routine is intended to allow users to find all of “their” attributes in a
history stream. A user will typically pass in his master attribute type code
to obtain a list all attributes in the history stream specific to his company.
Any such attributes found are added to the attribs list. This routine does
not clear attributes since it has “append to” syndaxivation_level
specified the number of levels of derivation of the requested attribute type
from ENTITY.

The active_only flag is intended for use immediately after restoring the
history stream from a file. Hictive_only is FALSE, then backup copies of

the requested attribute type are also returned, allowing the user to perform
direct post—restore operations that may be necessary to rebind these
attributes to user data.

This flag setting violates the encapsulation of the roll mechanism; it
should be used with great caution and alternative solutions (such as using
entity 1Ds) should be explored. This flag setting is only intended to give
users access to their own attributes. Passing in a Spatial type code when
active_only is FALSE results in undefined behavior, possibly returning the
error “access to non-user bulletin board entities is not allowed”.

Errors: access to non—user bulletin board entities is not allowed
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read-only

api_get_annotation_ctx

Function: Feature Naming
Action: Returns the annotation list.
Prototype: outcome api_get_annotation_ctx (

annotation_ctx*& list, // Returns the
/I annotation_ctx
AcisOptions* = NULL /I acis options

);

Kernel R10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

When theannotations option is turned on, certain modeling operations
like blending or sweeping produ@édINOTATION class instances stored in
anannotation_ctx. This API returns a pointer to tla@notation_ctx.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_get_coedges

Function:
Action:

Prototype:

Includes:

Description:

Model Topology
Gets all the coedges related to an entity.

outcome api_get_coedges (
ENTITY* ent, /I entity to examine
ENTITY_LIST& coedge_list,// coedges related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned coedges
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

If the input entity ént) hasCOEDGESs; i.e.,BODY, LUMP, FACE, etc.,
this API returns alCOEDGESs of the entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_curve_ends

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:

Filename:

Kernel R10

Model Geometry, Construction Geometry
Gets the end points of a curve.

outcome api_get_curve_ends (

EDGE* crv, /I curve
SPAposition& ptl, /I start position

/I returned
SPAposition& pt2, /I end position returned
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/edge.hxx”
#include "baseutil/vector/position.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Refer to Action.
None
None
kernel

kern/kernel/kernapi/api/kernapi.hxx

Effect:

Read-only

api_get_default_history

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

History and Roll
Returns the defaullISTORY_STREAM.

outcome api_get_default_history (

HISTORY_STREAM*& default_hs // default history
/I stream

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”

#include “kernel/kerndata/bulletin/bulletin.hxx”

Refer to Action.

None

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_edges

Function:
Action:

Prototype:

Includes:

Model Topology
Gets all the edges related to an entity.

outcome api_get_edges (
ENTITY* ent, /I entity to examine
ENTITY_LIST& edge_list, // edges related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned edges
AcisOptions* ao = NULL // acis options
);
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

Kernel R10

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

If the input entity ént) hasEDGEsSs; i.e.,BODY, LUMP, FACE, etc., this
API returns alEDGESs of the entity. The input entity can also be a
VERTEX; in which case, this API returns &DGESs that share the
commonVERTEX.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_ellipse_parameters

Function:
Action:

Kernel R10

Model Geometry, Construction Geometry
Gets the arguments for a circle or an ellipse.

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_get_ellipse_parameters (
EDGE* ell, /I ellipse or circle
SPAposition& center, /I center returned
SPAunit_vector& normal, // normal to plane of

/I ellipse returned

SPAvector& major_axis, // major axis returned

/I (length equals major
/I radius)

double& radius_ratio, /l ratio of major radius

/I to minor radius
/I returned

double& start_angle, /I start angle in radians

/I returned

double& end_angle, /I end angle in radians

/I returned

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernapi/api/kernapi.hxx”
"kernel/kerndata/top/edge.hxx”
"baseutil/vector/position.hxx”
"baseutil/vector/unitvec.hxx”
"baseutil/vector/vector.hxx”
"kernel/kernapi/api/acis_options.hxx”

Refer to Action.

The curve is not an elliptical curve.

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_entities

Function: Model Topology

Action: Gets all specified entities related to an entity.

Kernel R10

Prototype:

Includes:

Description:

Kernel R10

outcome api_get_entities (

ENTITY* ent, /I entity to examine
ENTITY_LIST& ent_list, // returned related
/I entities

ENTITY_ID topology_ids, // topological selection
ENTITY_ID geometry_ids, // geometrical selection
PAT_NEXT_TYPE include_pat // how to treat

= PAT_CAN_CREATE, /I patterned faces
AcisOptions* ao = NULL /I acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”
#include “kernel/kerndata/top/alltop.hxx”
#include "kernel/kerndata/geom/allsurf.hxx”
#include "kernel/kerndata/geom/allcurve.hxx”
#include "kernel/sg_husk/query/q_wire.hxx”
#include “kernel/sg_husk/query/q_vert.hxx”
#include “kernel/kernapi/api/api.err”

#include “baseutil/debug/module.hxx”

This comprehensivAPl behaves analogous to the collection of k’s

that return the related entities of a specific entity, sudpaget_faces
andapi_get_edges. ThisAPI however allows the specification of multiple
entity types to be returned from a single pass of the traversal algorithm.
The entity selection is made by passing a bit mask of topological ids, and
optionally geometrical ids, to th&Pl. The bit masks are created by

'or—ing’ the respective ids together, as the following example
demonstrates:

ENTITY_ID topo_bits = FACE_ID | EDGE_ID;
ENTITY_ID geom._bits = SURFACE_ID | CURVE_ID;

The entity id bit masks are categorized into topology ids and geometry ids,
and cannot be mixed. They are however, mutually exclusive within their
respective groups.

The following topological ids are available:

BODY_ID, LUMP_ID, SHELL_ID, SUBSHELL_ID, WIRE_ID, FACE_ID,
LOOP_ID, COEDGE_ID, EDGE_ID, VERTEX_ID

Errors:
Limitations:
Library:

Filename:

The following geometrical ids are available:

TRANSFORM_ID, APOINT_ID, PCURVE_ID, SURFACE_ID,
CURVE_ID

Given a set of topological id selections, the traversal algorithm searches
for the selected entities from the level of the input entity within the
topological hierarchy, and works its way down, selecting all that are lower
in the hierarchical order. When the selection set contains entity ids that are
higher in the topological hierarchy than the input entity, then the
higher—level entities that share the input entities are also selected.

Given aFACE input entity withLUMP_ID andLOOP_ID selection ids, for
example, the algorithm would select the ownlit¢MP, ignoring others,

and would halt the traversal after selecting all loops of the face since the
LOOP_ID is the lowest selection id.

The algorithm does not traverse laterally and will simply select the input
entity in this case. For example, giveRACE input entity and a
FACE_ID selection, the input face would be returned.

The geometrical id selections drive the algorithm in the same manner and
assume the same level in the hierarchy as their topological owners.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - (default) patterned objects are created if they do
not already exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel

kern/kernel/kernapi/api/kernapi.hxx

Kernel R10

Effect:

Read—only

api_get_entity box

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Model Topology
Gets the bounding box for a list of entities relative to the active working
coordinate system.

outcome api_get_entity_box (
const ENTITY_LIST& ent_list,// list of entities

WCS* wcs, /I WCS to use or NULL
/I (model space)
SPAposition& min_pt, /I minimum position

/I of bounding box

/I returned
SPAposition& max_pt, /I maximum position

/I of bounding box

/I returned
AcisOptions* ao = NULL /I acis options

);

#include "kernel/acis.hxx”

#include "kernel/geomhusk/wcs.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

If wes is specified, then the bounding box computes relative to that WCS.

The positionsrhin_pt andmax_pt) that are returned as the corners of the
bounding box are always returned relative to model space. Use care in
interpreting the results. Consider the following code example:

This function is not guaranteed to return the tightest bounding box on
spheres and tori. There are two optitight_sphere_box and
tight_torus_box that must be set to get this.

outcome result;

BODY* box;

WCS* wcesl;
ENTITY_LIST elist;
SPAposition pt1(0,0,0);
SPAposition pt2(1,2,3);
SPAposition xpt(-1,0,0);
SPAposition ypt(0,—1,0);

Errors:

Limitations:

Library:
Filename:

Effect:

result = api_solid_block(ptl, pt2, box);
elist.add(box);
result = api_wcs_create(ptl, xpt, ypt, wcsl);

SPAposition min_pt, max_pt;
result = api_get_entity_box(elist, wcs1, min_pt,
max_pt);

This code example creates a box with corners at (0, 0, 0) and (1, 2, 3), and
a WCS that is model space rotated aboutztaeis by 180 degrees.

Relative towcs1, the original corners of the box are (0, 0, 0) and (-1, -2,
3). The extrema relative tocs are (-1, —2, 0) and (0, 0, 3). When these
results are mapped back to model space, they are (1, 2, 0) and (0, 0, 3).

Because the APl computes the extrema relatiweckdl and returns the
results mapped back into model space, the returned positions are:

min_pt =(1,2,0)
max_pt = (0,0,3)
None
None
kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_entity from_id

Function:
Action:

Prototype:

Includes:

History and Roll
Returns arENTITY identified by the given id.

outcome api_get_entity_from_id (

tag_id_type id, /l'id of the ENTITY

ENTITY*& returned_ent, // returned ENTITY

HISTORY_STREAM* hs /I history where the
= NULL /I ENTITY lives

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/data/container.hxx”

Kernel R10

Description: Returns the pointer to tHeNTITY identified byid. If no
HISTORY_STREAM is specified, the default stream is used. If the
ENTITY corresponding to the id is not aliveN&JLL pointer is returned.

Errors: id is not valid in the given stream.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_get_entity id

Function: History and Roll

Action: Returns a unique integer identifier for a giveXTITY.

Prototype: outcome api_get_entity_id (
ENTITY* ent, /I ENTITY for which id

/l tag is requested

tag_id_type& id /I returned id
);

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/data/container.hxx”

Description: Returns a unique integer, in a particHRBTORY_STREAM, for a given
ENTITY. This id number (tag) is evaluated lazily but, once requested, is
saved with thedISTORY_STREAM and does not change on restore.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_get _faces
Function: Model Topology
Action: Gets all faces related to an entity.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_get_faces (

ENTITY* ent, /I entity to examine
ENTITY_LIST& face_list, // faces related to
/I entity

PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned faces
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

If the input entity ént) is aBODY, LUMP, or SHELL, this API returns all
FACEs of that entity. If the input entity is &DGE, LOOP, or VERTEX,
this API returns alFACEs that share thEDGE, LOOP, or VERTEX.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_file_info

Function:
Action:

SAT Save and Restore
Gets header info from the last restored file.

Kernel R10

Prototype:

Includes:

Description:

Errors:

Kernel R10

outcome api_get_file_info (

FileInfo& info /I file information

/I returned

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/savres/fileinfo.hxx”

The API fills in aFileInfo class with the header information from the last
restored file. It does not alter the model.

The Filelnfo class contains the following information:

product_id is a string indicating the product and version which produced
the save file.

date is a string indicating the date the model was saved (e.g., “Fri Feb 9
16:49:43 MST 1996").

units is a double indicating the modeling units.

acis_version is a string indicating the version of the ACIS libraries used in
the product which produced the save file.

file_version is the ACIS save file version for which the model was saved
(e.g., 200).

SPAresabs is the distance tolerance in effect when the model was saved.
SPAresnor is the normal tolerance in effect when the model was saved.

For consistency, the recommended values for units are:

MM e = Millimeters
“‘ecm”=Centimeters
M = Meters
KM =.Kilometers
‘um’”=Microns
N =.Inches
M = Meters

B o =.Feet
MY =.Miles

mil” =.Mils

None

Limitations:
Library:
Filename:

Effect:

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_history from_entity

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

History and Roll
Returns theHISTORY_STREAM in which theENTITY lives.

outcome api_get_history_from_entity (

ENTITY* ent, /I input entity

HISTORY_STREAM*& hs /I returned history
/Il stream

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include “kernel/kerndata/data/entity.hxx”

Refer to Action.

None

Logging must be used.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_history_size

Function:
Action:

Prototype:

History and Roll

Gets the size of theELTA_STATE in theHISTORY_STREAM.

outcome api_get_history_size (

HISTORY_STREAM* hs, /I stream to use
int& size, /] size
DELTA_STATE* start_ds /I start

= NULL
);

Kernel R10

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: Refer to Action.

Errors: The pointer to the HISTORY_STREAM is NULL.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read-only

api_get_journal

Function: ACIS Journal

Action: Gets a reference to the AcisJournal contained in AcisOptions.
Prototype: outcome api_get_journal (

AcisOptions* ao, /I acis options

AcisJournal*& aj /I output reference to

/I acis journal

)i

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Description: Gets a reference to the AcisJournal object contained in the
AcisOptionsinternal data member.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/acis_journal.hxx

Effect: System routine

api_get_loops
Function: Model Topology
Action: Gets all loops related to an entity.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_get_loops (
ENTITY* ent, /I entity to examine
ENTITY_LIST& loop_list, // loops related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned loops
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

If the input entity ént) is aBODY, LUMP, FACE, EDGE, SHELL, or
VERTEX, this API returns alLOOPs of that entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_lumps

Function:
Action:

Model Topology
Gets all lumps related to an entity.

Kernel R10

Prototype: outcome api_get_lumps (
ENTITY* ent, /I entity to examine
ENTITY_LIST& lump_list, // lumps related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned lumps
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

Description: If the input entity ént) is aBODY, SHELL, FACE, EDGE, LOOP, or
VERTEX, this API returns alLUMPs of that entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read-only

Kernel R10

api_get_modified faces

Function:
Action:

Prototype:

Includes:

Description:

History and Roll
Finds faces that have been deleted, created, or modified since a particular
state.

outcome api_get_modified_faces (

DELTA_STATE* ds, /| start state
ENTITY_LIST& deleted_faces, // deleted since

/I start
ENTITY_LIST& created_faces, // created since

/I start
ENTITY_LIST& modified_faces,// modified since

/I start
AcisOptions* ao = NULL /I acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

This routine is intended to find lists of faces that have been created,
deleted, or modified between the (input) start state and the current state of
the history stream that contains that state.

For the purposes of this API, a face is not considered modified if its
associated attributes or bounding box changes, but it is considered
modified if one of its "contained” entities is modified. These contained
entities are its surface, loops, coedges, edges (and associated curves) and
vertices (and associationed points).

The intended use of this API is to allow customers to avoid refaceting
faces which can be determined (by examining the history stream) to be
unchanged since the start state. Because of this, the algorithm to identify
"modified” faces is conservative: whenever it is unclear whether a change
recorded in the history stream actually affected a face in a manner which
requires refaceting, that face is included in the "modified” list. This
ensures that all faces which require refaceting will be included at one of
the lists, at the expense of introducing occasional "false positives” into the
"modified” list.

This API clears the deleted, created, and modified lists before writing to
them (it overwrites them).

Kernel R10

Errors:
Limitations:
Library:
Filename:

Effect:

Roll back state not on history stream main branch.
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_owner

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Model Topology
Gets the top level owner of an entity.

outcome api_get_owner (

ENTITY* ent, /I entity to determine
/I owner
ENTITY*& owner, /I top level owner of

/I entity returned
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API finds the top level entity that “owns” the given entign{). For
the purpose of this API, an entity owns another entity if the second entity
is part of the definition of the first.

For example, if an edge is created with one of the curve-creation API
functions, that edge is not owned by any other entity. If a solid is created,
the edges of that solid are owned by the solid. F@&&R®RE, FACE,

VERTEX, etc., that is a part of a solid, this API returnsB@DY pointer

of the solid. If the entity is not owned by another entity, then the pointer
returns itself.

An ENTITY is top level when making a call &pi_get_owner returns

itself. Also, everyENTITY contains arowner method. This method would
return the next higheENTITY. If that object is the top lev&@INTITY, then
this pointer is returned. This means that KACE does not point to an
owning SHELL, thisFACE is top level for that model. BODY is

normally top level, but in some cases, there are others that are the top
level ENTITY.

Errors:
Limitations:
Library:
Filename:

Effect:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_save version

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

SAT Save and Restore
Gets the current save file format version.

outcome api_get_save_version (

int& major_version, /I major version returned
/leg., 1

int& minor_version /I minor version returned
/leg., 5

);

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

This API gets the output file format.
None

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_shells

Function:
Action:

Prototype:

Model Topology
Gets all shells related to an entity.

outcome api_get_shells (
ENTITY* ent, /I entity to examine
ENTITY_LIST& shell_list, // shells related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned shells
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include "kernel/kernutil/law/pattern_enum.hxx”

If the input entity ént) is aBODY, LUMP, FACE, EDGE, LOOP, or
VERTEX, this API returns alSHELLSs of that entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_state from_id

Function:
Action:

Prototype:

Includes:

Kernel R10

History and Roll
Returns eDELTA_STATE identified by the given id.

outcome api_get_state_from_id (

STATE_ID id, /l'id of the DELTA_STATE
DELTA_STATE*& returned_ds,// returned DELTA_STATE
HISTORY_STREAM* hs /I history where the

= NULL /I ENTITY lives
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Returns the pointer to tHRELTA STATE identified byid. If no
HISTORY_STREAM is specified, the default stream is used. If the
DELTA_STATE corresponding to the id is not in the strear A L
pointer is returned.

id is not valid in the given stream.
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_state id

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

History and Roll
Returns a unique integer identifier for a giveBLTA_STATE.

outcome api_get_state_id (

DELTA_STATE* ds, /| DELTA_STATE for which
/l'id tag is requested

STATE_ID& id /I returned id

)i

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Returns a unique integer, in a particHWBTORY_STREAM, for a given
DELTA_STATE. This id number (tag) is saved with the
HISTORY_STREAM and does not change on restore.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_get_tcoedges

Function:
Action:

Model Topology, Tolerant Modeling
Gets all the tcoedges related to an entity.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_get_tcoedges (
ENTITY* ent, /I entity to examine
ENTITY_LIST& tcoedge_list /l tcoedges related
I to entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned tcoedges
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

If the input entity ha€OEDGEsS; i.e.,BODY, LUMP, FACE, etc., this
function returns alCOEDGES of the entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_tedges

Function:
Action:

Kernel R10

Model Topology, Tolerant Modeling
Gets all the tedges related to an entity.

Prototype: outcome api_get_tedges (
ENTITY* ent, /I entity to examine
ENTITY_LIST& tedge_list, // edges related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned tedges
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

Description: If the input entity ha&DGESs; i.e.,BODY, LUMP, FACE, etc., this
function returns alEDGEs of the entity. The input entity can also be a
VERTEX, in which case this function returns BIDGEs that share the
cCOmmMoOnVERTEX.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read-only

api_get_tvertices

Function: Model Topology, Tolerant Modeling
Action: Gets allTVERTEXes related to an entity.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Kernel R10

outcome api_get_tvertices (
ENTITY* ent, /I entity to examine
ENTITY_LIST& tvertex_list,// vertices related

I to entity returned

PAT_NEXT_TYPE include_pat// how to treat

= PAT_CAN_CREATE, /I patterned
/I TVERTEXes

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernapi/api’/kernapi.hxx”
"kernel/kerndata/data/entity.hxx”
"kernel/kerndata/lists/lists.hxx”
"kernel/kernapi/api/acis_options.hxx”
"kernel/kernutil/law/pattern_enum.hxx”

If the specified entity is 80ODY, LUMP, SHELL, FACE, EDGE, or
LOORP, this function returns allVERTEXes of that entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_get_version_tag

Function: History and Roll
Action: Gets the version tag from an ACISversion.
Prototype: outcome api_get_version_tag(
AcisVersion* av, /I ACIS version object
int& tag /I tag of ACIS
);
outcome api_get_version_tag(
int major, /I major version number
int minor, /I minor version number
int point, /I point version number
int& tag /I tag of this version
);
outcome api_get_version_tag(
int& tag /I tag of current ACIS
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”

#include "baseutil/version/vers.hxx”

Description: Returns the requested version tag.
Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_get vertices
Function: Model Topology
Action: Gets all vertices related to an entity.

/I version object

/I executable

Kernel R10

Prototype: outcome api_get_vertices (
ENTITY* ent, /I entity to examine
ENTITY_LIST& vertex_list,// vertices related
I to entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned vertices
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”

Description: If the specified entitydnt) is aBODY, LUMP, SHELL, FACE, EDGE, or
LOOP, this API returns alVERTEXes of that entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read-only

Kernel R10

api_get_wires

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Model Topology
Gets all the wires related to an entity.

outcome api_get_wires (
ENTITY* ent, /I entity to examine
ENTITY_LIST& out_list, // wires related to
/I entity returned
PAT_NEXT_TYPE include_pat// how to treat
= PAT_CAN_CREATE, /I patterned wires
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernutil/law/pattern_enum.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

If the input entityent hasWIRES; i.e.,BODY, LUMP, etc., this API returns
all theWIREs of the entity.

By default, patterned objects are included in the list of entities. In general,
however, the parameter include_pat determines how this function deals
with such objects. The user may specify any one of the following through
this argument:

PAT_CAN_CREATE - patterned objects are created if they do not already
exist, and are included in the list.

PAT_NO_CREATE - only those patterned objects that have already been
created are included in the list.

PAT_IGNORE — no patterned objects besides seed pattern objects are
included in the list.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

Kernel R10

api_hedgehog

Function: Viewing
Action: Creates DL _item list of hairs to show a vector field.
Prototype: outcome api_hedgehog (
law* field, /I vector field
law* base, /I base of field
double* starts, /I min value in each
/I dimension
double* ends, /I max value in each
/I dimension
int dim, /I size of starts
/I and ends
int* hairs, /I number of hairs in

/I each dimension
ENTITY_LIST& return_item, /l list of hairs
/I returned

AcisOptions* ao = NULL /I acis options
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "lawutil/law_base.hxx”

#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernutil/law/hog_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: field is a law specifying the vectors to show (the haba}e is a law
specifying where the roots of the hairs lie.

dim specifies whether a one—dimensional, two—dimensional, or
three—dimensional array of hairs is produced.

starts andends are arrays of one, two, or three start points and end points,
depending orim.

hairs is an array containing one, two, or three values, dependidgmn
specifying how many hairs are to be created between the start and end
points.

return_item contains the list of hairs for display.

Errors: None
Limitations: None
Library: kernel

Kernel R10

Filename:

Effect:

kern/kernel/kernutil/law/hog_api.hxx

Read-only

api_hex_cylindrical_pattern

Function:
Action:

Prototype:

Includes:

Patterns

Creates a hexagonal pattern with cylindrical symmetry.

outcome api_hex_cylindrical_pattern (

pattern*& pat, /I created pattern
const FACE* in_face, /I face defining
/l the pattern
int num_angular, /I # of pattern elements
/I about cylinder axis
int num_axial /I # of pattern elements
=1, /I along cylinder axis
double spacing /I spacing of pattern
= 0.0, /I elements

AcisOptions* ao = NULL // acis options

);

outcome api_hex_cylindrical_pattern (
pattern*& pat, /I created pattern
const SPAposition& center,// start position
const SPAvector& normal, // direction of

/I cylinder axis

int num_angular, /I # of pattern elements
/[about cylinder axis
int num_axial Il # of pattern elements
=1, /I along cylinder axis
double spacing /I spacing of pattern
= 0.0, /I elements

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”
"baseutil/vector/position.hxx”
"baseutil/vector/vector.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kerndata/top/face.hxx”
"kernel/kernutil/law/pattern.hxx”
"kernel/kernutil/law/pattern_api.hxx”
"kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Kernel R10

Creates a two—dimensional hexagonal pattern with cylindrical symmetry,
with a radius and axis defined either by the center position and normal
vector or by the cylindrical fade_face. The number of angular and axial
elements in the pattern are setrfayn_angular andnum_axial,

respectively, and the distance between pattern elements by spacing. The
pattern coordinates are specified in the order (angular, axial).

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAposition center(5, 0, 0);

SPAvector normal(0, 1, 0);

int num_angular = 8;

int num_axial = 6;double spacing = 3.0;
check_outcome(result =
api_hex_cylindrical_pattern(pat, center, normal,
num_angular, num_axial, spacing));

/I Create a cylinder

BODY* cylinder = NULL;

SPAposition bottom(0, 0, 0);

SPAposition top(0.5, 0, 0);

double maj_rad = 1.0;

double min_rad = 1.0;

check_outcome(result =
api_solid_cylinder_cone(bottom, top, maj_rad,
min_rad, maj_rad, NULL, cylinder));

/I Apply the pattern to the cylinder
check_outcome(result =
api_set_entity_pattern(cylinder, pat));

/I Clean up
pat—>remove();

None
None
kernel
kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_hex_pattern

Function:
Action:

Prototype:

Includes:

Description:

Patterns
Creates a hexagonal pattern in two or three dimensions.

outcome api_hex_pattern (
pattern*& pat, /I created pattern
const SPAvector& normal, // normal to pattern
const SPAvector& x_vec, // starting axis

int num_x, /l repeat in x

int num_y, /I repeat iny

int num_z Il # times to
=1, /l repeat in z

AcisOptions* ao = NULL // acis options

)i

#include "kernel/acis.hxx”

#include “baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Creates a hexagonal pattern in two or three dimensions. For
two—dimensional patterns, tim@rmal parameter specifies the direction
normal to the pattern plane; for three—dimensional patterns, it sets the
z—direction. Thex_vec argument defines the pattern’s starting axis and
displacementnum_x, num_y, andnum_z set the number of repetitions in
each dimension over which the pattern extends.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector normal(0, 0, 1);

SPAvector x_vec(2, 0, 0);

int num_x = 4;

int num_y = 4;

int num_z = 4;

check_outcome(result = api_hex_pattern(pat, normal,
X_Vec, num_x, hum_y, num_z));

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

/I Create a sphere

BODY* sph = NULL;

SPAposition center(1, 1, 0);

double radius = 1.0;

check_outcome(result = api_solid_sphere(center,
radius, sph));

/I Apply the pattern to the sphere
check_outcome(result = api_set_entity_pattern(sph,

pat));

/I Clean up
pat—>remove();

None
None
kernel
kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_hook_annotations

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Feature Naming
Traverses the active list of annotations and &ddsRIB_ ANNOTATIONS
to hook them to the annotated entities.

outcome api_hook_annotations (

is_fun is_function /l type of annotation
= is_ ANNOTATION,

BULLETIN_BOARD* bb /I obsolete, ignored
= NULL,

AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

The flag foris_fun defaults tas_ ANNOTATION. However, anys

function for a class can be used. So, for example, to get the top vertex
annotations from a sweep operation, this function can be passed

is_ SWEEP_ANNO_VERTEX_TOP as an argument.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_initialize_kernel

Function: Modeler Control, Entity, Model Geometry, Model Topology, Construction Geometry
Action: Initializes the kernel library.
Prototype: outcome api_initialize_kernel ();
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_initialize_spline

Function: Modeler Control, Spline Interface
Action: Initializes the spline library.
Prototype: outcome api_initialize_spline ();
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/spline/api/spl_api.hxx”

Description: Refer to Action.

Kernel R10

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/api/spl_api.hxx
Effect: System routine

api_integrate law

Function: Laws, Geometric Analysis, Analyzing Models
Action: Integrates a law over a given domain to a given tolerance.
Prototype: outcome api_integrate_law (
law* input_law, /I law to be integrated
double start, /I start of the domain
double end, /I end of the domain
double& answer, /l value of integration
double tolerance /I optional tolerance for
=1E-12, /I the answer
int min_level /I optional minimum
=2, /I Romberg Table rows
int* used_level /I optional number of
= NULL /I Romberg rows returned
);
Includes: #include “kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_integrate law_wrt
Function: Laws, Geometric Analysis, Analyzing Models
Action: Integrates a law over a given domain to a given tolerance with respect to a
given variable.

Kernel R10

Prototype:

Includes:

law* input_law,
double start,
double end,

int wrt,

double* along,

double& answer,

double tolerance
=1E-12,

int min_level
=2,

int* used_level
= NULL

);

outcome api_integrate_law_wrt(

law* integrand,
double start,
double end,
int wrt,

double* along,

double* answer,
double tol,

int min_level,

int* used_level

):

#include
#include
#include
#include

“kernel/acis.hxx”

outcome api_integrate_law_wrt (

/[law to be integrated
/I start of the domain
/I end of the domain
// variable to integrate
/I with respect to
/I an array the size of
/l the take dim of the
/I law with all other
Il variables filled in
/I value of integration
/I optional tolerance for
/l the answer
/I optional minimum
/I Romberg Table rows
// optional number of
/I Romberg rows
/I returned

/I law to be integrated
/I start of the domain
/I end of the domain
/ variable to integrate
/I with respect to
/I an array the size of
/l the take dim of the
/I law with all other
Il variables filled in
/I value of integration
// optional tolerance for
/I the answer (default
/I = 1.0E-12)
/I optional minimum
/I Romberg Table rows
/I (default = 2)
/I optional number of
/I Romberg rows used
/I (default = NULL)

“kernel/kernapi/api/api.hxx”
“kernel/kernapi/api/kernapi.hxx”

“lawutil/law_base.hxx”

Kernel R10

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Refer to Action.
None
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_integrate law_wrt_and_splits

Laws, Geometric Analysis, Analyzing Models

Function:
Action:

Prototype:

Kernel R10

Integrates a law over a given domain to a given tolerance with respect to a
given variable with respect an array of points to split the domain.

outcome api_integrate_law_wrt_and_splits (

law* input_law,
double start,
double end,

int wrt,

double* along,

double& answer,
int number_of_splits
= O’
double* splits
= NULL,
double tolerance
=1E-12,
int min_level
=2,
int* used_level
= NULL

);

/I law to be integrated
/I start of the domain
/I end of the domain
// variable to integrate
/I with respect to
/I an array the size of
/I the take dim of the
/I law with all other
/I variables filled in
/I value of integration
/I optional number of
/I singularities
/I optional number of
/I splits
/l optional tolerance for
/I the answer
/I optional minimum
/I Romberg Table rows
/I optional number of

/I Romberg rows returned

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_integrate_law_wrt_and_splits(

law* integrand, /l law to be integrated
double start, /I start of the domain
double end, /I end of the domain
int wrt, // variable to integrate
/I with respect to
double* along, /I an array the size of

/l the take dim of the

/I law with all other

Il variables filled in
double* answer, /l value of integration
int number_of_splits, /I optional number of

/I singularities

/I (default = 0)
double* splits, /I optional where the

/I singularities are

/I (default = NULL)

double tol, /I optional tolerance for
/I the answer (default
Il = 1.0E-12)

int min_level, /I optional minimum

/I Romberg Table rows
/I (default = 2)

int* used_level /I optional number of
/I Romberg rows used
/I (default = NULL)

);

#include “kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”

#include “lawutil/law_base.hxx”

During the integration it will take into account an array of points to split
the domain up into. This should be used if the domain contains known
singularities.

None

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

Kernel R10

api_law_to_entity
Function: Laws
Action: Converts a law mathematic function into an entity for the purposes of
saving to and restoring from a SAT file.

Prototype: outcome api_law_to_entity (
law* input_law, Il law function
ENTITY*& out_ent, /I pointer to entity
AcisOptions* ao = NULL // acis options
);

Includes: #include “kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include “lawutil/law_base.hxx”

#include "kernel/kernapi/api/acis_options.hxx”

Description: Law mathematic functions that are used for analysis of the design are not
normally saved to the SAT file. Typically, only laws that are attached to
model entities through geometry definitions are saved to the SAT file. In
order to make laws more persistent and to share them from session to
session, they can be turned ih#®W instances, which are derived from
ENTITY and are saved and restored.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Changes model

Kernel R10

api_linear_pattern

Function: Patterns
Action: Creates a linear pattern.
Prototype: outcome api_linear_pattern (
pattern*& pat, /I created pattern

const SPAvector& x_vec, // displacement vector
/I 'in the x—direction
int num_x, /I # of elements in
/I the x—direction
const SPAvector& y_vec /I displacement vector
=*(SPAvector*)NULL_REF,// in the y—direction
int num_y /I # of elements in
=1, /I the y—direction
const SPAvector& z_vec // displacement vector
=*(SPAvector*)NULL_REF,// in the z—direction

int num_z Il # of elements in
=1, /I the z—direction
logical y_staggered /I flag to stagger the
= FALSE, /I pattern y—components
logical z_staggered /I flag to stagger the
= FALSE, /I pattern z—components
logical fit_distance /I displacement flag
= FALSE,
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: Creates a linear pattern in one, two, or three dimensions, depending upon
the number of input arguments. The pattern orientation is specified by
x_vec, y_vec, andz_vec, which are neither required to be in the
coordinate directions nor to be orthogonal. The number of repetitions
along each axis is defined bym_x, num_y, andnum_z If y_staggered
or z_staggered is TRUE, the pattern is staggered along the associated
directions. Iffit_distance is TRUE, the vectorx_vec, y_vec, andz_vec
represent displacements over the entire pattern rather than displacements
between adjacent pattern elements.

Kernel R10

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(2, 0, 0);

int num_x = 4;

SPAvector y_vec(0, 2, 0);

int num_y = 3;

SPAvector z_vec(l, 1, 2);

int num_z = 3;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y, Z_Vec, num_z));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,

pat));
/I Clean up
pat—>remove();
Errors: None
Limitations: None
Library: kernel
Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

Kernel R10

api_linear_scale pattern

Function: Patterns
Action: Creates a new pattern by applying a linear scale to an existing pattern.
Prototype: outcome api_linear_scale_pattern (
pattern*& pat, /I created pattern
const pattern& in_pattern, // input pattern
double first_scale, /I first scale
double last_scale, /I second scale
int which_dim, /I dimension for
/I scaling
const SPAposition& root, /I position for
/I scaling
logical merge /I merge flag
= TRUE,
AcisOptions* ao = NULL /I acis options
);
outcome api_linear_scale_pattern(
pattern*& pat, /I created pattern

const pattern& in_pattern, // input pattern
const SPAvector& first_scale,// first scale
const SPAvector& last_scale,// second scale

int which_dim, /I dimension for
/I scaling
const SPAposition& root, /I position for
/I scaling
logical merge = TRUE, /I merge flag
AcisOptions* ao = NULL /I acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “baseutil/vector/vector.hxx”

Kernel R10

Description:

Kernel R10

Applies a linear scale, froffirst_scale to last_scale (which may be given
as vectors when nonuniform scaling is desired), to an existing pattern,
merging with any existing scaling or, optionally (witterge=FALSE),
replacing it. The argumenmthich_dim specifies the dimension in which
the scale is applied. The positimot specifies the neutral point about
which the scaling takes place (i.e., the point on the seed entity that
remains fixed while the entity’s dimensions are altered). Bath scale
andlast_scale must be greater than zero.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

double begin_scale = 0.5;

double end_scale = 2.0;

int which_dim = 0;

SPAposition root(0, 0, 0);

check_outcome(result =
api_linear_scale_pattern(mod_pat, *pat.first_scale,
last_scale, which_dim, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

I/l Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
mod_pat));

/I Clean up
pat—>remove();mod_pat—>remove();

Errors:
Limitations:
Library:
Filename:

Effect:

None
None
kernel
kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_load_state

Function:

Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

SAT Save and Restore
Loads the state of global variables from a given text file.

outcome api_load_state (

FILE* file_ptr, /I file descriptor
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API loads the states of global variables such as options and tolerances
from a given text file. You may use this function wéthi_save_state to
compare the behaviors between your application and Scheme AIDE.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_logging

Function:

Action:

Prototype:

History and Roll
Sets logging on or off for roll back.

outcome api_logging (
logical on_off

);

/I TRUE for on

Kernel R10

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "baseutil/logical.h”

TRUE enables logging of data structure changes.
None

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

System routine

api_loop type

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Debugging, Model Topology
Determines the type of a given loop.

outcome api_loop_type (

LOOP* in_loop, // loop to test
loop_type& type, I type of loop
int info[] /I array holding
= NULL /I information about loop
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/ptinface/ptfcenum.hxx”
#include “kernel/kerndata/top/loop.hxx”

This API returns the type of a given loop, types include:

— loop_unknown

— loop_periphery

— loop_hole

— loop_separation (not used)
— loop_u_separation

— loop_v_separation

— loop_uv_separation

They are enum types defined in ptfcenum.hxx

Errors:
Limitations:
Library:
Filename:

Effect:

api_make

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

api_make

Function:
Action:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

cubic

Laws, Mathematics

Creates a cubic law given {a,b,f(a),f(b),f’'(a),f'(b)}.

outcome api_make_cubic (

double aval, /I a value
double bval, /I b value
double faval, /l fata
double fbval, /I fatb
double ffaval, /I deriv of f at a
double ffbval, /I deriv of f at b
law*& answer /I ptr to law
);

#include “kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Produces a cubic polynomial with given boundary conditions for both it
and its first derivative. The user supplies the boundary val@eslb, the
desired output of the law atandb (e.g.,f_a andf_b), and the desired
output of the first derivative a andb (e.g.,df _a anddf_b). The result is

a cubic polynomial meeting these boundary conditions.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

linear

Laws, Mathematics
Creates a linear law given {a,b,f(a),f(b)}.

Kernel R10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

api_make

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

outcome api_make_linear (

double aval, /I a value
double bval, /I b value
double faval, /l fata
double fbval, /I fatb

law*& answer /I ptr to law
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Produces a linear polynomial with given boundary conditions for both its
output. The user supplies the boundary valuasdb and the desired
output of the law aa andb (e.g.,f_a andf_b). The result is a linear
polynomial meeting these boundary conditions.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

polynomial _law

Laws, Mathematics
Creates a polynomial law.

outcome api_make_polynomial_law (

double* coeff, /I array of coefficients

int degree, /I maximum degree of
/I polynomial

law*& answer /I ptr to law

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Given an array of coefficients and the maximum degree for the
polynomial, this creates a law that represents the associated polynomial.

Errors:
Limitations:
Library:
Filename:

Effect:

api_make

Function:

Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

quintic
Laws, Mathematics

Creates a quintic law given {a,b,f(a),f(b),f’'(a),f’'(b) f"(a) f"(b)}.

outcome api_make_quintic (

double aval, /I a value

double bval, /I b value

double faval, /l fata

double fbval, /I fatb

double ffaval, /I 1st deriv of f at a
double ffbval, /I 1st deriv of fat b
double fffaval, / 2nd deriv of f at a
double fffbval, /I 2nd deriv of f at b
law*& answer /I ptr to law

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Produces a quintic polynomial with given boundary conditions for it, its
first derivative, and its second derivative. The user supplies the boundary
valuesa andb, the desired output of the lawagandb (e.g.,f_a andf_b),

the desired output of the first derivativeaaandb (e.g.,df_a anddf_b),

and the desired output of the second derivativeatidb (e.g.,ddf_a and
ddf_b). The result is a quintic polynomial meeting these boundary
conditions.

None
None

kernel

Kernel R10

Filename:

Effect:

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_make_rails

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Sweeping, Laws
Creates the default rail laws for sweeping along a wire.

outcome api_make_rails (

ENTITY* path, /l a WIRE or EDGE
law**& rails, I array of rail
/I laws returned
int& number_of rails, /l number of rail
/I laws returned
law** axis /I optional axis
= NULL, /l'in an array
FACE** faces /I optional faces
= NULL, /l'in an array
law** user_rails /I optional user
= NULL, /I defined rails
law* twist_law /I optional twist
= NULL, I law

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernapi/api/kernapi.hxx”
"kernel/kerndata/data/entity.hxx”
"kernel/kerndata/top/face.hxx”
“lawutil/law_base.hxx”
"kernel/kernapi/api/acis_options.hxx”

This produces an array of rail laws that can be used by sweeping in the
sweep options. A single rail law is produced if pa¢h is a single edge or
a wire with a single underlying edge. Otherwise, it creates multiple rail
laws, one for each underlying edge in pagh.

The only required argument is tpath. If no other arguments are
supplied, then the default rails are created. The default for the creation of

rails is:

Errors:

Limitations:

If the path is planar, the rail law is the planar normal. A constant

vector law is returned

— If thepath is a helix, the rail law points towards the axis. The Frenet
law is returned.

— If all edges in the wire are planar, then an array of rail laws is
created, whereby each law in the array corresponds to an edge in the
wire. The rail laws correspond to the planar normal of edges.

— If the wire has surfaces, then the surface normal laws are returned.

— If the path isn't one of the above cases, the rail uses minimum

rotation.

If the inputpath is composed of multiple pieces, such as a wire with more
than one underlying edge, then array arguments must supply the same
number of elements as the numbepath elements. They may pad their
array withNULL arguments.

The axis argument is used fgrath segments that have an implied center
axis. An example of this might be a helix, an expanding helix, or the coil
of a telephone handset cable. Hxé argument is the derivative of the
implied center axis, which tells the implied axis direction. Wheraitie

is supplied, then its cross product with the path is returnedaxXibarray
can be padded witNULL for sections of th@ath that do not have an
implied axis.

Theface argument is used when a portion of ffa¢h segments borders a
non-analytic face. The coedge of the wire providedatls must actually
belong to the face entity supplied. The face must be non-analytic. The
resulting rail is oriented to the face normal. Thee array can be padded
with NULL for sections of theath that do not have such a face.

The user-rails argument permits any default rail for a given section of the
path to be overridden by the user-supplied law in the array.usberails
array can be padded wiNiJLL for sections of th@ath that are to use the
default.

Thetwist argument works on the whole rail array. After the other rail
parameters have been input and calculated, the law providedsby
operates on the whole set of rails. This takes in an angle of twist per
distance along thpath.

None

When faces are supplied, the coedge of the wire must actually belong to
the face. The face must be non-analytic. The face argument is not
supported for analytic geometry in the face.

Kernel R10

Library:
Filename:

Effect:

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_make_root_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Kernel R10

History and Roll
Sets the state of the root.

outcome api_make_root_state (
DELTA_STATE* ds /I state to make the root
/I of its stream

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

For any giverENTITY, the history of thaENTITY must be maintained on
a singleHISTORY_STREAM. api_distribute_state_to_streams
implements a consistency check to make sure this is the case. When
processing a change or del®dLLETIN, it first determines which
HISTORY_STREAM should get th&ULLETIN. It then checks to see that
the given stream contains a creBtél LETIN for theENTITY. This
depends on cooperation fraapi_prune_history. api_prune_history may
delete a number AELTA_STATES, but it retains the creaB®ULLETINS
for any activeENTITYs in the rooDELTA_STATE.

In addition to holding creatBULLETINS from prunedELTA_STATES,

the rootDELTA_STATE cannot be rolled over bypi_roll_n_states,
api_change_to_state, or other high level roll APIs. (The low level
api_change_state can roll over the root state, but we recommend against
it.) This makes it useful for holdinBULLETINS created during

application initializations. For example, one does not typically want to be
able to roll over the creaBULLETINS from loading a SAT file into a new
part.

api_make_root_state prunes away all previous history, saving the create
BULLETINSs at the beginning of the given state, and makes the state the
root state.

The pointer tads is NULL.

Limitations:
Library:
Filename:

Effect:

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_make_ VBL_output_surfaces

Function:
Action:

Prototype:

Includes:

Description:

Blending

Splits the approximating surface fov8L_SURF into n four—sided
bs3_surface patches.

outcome api_make_VBL_output_surfaces (
const surface* vbl_sf, // surface with
/I underlying VBL_SURF
double& interior_fit, /I achieved interior fit
/I tolerance
double& boundary_fit, /I achieved boundary fit
/I tolerance
bs3_surface*& bs3_array, // array of returned
/I bs3_surfaces
int& n, /I number of returned
/I bs3_surfaces
logical approx_error /l'if TRUE, approximate
= TRUE /I the error
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerngeom/surface/surdef.hxx”
#include "kernel/spline/bs3_srf/bs3surf.hxx”
#include "baseutil/logical.h”

This API approximates am-sidedVBL_SURF by n four—sided
bs3_surfaces, which enables ACIS to output vertex blend surfaces in a
form that can be read and used by most other packages.

Kernel R10

Kernel R10

In ACIS, theVBL_SURF is approximated by bs3_surface whose
parameterization is defined over arsided regular polygon. This API

makes um four—sided patches that are separated from one another in the
original approximating surface parameter space by straight lines radiating
from the center of tha-sided polygon to the midpoint of each of the

sides. The new approximating surfaces are parameterized over the unit
square. Adjacertts3_surface patches are made up to have the same
number of knot points along common boundaries, and so the surfaces are
CO continuous across the boundaries. However, the parameter lines do not
run smoothly across the boundaries, and so the approximation is not C1 or
G1 continuous across the patch boundaries.

The API function receives a pointer to a surface, which has an underlying
VBL_SURF. The caller should also supply two doubles, which specify the
requested fit tolerances of the approximating surfaces, both on the interior
of theVBL_SURF, and on its boundary. These will return the fit tolerances
that the approximating surfaces have achieved, which may be larger than
the requested fit tolerances, if these are particularly small, or if the surface
is particularly complex. One might, for example, request an internal fit
tolerance of .001 and a boundary fit tolerance that is 10 times smaller than
this. Note that the interior fit tolerance (but NOT the boundary one) may
be passed as exactly —1.0 to mean "do not measure the interior fit”, in
which case no particular interior fit is guaranteed, except that which
comes about naturally by having fit the boundary correctly, and no
meaningful value is returned for the achieved interior fit. The function can
operate more quickly if no specific interior fit is requested. The internal
joins between the patch boundaries are unaffected by this.

The caller must also supply the function with a pointer ibe3a surface

and a reference to an integer. These will be used to return an array of the
approximatingbs3_surfaces and the length of this array, respectively.
Additionally, anapprox_error flag can be supplied which specifies

whether the errors returned need to be precise or merely a (close) upper
bound. If passe@RUE, the error is bounded approximately but quite
closely, and the function will be able to work more quickly.

Errors:

Limitations:
Library:
Filename:

Effect:

If the suppliedsurface is of typespline and the underlyingpl_sur is a
VBL_SURF, this API function makes up four—sided approximating
bs3_surfaces. A pointer to an array of thebe3_surfaces is then
returned, along with the number li§3_surfaces in the array, and the
maximum internal and boundary fit tolerances oftib®_surfaces. If the
supplied surface is notspline, or if it is aspline and the underlying
spl_sur is not avVBL_SURF, this API function returns BULL
bs3_surface pointer and sets the number of approximatieg surfaces
to zero.

A NULL pointer to a surface is specified. Té@_sur underlying the
surface is not ¥BL_SURF.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_make_version_object

Function:
Action:

Prototype:

Includes:

History and Roll
Makes amcisVersion object from various forms of input.

outcome api_make_version_object(

AcisVersion*& av, /I ACIS version object
/I from following input
int tag /l input tag
);
outcome api_make_version_object(
AcisVersion*& av, /I ACIS version object
/I from following input
int major, /I major version number
int minor, /I minor version number
int point /I point version number
);
outcome api_make_version_object(
AcisVersion*& av /I ACIS version object

/I of current executable
);
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "baseutil/version/vers.hxx”

Kernel R10

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Makes amcisVersion object from various forms of input.
None

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_merge_states

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

History and Roll
Modifies a history stream by merging a range of delta states.

outcome api_merge_states (

DELTA_STATE* dsl /I state defining one end

= NULL, /I of range to be merged
DELTA_STATE* ds2 // other end

= NULL, /I of range to be merged
HISTORY_STREAM* hs /I history stream

= NULL, /I containing states
logical prune_partners // flag to allow pruning

= FALSE, /I of partner states
logical keep_both /l flag to indicate both

= FALSE /I states are to be kept
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "baseutil/logical.h”

This APl merges the delta states contained in a range specified by the user
through the argumentis1 andds2. If one of these arguments is given as
NULL, the specified state is merged with its next state. If both are given as
NULL, the active delta state is merged with its predecessor. The user may
specify the relevant history stream by furnishing the arguiment

Otherwise, it is taken fromds1 ords2, if they are given, or set to the

default stream, if they are not. By default, the function fails if the range
contains states having partner states, but if thepilage_partners is set

to TRUE, the function will prune the branches associated with these
partners. If thekeep_both flag isTRUE, the merge happens between the
given states so neither is deleted. kKhep_both flag has no effect unless

two nonNULL states are given.

Errors: The delta states referenceddsi andds2 do not belong to the same
stream, they do not belong to the specified stream, or partner states were
encountered witlprune_partners set toFALSE.

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_name_state

Function: History and Roll

Action: Names the current state.

Prototype: outcome api_name_state (
const char* name, /Il name to give to

/I current operation

DELTA_STATE* ds /I delta state to name
);

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”

Description: This API assigns a name to the given delta state. Use the specified hame in
calls toapi_find_named_state to find a state to pass to
api_change_to_state.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_ndifferentiate_law

Function: Laws, Geometric Analysis, Analyzing Models
Action: Numerically differentiates a law at a given point with respect to a given
variable a given number of times.

Kernel R10

/I law to differentiate
/I where to take the
/I derivative
/I which variable to take
/I the derivative with
Il respect to
/I 0 = normal, 1 = from
/I the left, 2— from the
/I right
/I how many times to take
// the derivative
/I value of
/I differentiation
/I returned

The derivative may be taken from both sides or just from the left or right.

Prototype: outcome api_ndifferentiate_law (
law* input_law,
double* where,
int which_dim,
double* answer,
int type
= O’
int times
=1
);
Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”
Description:
Errors: None
Limitations: None
Library: kernel
Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_nmax_of law

Gets the maximum value of a given law over the given domain.

Function: Laws, Geometric Analysis, Analyzing Models
Action:
Prototype: outcome api_nmax_of _law (

law* input_law,
double start,

double end,
double* answer

);

Kernel R10

/I law to find the
/I roots of
/I start of the domain
/I end of the domain
/I returns where the
/I maximum value is

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Refer to Action.

None

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_nmin_of law

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Laws, Geometric Analysis, Analyzing Models

Gets the minimum value of a given law over the given domain.

outcome api_nmin_of _law (

law* input_law, /I law to find the roots
/I of

double start, /I start of the domain

double end, /I end of the domain

double* answer /I returns where the

/I minimum value is

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Refer to Action.

None

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

Kernel R10

api_note_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

History and Roll
Sets a check point for roll back and returns model differences since
previous call taapi_note_state.

outcome api_note_state (

DELTA_STATE*& ds, /Il state change returned
HISTORY_STREAM* hs /I history stream
= NULL, /I to check
logical delete_if _empty // flag to delete
= FALSE /'if empty
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "baseutil/logical.h”

This API notes the current state of the model and returns a pointer to a
delta_state that contains differential model data covering the period since
the previous call tapi_note_state.

If there have been no model changes since the last cgll_toote_state
the returnedELTA_STATE* will be NULL.

The defaultHISTORY_STREAM is used, unless a different history stream
is supplied.

If the logicaldelete_if empty is TRUE, an emptyDELTA_STATE (i.e.
one with no bulletins) will be removed from the stream when noted.

To return the model to the previous state from the current state, call
api_change_state with thedelta_state as argument.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_nroots_of law

Function:
Action:

Kernel R10

Laws, Geometric Analysis, Analyzing Models
Gets all the roots of a given law over the given domain.

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

outcome api_nroots_of_law (
law* input_law,

double start,
double end,

int* size,
double** answer
)

#include "kernel/acis.hxx”

/I law to find the roots
/I of
/I start of the domain
/I end of the domain
/I how many roots where
/I found returned
/I returns where the
/I maximum value is

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

#include “lawutil/law_base.hxx”

Refer to Action.
None
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_nsolve_laws

Function:
Action:

Prototype:

Laws, Geometric Analysis, Analyzing Models
Determines where two given laws are equal over a given domain.

outcome api_nsolve_laws (
law* input_law1l,

law* input_law2,
double start,

double end,
int* size,

double** answer

);

/I first law to solve
/I with
/I second law to solve
/I with
/I start of the domain
/I end of the domain
/I returns how many
/I places the laws equal
/I each other
/I returns where the two
I/l laws equal each other

Kernel R10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

Refer to Action.

None

The number of places that the two laws equal must be finite.
kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_optimize_tvertex_tolerance

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Kernel R10

Precision and Tolerance, Tolerant Modeling
Optimize (minimizes) the TVERTEX tolerance on the ends of a EDGE or
TEDGE.

outcome api_optimize_tvertex_tolerance (

EDGE* this_edge, /ledge to optimize
AcisOptions* ao /IACIS options such as

= NULL /Iversion and journal
)i

#include "kernel/acis.hxx”

#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/edge.hxx”

Optimize (minimizes) th@ VERTEX tolerance on the ends oE®DGE or
TEDGE

None

Not applicable

kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_pattern_find_bump

Function: Patterns
Action: Finds the bump associated with a given face or loop.
Prototype: outcome api_pattern_find_bump (
const ENTITY* seed, // input face or lump
ENTITY_LIST& face_list, // faces belonging
I/l to bump
ENTITY_LIST& loop_list, // loops belonging
/l to bump

ENTITY_LIST& no_cross_list// faces limiting
=*(ENTITY_LIST*)NULL_REF, /I bump’s extent
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: Finds the bump associated with the face or loop specifiesstdyy, and
returns a list of its faces and loopsfae_list andloop_list. The extent of
the bump’s definition may be limited by includinghe._cross_list of

faces.
Errors: The seed used to find the bump is neither a face nor a loop.
Limitations: None
Library: kernel
Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: System routine

api_pattern_to_entity

Function: Patterns, SAT Save and Restore
Action: Converts a pattern into an entity for the purposes of saving to and restoring
from a SAT file.

Prototype: outcome api_pattern_to_entity (
pattern* in_pat, /I pattern to convert
ENTITY*& out_ent, /I instance returned
AcisOptions* ao = NULL // acis options
)i

Kernel R10

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/patternent.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

In order to make patterns more persistent and to share them from session
to session, they can be turned iIAATTERN instances, which are
derived fromENTITY and are saved and restored.

The specified pattern iSULL.

None

kernel
kern/kernel/kernutil/law/patternent.hxx

Read—only

api_pause_journal

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Kernel R10

ACIS Journal
Sets the status flag for journalizing to off, disabling the snapshot journal
mechanism.

outcome api_pause_journal (
AcisOptions* ao /I acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Sets the status flag to off to disable journalizing.
None

None

kernel

kern/kernel/kernapi/api/acis_journal.hxx

System routine

api_periodic_keep pattern

Function: Patterns
Action: Creates a new pattern by applying a periodic keep—filter to an existing
pattern.
Prototype: outcome api_periodic_keep_pattern (
pattern*& pat, /I created pattern
const pattern& in_pattern, // input pattern
const logical* keep, /I array of keep values
int period, Il # of keep values
int which_dim, /I dimension for filter
logical merge /I merge flag
= TRUE,
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: Applies a periodic keep—filter to an existing pattern, merging with any
existing keep law or, optionally (witmerge=FALSE), replacing it. The
argumenteep is the Boolean list of successive keep values, so that the
size of the list§eriod) is the periodicity of the filter. The argument
which_dim specifies the dimension within which the filter is applied.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 6;

SPAvector y_vec(0, 2.0, 0);

int num_y = 12;

SPAvector z_vec(0, 0, 3.0);

int num_z = 4;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y, z_vec, num_z));

Kernel R10

/I Modify the pattern

pattern* mod_pat = NULL;

logical keep[3];keep[0] = TRUE;

keep[l] = TRUE;

keep[2] = FALSE;

int which_dim = 1;

check_outcome(result =
api_periodic_keep_pattern(mod_pat, *pat, keep, 3,
which_dim));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

Kernel R10

api_periodic_scale pattern

Function: Patterns
Action: Creates a new pattern by applying a periodic scale to an existing pattern.
Prototype: outcome api_periodic_scale_pattern (
pattern*& pat, /I created pattern
const pattern& in_pattern,// input pattern
const double* scale, /I array of scale values
int period, /I # of scale values
int which_dim, I/l dimension for scaling
const SPAposition& root, // base position
logical merge /I merge flag
= TRUE,
AcisOptions* ao = NULL // acis options
);
outcome api_periodic_scale_pattern(
pattern*& pat, /I created pattern

const pattern& in_pattern,// input pattern

const SPAvector* scale, // array of scale values

int period, /I number of scale values
int which_dim, /I dimension for scaling
const SPAposition& root, // base position

logical merge = TRUE, /I merge flag
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “baseutil/vector/vector.hxx”

Description: Applies a periodic scale to an existing pattern, merging with any existing
scaling or, optionally (withmerge=FALSE), replacing it. The argument
scale is the list of the successive scale values, and can be given as a vector
list when nonuniform scaling is desired, so that the size of thedigb()
is the periodicity of the scaling pattern. The argunverith_dim specifies
the dimension in which the scale is applied. The positionspecifies the
neutral point about which the scaling takes place (i.e., the point on the
seed entity that remains fixed while the entity’s dimensions are altered).
All scale values in the list must be greater than zero.

Kernel R10

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, hum_y));

/I Modify the pattern
pattern* mod_pat = NULL;
double scale[4];

scale[0] = 0.5;
scale[1l] = 1.5;
scale[2] = 1.0;
scale[3] = 2.0;

int which_dim = 0;

SPAposition root(0, 0, 0);

check_outcome(result =
api_periodic_scale_pattern(mod_pat, *pat, scale,
4, which_dim, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity_pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

Errors: None
Limitations: None
Library: kernel

Kernel R10

Filename:

Effect:

kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_polar_grid_pattern

Function:
Action:

Prototype:

Includes:

Patterns

Creates a polar—grid pattern.

outcome api_polar_grid_pattern (

pattern*& pat,

/I created pattern

const SPAposition& center,// center (root)

/I position
const SPAvector& normal, // normal to pattern

/Il plane
int num_rings, /I # of rings in pattern
double distance, /I distance between

/I pattern rings
const SPAvector& start // pattern start
=*(SPAvector*)NULL_REF,// direction

logical not_rotate /I rotation flag
= FALSE,

logical hex_symmetry /Il force hex symmetry
= FALSE, /I flag

double start_angle /I start angle
= 0.0,

double end_angle
double ratio

AcisOptions* ao = NULL

);

#include
#include
#include
#include
#include
#include
#include
#include

= 2.0* 3.14159265358979323846,

=1.0, /I radii

"kernel/acis.hxx”

"baseutil/logical.h”
"baseutil/vector/position.hxx”
"baseutil/vector/vector.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernutil/law/pattern.hxx”
"kernel/kernutil/law/pattern_api.hxx”
"kernel/kernapi/api/acis_options.hxx”

/I end angle
/I ratio of minor/major

/I acis options

Kernel R10

Description:

Errors:
Limitations:

Library:

Kernel R10

Creates a two—dimensional polar—grid pattern defined by a root position
center (which may or may not lie upon the seed entity) and the vector
normal, which sets the orientation of the pattern. The number of rings in
the grid (including the center) is specified faym_rings, and the distance
between rings bgpacing. The optionaktart argument specifies the
direction of the first spoke of the pattern. The elements of the pattern are
kept in a fixed orientation ifiot_rotate is TRUE; settinghex_symmetry to
TRUE ensures that hexagonal symmetry is maintained for patterns
extending either 360 or 180 degrees. $taet_angle andend_angle
arguments fix the angular extent of the pattern, in radians, andtitne
argument sets the ratio of minor/major radii of the pattern perimeter. The
pattern coordinates are specified in the order (radial, angular).

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAposition center(0, 0, 0);

SPAvector normal(0, 0, 1);

int num_rings = 5;

double spacing = 4.0;

check_outcome(result = api_polar_grid_pattern(pat,
center,normal, num_rings, spacing));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
pat));

/I Clean up
pat—>remove();

None
None

kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx

Effect: Changes model

api_project_curve_to_surface

Function: Model Geometry
Action: Projects a curve onto a surface.
Prototype: outcome api_project_curve_to_surface (
const curve& in_curve, Il curve to project
const SPAinterval& in_range,// parameter range of

/I in_curve
const surface& in_surface, // surface to project

/I curve on to
curve*& curve_on_surface, /I resulting curve

/I projected onto

/I surface
AcisOptions* ao = NULL // acis options
)
Includes: #include "kernel/acis.hxx”

#include "baseutil/vector/interval.hxx”
#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerngeom/curve/curdef.hxx”
#include “kernel/kerngeom/surface/surdef.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: This API projectsn_curve ontoin_surface, returning the result in
is_surface. in_range is the parameter rangenofcurve.

The input curve and surface should both be in world coordinates. They
might not be if their owning body contains a transformation, and may need
to be converted. See the Scheme commeage:project-to-face, for an
example of how to do this.

Only that part of the curve for which a perpendicular projection onto the
surface exists will be projected. Parts which can only be projected to the
boundaries of the surface will be excluded.

Errors: Curve or surface not in world coordinates.

Limitations: If the curve has a perpendicular projection onto the surface over more than
one distinct interval, the function will fail, as it can only return a single
output curve.

Kernel R10

Library:
Filename:

Effect:

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_prune_following

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

History and Roll
Removes forward delta states from a history stream.

outcome api_prune_following (
HISTORY_STREAM* hs /I history stream

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Prunes away all branches of the history stream following the active state
(seeapi_prune_history).

The pointerhs is NULL.

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_prune_history

Function:
Action:

Prototype:

Kernel R10

History and Roll
Removes delta states from a history stream.

outcome api_prune_history (

HISTORY_STREAM* hs, /I history stream to
/I prune
DELTA_STATE* ds /I delta state at
= NULL /I boundary of pruning

/I returned

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Snips the graph dPELTA_STATES just before the given state and deletes
the piece of the graph that does not include the active state. Thus one can
prune forward branches by passing a state after the current state. One can
prune past history by passing a state prior to the current state. It is
impossible to prune away the active state.

The pointer to ds or hs MULL.
The given delta state is not in the given history stream.

The number of places that the two laws equal must be finite.
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_query_state_ validity

Function:
Action:

Prototype:

Includes:

Description:

Errors:

History and Roll
ReturnsTRUE if the givenDELTA_STATE is in theHISTORY_STREAM.

outcome api_query_state_validity (

DELTA_STATE* ds, // input to test
logical& change_state_possible,// TRUE if state
/l'is valid
HISTORY_STREAM* hs /l input history stream
= NULL
);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

ReturnsTRUE when the givelDELTA_STATE in the
HISTORY_STREAM. If no HISTORY_STREAM s supplied, the default
stream is used.

None

Kernel R10

Limitations:
Library:
Filename:

Effect:

api_radial

Function:
Action:

Prototype:

Includes:

Kernel R10

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

pattern

Patterns
Creates a radial pattern.

outcome api_radial_pattern (

pattern*& pat, /I created pattern

const SPAposition& center,// center (root)
/I position

const SPAvector& normal, // normal to pattern
/Il plane

int num_radial, I # of radial pattern
/I rings

int num_angular, /I # of polar pattern
/I radii

double spacing, /I distance between

/I pattern rings
const SPAvector& start // start direction
=*(SPAvector*)NULL_REF,

logical not_rotate /I rotation flag
= FALSE,
double start_angle /I start angle
= 0.0,
double end_angle /I end angle
= 2.0* 3.14159265358979323846,
double ratio /I ratio of minor/major
= 1.0, /I radii

AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include "baseutil/vector/position.hxx”
#include “baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description:

Errors:
Limitations:

Library:

Creates a two—dimensional radial pattern defined by a root poséiter
(which may or may not lie upon the seed entity) and the veotaral,

which sets the orientation of the pattern. The number of elements in the
radial and angular directions are specifiechbyn_radial and

num_angular, respectively, and the distance between successive rings of
the pattern by thepacing argument. The optionatart argument specifies
the direction of the first spoke of the pattern. The elements of the pattern
are kept in a fixed relative orientationnit_rotate is TRUE. The

start_angle andend_angle arguments fix the angular extent of the pattern,
while theratio argument sets the ratio of minor/major radii of the pattern
perimeter. The pattern coordinates are specified in the order (radial,
angular).

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAposition center(0, 0, 0);

SPAvector normal(0, 0, 1);

int num_radial = 4;

int num_angular = 5;

double spacing = 3.0;

check_outcome(result = api_radial_pattern(pat,
center, normal, num_radial, num_angular, spacing));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

I/l Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
pat));

/I Clean up
pat—>remove();

None
None

kernel

Kernel R10

Filename:

Effect:

kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_random_keep_ pattern

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Patterns
Creates a new pattern by applying a random keep-filter to an existing
pattern.

outcome api_random_keep_pattern (

pattern*& pat, /I created pattern
const pattern& in_pattern, // input pattern
double keep_fraction, /I approximate fraction
/I of elements to keep

logical merge /I merge flag

= TRUE,
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Applies a periodic keep—filter to an existing pattern, merging with any
existing filter or, optionally (withmerge=FALSE), replacing it. The
argumentraction determines the fraction of pattern elements that are kept.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 12;

SPAvector y_vec(0, 4.0, 0);

int num_y = 12;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

Errors:
Limitations:
Library:
Filename:

Effect:

/I Modify the pattern

pattern* mod_pat = NULL;

double keep_fraction = 0.5;
check_outcome(result =
api_random_keep_pattern(mod_pat, *pat,
keep_fraction));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity_pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

None
None
kernel
kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_random_offset pattern

Function:
Action:

Prototype:

Patterns
Creates a new pattern by adding random offsets to an existing pattern.

outcome api_random_offset_pattern (
pattern*& pat, /I created pattern
const pattern& in_pat, // input pattern
const SPAvector& amplitude,// maximum
/I displacements
/[in 3 dimensions
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:

Kernel R10

#include "kernel/acis.hxx”

#include "baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Creates a new pattern by adding random offsets at each site of an existing
pattern. The components of thmplitude argument specify the
magnitudes of the maximum offsets that are imposed in each dimension.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

SPAvector amplitude(1.0, 0.5, 4.0);
check_outcome(result =
api_random_offset_pattern(mod_pat, *pat, amplitude));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

None

Limitations: None

Library: kernel
Filename: kern/kernel/kernutil/law/pattern_api.hxx
Effect: Changes model

api_random_orient_pattern
Function: Patterns
Action: Creates a new pattern by applying random rotations at each site of an
existing pattern.

Prototype: outcome api_random_orient_pattern (
pattern*& pat, /I created pattern
const pattern& in_pat, [/l input pattern
const SPAposition& root /I root position

= SPAposition(0, 0, 0),
const SPAinterval& axial_range// range of axial
= SPAinterval(0.0, /I rotation angles
2.0* 3.14159265358979323846),
const SPAvector& axial_dir // axis for tilt
=*(SPAvector*)NULL_REF,
const SPAinterval& tilt_range // tilt range
= SPAinterval(0, 3.14159265358979323846),
const SPAvector& tilt_dir /I tilt direction
=*(SPAvector*)NULL_REF,

AcisOptions* ao = NULL /I acis options
);
Includes: #include "kernel/acis.hxx”

#include "baseutil/vector/interval.hxx”
#include "baseutil/vector/position.hxx”
#include “baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Kernel R10

Creates a new pattern by applying random rotations at each site of an
existing pattern, usingpot as the position on the seed entity about which
the rotation is to occur. The default arguments yield a totally random
rotation. If the user specifies thig_dir and/oraxial_dir arguments, the
former gives the direction about which the intemilalrange is applied,
while the latter gives the direction about which the inteax&l_range is
applied. If thetilt_dir argument is not orthogonal &xial_dir, only its
orthogonal component is used.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

SPAposition root(0, 0, 0);

SPAinterval axial_range(0, 2 * M_PI);

SPAinterval tilt_range(0, 0);

SPAvector axial_dir(1, 0, 0);

SPAvector tilt_dir(0, 1, 0);

check_outcome(result =
api_random_orient_pattern(mod_pat, *pat, axial_range,
tilt_range, axis));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
mod_pat));

Errors:

Limitations:

Library:
Filename:

Effect:

/I Clean up
pat—>remove();
mod_pat—>remove();

None

None

kernel

kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_random_pattern

Function:
Action:

Prototype:

Includes:

Patterns

Creates a random pattern within the indicated region.

outcome api_random_pattern (
pattern*& pat, /I pattern created
const SPAvector& extents,// vector components

/I give pattern extents
/l'in each direction

int num_elements, /I # of pattern elements
int dimension /I pattern dimensionality
= 3’
logical ellipsoidal /I ellipsoidal flag
= FALSE,

const SPAvector& x_vec /I direction for first

= SPAvector(1, 0, 0),// extent component

const SPAvector& y_vec // direction for second

= SPAvector(0, 1, 0),// extent component

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”

"baseutil/logical.h”
"baseutil/vector/vector.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernutil/law/pattern.hxx”
"kernel/kernutil/law/pattern_api.hxx”
"kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

Kernel R10

Creates a random pattern of number elements, centered at the location of
the pattern seed entity and extending distances given by the components of
extents in dimension dimensions. The argumentsvec andy_vec

specify the orientation of the pattern, and are the directions associated

with the first two components of extents. (The third component is
associated with the cross product of these arguments.) When an ellipsoidal
pattern is selecteel(ipsoidal=TRUE), the number of pattern elements
actually generated may differ somewhat froomber.

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector extents = (50, 25, 10);

int number = 100;

int dimensions = 3;check_outcome(result =
api_random_pattern(pat, extents, number,
dimensions));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,

pat));

/I Clean up
pat—>remove();

The number of elements specified is less than one, or the dimensionality is
greater than three or less than one.

None
kernel
kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_random_scale pattern

Function: Patterns
Action: Creates a new pattern by applying a random scale to an existing pattern.
Prototype: outcome api_random_scale_pattern (
pattern*& pat, /I created pattern
const pattern& in_pattern,// input pattern
double min_scale, /I lower bound to the
/I applied scale values
double max_scale, I/l upper bound to the

/I applied scale values
const SPAposition& root, // root position
logical merge = TRUE, /I merge flag
AcisOptions* ao = NULL // acis options

);
outcome api_random_scale_pattern (
pattern*& pat, /I created pattern

const pattern& in_pattern,// input pattern
const SPAvector& min_scale,// lower bound to the

/I applied scale values
const SPAvector& max_scale,// upper bound to the

/I applied scale values
const SPAposition& root, // root position
logical merge = TRUE, /I merge flag
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “baseutil/vector/vector.hxx”

Description: Applies a random scale to an existing pattern, merging with any existing
scaling or, optionally (withmerge=FALSE), replacing it. The arguments
min_scale andmax_scale place limits upon the scale values, and can be
given as vectors when nonuniform scaling is desimbith_dim specifies
the dimension in which the scale is applied. The positionspecifies the
neutral point about which the scaling takes place (i.e., the point on the
seed entity that remains fixed while the entity’s dimensions are altered).
Both min_scale andmax_scale must be greater than zero.

Kernel R10

The following code snippet shows an example of how this API can be
used.

/I Create a pattern

pattern* pat = NULL,;

SPAvector x_vec(4.0, 0, 0);

int num_x = 8;

SPAvector y_vec(0, 2.0, 0);

int num_y = 10;

check_outcome(result = api_linear_pattern(pat, x_vec,
num_x, y_vec, num_y));

/I Modify the pattern

pattern* mod_pat = NULL;

double min_scale = 0.5;

double max_scale = 2.0;

SPAposition root(0, 0, 0);

check_outcome(result =
api_random_scale_pattern(mod_pat, *pat, min_scale,
max_scale, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,
mod_pat));

/I Clean up
pat—>remove();
mod_pat—>remove();

Errors: One or more of the specified scaling factors is zero or negative.
Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx

Effect: Changes model

Kernel R10

api_remove_pattern

Function:
Action:

Prototype:

Includes:

Description:
Errors:
Limitations:
Library:
Filename:

Effect:

Patterns
If the input entity is patterned, removes the pattern from it and from all
other associated patterned entities.

outcome api_remove_pattern (
ENTITY* ent, /I entity to remove
/I pattern from
AcisOptions* ao = NULL // acis options

)i
#include "kernel/acis.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”

Refer to Action.

None

None

kernel
kern/kernel/kernutil/law/pattern_api.hxx

System routine

api_remove_state

Function:
Action:

Prototype:

Includes:

Description:

History and Roll
Merges eéDELTA_STATE instance into &ISTORY_STREAM.

outcome api_remove_state (
DELTA_STATE* ds // state to remove

);
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

This APl removes ®ELTA_STATE from its owningHISTORY_STREAM
without deleting it. This is used to in conjunction waihi_note_state and
api_remove_state to build multiple independent history streams. After
noting a state, it can be moved to an alternate stream by removing it from
the default stream, and adding it usapml_add_state. To the stream it is

to become a part of.

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_remove_transf

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Transforms, Modifying Models
Removes (discards) the transformation of a body.

outcome api_remove_transf (

ENTITY* entity, /I entity of interest
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Each body contains a transformation matrix that gives the relationship
between its internal coordinate system and that of the world. This API
discards this transformation and places the body in the world coordinate
system.

Pointer to body isNULL.

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_replace edge with_tedge

Function:
Action:

Kernel R10

Precision and Tolerance, Tolerant Modeling
Replaces an edge with a tolerant edge.

Prototype: outcome api_replace_edge_with_tedge (

EDGE* this_edge, /I edge to replace
TEDGE*& this_tedge, /I new tolerant edge
AcisOptions* ao = NULL // acis options
);

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/edge.hxx”
#include “kernel/kerndata/top/tedge.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: Replaces an edg&DGE), its coedgesGOEDGE), and its vertices
(VERTEX), respectively with a tolerant edgeEDGE), tolerant coedges
(TCOEDGE), and tolerant vertice§ VERTEX).

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Changes model

api_replace tedge_ with_edge

Function: Precision and Tolerance, Tolerant Modeling

Action: Replaces a tolerant edge with a normal edge.

Prototype: outcome api_replace_tedge_with_edge (
TEDGE* this_tedge, /I tolerant tedge to

I replace

EDGE*& this_edge, /I new edge
AcisOptions* ao = NULL // acis options
);

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/edge.hxx”
#include "kernel/kerndata/top/tedge.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Replaces a tolerant edgeEEDGE), its tolerant coedge§ COEDGE), and
its tolerant verticesTVERTEX), respectively with a normal edge
(EDGE), coedges@OEDGE), and vertices(ERTEX).

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_replace_tvertex with_vertex

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Precision and Tolerance, Tolerant Modeling
Replaces a tolerant vertex with a normal vertex.

outcome api_replace_tvertex_with_vertex (

TVERTEX* this_tvertex, // tolerant vertex to
I replace

VERTEX*& this_vertex, /I new vertex
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”

#include “kernel/kerndata/top/tvertex.hxx”

#include “kernel/kerndata/top/vertex.hxx”

#include “kernel/kernapi/api/acis_options.hxx”

Replaces a tolerant verteR{ERTEX) with a normal vertexX(ERTEX).
None

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_replace vertex_ with_tvertex

Function:
Action:

Kernel R10

Precision and Tolerance, Tolerant Modeling
Replaces a vertex with a tolerant vertex.

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

outcome api_replace_vertex_with_tvertex (
VERTEX* this_vertex, /I vertex to replace
TVERTEX*& this_tvertex, // new tolerant vertex
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/top/tvertex.hxx”
#include “kernel/kerndata/top/vertex.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Replaces a verteXERTEX) with a tolerant verteXTVERTEX).
None

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_reset_boxes

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Precision and Tolerance, Tolerant Modeling
Removes and then adds back bounding boxes from the selected body and
its subparts (or just the selected entity if it's not a body).

outcome api_reset_boxes(

ENTITY* ent, /I entity of interest
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/data/entity.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Refer to Action.
None

None

Kernel R10

Library:
Filename:

Effect:

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_restore_entity list

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

SAT Save and Restore
Restores aentity_list from disk.

outcome api_restore_entity_list (
FILE* file_ptr, /I open file descriptor
logical text_mode, /I TRUE if file is text,
/l FALSE if binary
ENTITY_LIST& entities, // returns entities made
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "baseutil/logical.h”

#include “kernel/kernapi/api/acis_options.hxx”

The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

Establish the calling routine whether the file is text or binary and set
text_mode correctly [TRUE for SAT file or FALSE for SAB (binary) file].

Restoring a binary file is about twice as fast as restoring a text file;
however, use binary files only when the file is created and read on the
same version of the system running on the same type of machine.

When an entity is restored from a file, any unrecognized main entity types
(BODY, CURVE, etc.) are skipped and any references to those entities are
set toNULL. Unrecognized descendent entitiesAdTRIB, SURFACE, or
CURVE generate a new record for their immediate owner class and
references to them become references to the new record. If a record for a
derived class oATTRIB is not recognized, aATTRIB record results so

that the chain of attributes for the entity owning the unrecognized attribute
remains connected.

Errors:

Limitations:

Library:
Filename:

Effect:

It is possible to restore entities made by versions having different sets of
attribute classes. Attribute types common to the two versions are restored,
but attributes of types unknown to the receiving version are ignored.

A warning is given if the version of the product receiving the model

differs from the version that made the save file. It is an error if the current
product is older than that recorded in the file. Errors can also occur if you
use two different C runtime DLLs (e.g., one release and one debug) when
using ACIS. Refer to the “C Runtime Library DLL" section in the
Application Development Manual for more details.

Warning: Version number of this system differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_restore entity list_file

Function:
Action:

Prototype:

Includes:

SAT Save and Restore
Restores aentity_list from disk.

outcome api_restore_entity_list_file (
FileInterface* file_ptr, // open file descriptor
ENTITY_LIST& entities, // returns entities
/I restored
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Errors:

Limitations:

Library:

Kernel R10

This API restores a list of entities from a file. Tiie_ptr points to an

open file positioned at the point where this API begins the restore entity.
When the restore is complete, the file will be correctly positioned at the
end of the entity save. This allows an application to restore multiple
entities intermixed with other application specific data in a single save
file.

The calling APl must establish whether the file is text or binary and
text_mode must be set correctly.

Restoring a binary file is roughly twice as fast as restoring a text file.
However, use binary files only when the file is created and read on the
same version of ACIS running on the same type of machine. If an
unrecognized entity type is encountered in a binary file, the restore process
goes awry.

When an entity is restored from a text file, any unrecognized main entity
types BODY, CURVE, etc.) are skipped and any references to those
entities are set tNULL. Unrecognized descendent entitiesADTRIB,
SURFACE, or CURVE generate a new record for their immediate owner
class and references to them become references to the new record. If a
record for a derived class ATTRIB is not recognized, at the least an
ATTRIB record will result so that the chain of attributes for the entity
owning the unrecognized attribute remains connected.

It is possible to restore entities made by versions of ACIS having different
sets of attribute classes. Attribute types common to the two versions will
be restored, but attributes of types unknown to the receiving version of
ACIS will be ignored.

Reading from text files gives better recovery from error than does reading
from binary files.

A warning is given if the version of ACIS receiving the model differs from
the version that made the save file. It is an error if the current ACIS is
older than that recorded in the file.

Warning: Version number of this ACIS differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None

kernel

Filename:

Effect:

kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_restore_entity list_with_history

Function:
Action:

Prototype:

Includes:

Description:

SAT Save and Restore, History and Roll
Restores aentity_list from disk.

outcome api_restore_entity list_with_history (

FILE* file_ptr, /I open file

/I descriptor
logical text_mode, /l TRUE if file is

/I text, FALSE if

/I binary
ENTITY_LIST& entities, /I returns entities

/I made
HISTORY_STREAM_LIST& hslist,// returns history

/I streams made
DELTA_STATE_LIST& dslist, /I returns delta

/I states made
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "baseutil/logical.h”

#include "kernel/kernapi/api/acis_options.hxx”

The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

Establish in the calling routine whether the file is text or binary and set
text_mode correctly.

Restoring a binary file is about twice as fast as restoring a text file;
however, use binary files only when the file is created and read on the
same version of the system running on the same type of machine.

Kernel R10

Kernel R10

When an entity is restored from a file, any unrecognized main entity types
(BODY, CURVE, etc.) are skipped and any references to those entities are
set toNULL. Unrecognized descendent entitiesAdTRIB, SURFACE, or
CURVE generate a new record for their immediate owner class and
references to them become references to the new record. If a record for a
derived class oATTRIB is not recognized, aATTRIB record results so

that the chain of attributes for the entity owning the unrecognized attribute
remains connected.

It is possible to restore entities made by versions having different sets of
attribute classes. Attribute types common to the two versions are restored,
but attributes of types unknown to the receiving version are ignored.

A warning is given if the version of the product receiving the model
differs from the version that made the save file. It is an error if the current
product is older than that recorded in the file.

Application data referring tOELTA_STATES orHISTORY_STREAMS
can be restored as in the following pseudo code.

class app_data {
DELTA_STATE* ds;
void save(DELTA_STATE_LIST& dslist) {
write_int(dslist.lookup(ds));
}
void restore(DELTA_STATE_LIST& dslist) {
ds = read_int();

}
void fix_pointers(DELTA_STATE_LIST& dslist) {
if((int) <0){
ds = NULL;
} else {
ds = dslist]i];
}
}

2

DELTA_STATE_LIST dslist;

HISTORY_STREAM_LIST hslist;

ENTITY_LIST elist;

api_restore_entity list_with_history
(file, TRUE, elist, hslist,dslist);

Errors:

Limitations:

Library:
Filename:

Effect:

foreach(app_data* ap) {
ap—>restore(dslist);

}
foreach(app_data* ap) {

ap—>fix_pointers(dslist);
}
A similar procedure can be used when restoring application data that refers
to history streams. Sexpi_save_entity list_with_history for an example
of how to save the abowpp_data

Warning: Version number of this system differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_restore entity list_with_history file

Function:
Action:

Prototype:

SAT Save and Restore, History and Roll
Restores aentity_list from disk.

outcome api_restore_entity_list_with_history_file (

FileInterface* file_ptr, /I open file
/I descriptor
ENTITY_LIST& entities, /I returns entities
/I made

HISTORY_STREAM_LIST& hslist,// returns history
/I streams made
DELTA_STATE_LIST& dslist, /I returns delta
/I states made
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Kernel R10

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

Establish in the calling routine whether the file is text or binary and set
text_mode correctly.

Restoring a binary file is about twice as fast as restoring a text file;
however, use binary files only when the file is created and read on the
same version of the system running on the same type of machine.

When an entity is restored from a file, any unrecognized main entity types
(BODY, CURVE, etc.) are skipped and any references to those entities are
set toNULL. Unrecognized descendent entitiesAdTRIB, SURFACE, or
CURVE generate a new record for their immediate owner class and
references to them become references to the new record. If a record for a
derived class oATTRIB is not recognized, aATTRIB record results so

that the chain of attributes for the entity owning the unrecognized attribute
remains connected.

It is possible to restore entities made by versions having different sets of
attribute classes. Attribute types common to the two versions are restored,
but attributes of types unknown to the receiving version are ignored.

A warning is given if the version of the product receiving the model
differs from the version that made the save file. It is an error if the current
product is older than that recorded in the file.

Application data referring tOELTA_STATES orHISTORY_STREAMS
can be restored as in the following pseudo code.

Errors:

Limitations:

Library:
Filename:

Effect:

class app_data {
DELTA_STATE* ds;
void save(DELTA_STATE_LIST& dslist) {
write_int(dslist.lookup(ds));
}
void restore(DELTA_STATE_LIST& dslist) {
ds = read_int();

}
void fix_pointers(DELTA_STATE_LIST& dslist) {
if((int) <0){
ds = NULL;
} else {
ds = dslist][i];
}
}

2

DELTA_STATE_LIST dslist;

HISTORY_STREAM_LIST hslist;

ENTITY_LIST elist;

api_restore_entity list_with_history
(file, TRUE, elist, hslist,dslist);

foreach(app_data* ap) {
ap—>restore(dslist);
}

foreach(app_data* ap) {

ap—>fix_pointers(dslist);

}

A similar procedure can be used when restoring application data that refers
to history streams. Sexpi_save_entity list_with_history for an example
of how to save the abowpp_data

Warning: Version number of this system differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

Kernel R10

api_restore history

Function: History and Roll
Action: Restores a history stream and associated entities and entity id information
from a file.

Prototype: outcome api_restore_history (
FILE* file_ptr, /I open file descriptor
logical text_mode, /I text mode
HISTORY_STREAM_LIST& hlist,// restored history

/I streams
logical create_new_hs /I flag for creating
= FALSE, /I new history stream

AcisOptions* ao = NULL // acis options
);

Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This routine restores entities and any associated history information from a
file. If the file has no history (i.e. it was created using
api_save_entity list) then thecreate_new_hs flag is examined. If the flag
is TRUE, a new history stream is instantiated to hold the created entities.
If the flag iSFALSE, the entities in the file are created in the default
stream. All created history streams are added to the history stream list
hlist; no change in the history stream list indicates the file had no history
and the entities were placed in the default streguinget_active_entities
can be called on the streamghiist to find the entities read in.

The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other
application—specific data in a single save file.

Establish in the calling routine whether the file is text or binary and set
text_mode correctly: TRUE if the file is text,FALSE if binary. Restoring

a binary file is about twice as fast as restoring a text file. However, use
binary files only when the file is created and read on the same version of
the system running on the same type of machine.

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

When an entity is restored from a file, any unrecognized main entity types
(BODY, CURVE, etc.) are skipped and any references to those entities are
set toNULL. Unrecognized descendent entitiesAdTRIB, SURFACE, or
CURVE generate a new record for their immediate owner class, and
references to them become references to the new record. If a record for a
derived class oATTRIB is not recognized, aATTRIB record results so

that the chain of attributes for the entity owning the unrecognized attribute
remains connected.

It is possible to restore entities made by versions having different sets of
attribute classes. Attribute types common to the two versions are restored,
but attributes of types unknown to the receiving version are ignored.

A warning is given if the version of the product receiving the model
differs from the version that made the save file. It is an error if the current
product is older than that recorded in the file.

Warning: Version number of this system differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_restore_history file

Function:
Action:

Prototype:

History and Roll
Restores an history stream and associated entities and entity id information
from a file.

outcome api_restore_history_file (
FileInterface* file_ptr, // open file descriptor
HISTORY_STREAM_LIST& hlist,// restored history

/I streams
logical create_new_hs /I flag for creating
= FALSE, /I new history stream
AcisOptions* ao = NULL // acis options

);

Kernel R10

Includes:

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This routine is equivalent tapi_save_history, taking aFileInterface*
rather than &ILE*. Please refer to the description of that routine.

If create_new_hs is setTRUE and the restored file has no history, this
function will create a new history stream.

Warning: Version number of this system differs from version that made the
save file being read.

Warning: Record for unrecognized entity is being skipped. Unable to read
file. Malformed save file.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_resume_journal

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Kernel R10

ACIS Journal
Sets the status flag for journalizing to on, enabling the snapshot journal
mechanism.

outcome api_resume_journal (
AcisOptions* ao /I acis options

);

#include "kernel/acis.hxx”

#include "kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Sets the status flag to on to enable journalizing.

If this is used before start. The header will not be written and some
functions will fail to journalize.

Limitations: None

Library: kernel
Filename: kern/kernel/kernapi/api/acis_journal.hxx
Effect: System routine

api_roll_n_states

Function: History and Roll, Part Management
Action: Modifies modeler state by applying zero or more delta_states.
Prototype: outcome api_roll_n_states (
HISTORY_STREAM* hs, /I history stream to roll
int nRequest, /I number of states to

/I roll; positive is
/[forward, negative is
/I backward.
int& nActual /I returns number of
/I delta states rolled

);

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”

Description: This API modifies the modeler’s state by rolling forward or back the given
number of times. When rolling forward past a branch in the history stream
the branch taken is unspecified. To take a particular, save a pointer to a
state on the branch and ug® _change_to_state. Branches are created by
rolling back and then making additional changes to the model.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Changes model

api_save_entity list
Function: SAT Save and Restore, Entity, Part Management
Action: Writes a list of entities to disk as text or binary.

Kernel R10

Prototype: outcome api_save_entity_list (

FILE* file_ptr, /I open file
/I descriptor
logical text_mode, /I TRUE if file is text,
/l FALSE if binary
ENTITY_LIST const& /I returns entities
entity_list, /l to save
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "baseutil/logical.h”

#include “kernel/kernapi/api/acis_options.hxx”

Description: The file pointer argument should be an open file positioned at the point
where this API begins the entity save. When the save is complete, the file
will be correctly positioned at the end of the entity save; therefore, an
application can save multiple bodies intermixed with other application
specific data in a single save file.

The entities are written to disk as a sequence of records, one per model
entity. Writing records in binary is roughly twice as fast as writing in text
and the files are some 20 per cent shorter. It is recommended you use
binary save files only for short-term storage. Write and read binary files
only by the same version running on the same type of hardware.

Beginning with ACIS release 6.3, itiequired that the product ID and
units be populated for the file header (using ckiksnfo) before you can
save a SAT file. Refer to the reference templates for the Eillessfo and
function api_set_file_info for more information.

Errors can also occur if you use two different C runtime DLLs (e.g., one
release and one debug) when using ACIS. Refer to the “C Runtime
Library DLL” section in the Application Development Manual for more
details.

Each entity record begins with a string identifier denoting its type. When a
file is restored, records of unrecognized derived classes will be ignored.

The floating point precision for real numbers in text files is six digits for
single precision and 15 digits for double precision.

Errors: Failed to save entities; e.g., unable to write disk file.

Kernel R10

Limitations:
Library:
Filename:

Effect:

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_save_entity list file

Function:
Action:

Prototype:

Includes:

Description:

SAT Save and Restore
Writes a list of entities to disk in text or binary format.

outcome api_save_entity_list_file (
FileInterface* file_ptr, /I open file
/I descriptor
ENTITY_LIST const& entity_list, // returns
/I entities to be
/I saved
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API creates the file pointer argument an open file positioned at the
point where this APl begins the entity save. When the save is complete,
the file will be correctly positioned at the end of the entity save; therefore,
an application can save multiple bodies intermixed with other application
specific data in a single save file.

The entity is written to disc as a sequence of records, one per model entity.
Writing records in binary is roughly twice as fast as writing in text and the
files are some 20 per cent shorter. However, use binary save files only for
short—term storage. Write and read binary files only by the same version of
ACIS, running on the same type of hardware and with the same set of
application—derived classes such as attributes.

Each entity record begins with a string identifier denoting its type. When a
text file (only) is restored, records of unrecognized derived classes will be
ignored. The floating point precision for real numbers in text files is six
digits for single precision and 15 digits for double precision.

Kernel R10

Errors:
Limitations:
Library:
Filename:

Effect:

Beginning with ACIS release 6.3, itiiequired that the product ID and
units be populated for the file header (using ckiksnfo) before you can
save a SAT file. Refer to the reference templates for the Eillessfo and
function api_set_file_info for more information.

Failed to save entity; e.g., unable to write to disc file.
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_save_entity list with_history

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

SAT Save and Restore, History and Roll
Writes a list of entities to disk as text or binary.

outcome api_save_entity_list_with_history (

FILE* file_ptr, /I open file
/I descriptor
logical text_mode, /l TRUE if file is
/I text, FALSE if
/I binary
ENTITY_LIST const& /I entities to
entity_list, /I save
HISTORY_STREAM_LIST& hslist,// history streams to
Il save
DELTA_STATE_LIST& dslist, /I returns delta

/I states saved
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "baseutil/logical.h”

#include “kernel/kernapi/api/acis_options.hxx”

The file pointer argument should be an open file positioned at the point
where this API begins the entity save. When the save is complete, the file
will be correctly positioned at the end of the entity save; therefore, an
application can save multiple bodies intermixed with other application
specific data in a single save file.

The entities are written to disk as a sequence of records, one per model
entity. Writing records in binary is roughly twice as fast as writing in text
and the files are some 20 per cent shorter however, use binary save files
only for short—term storage. Write and read binary files only by the same
version running on the same type of hardware.

Each entity record begins with a string identifier denoting its type. When a
file is restored, records of unrecognized derived classes will be ignored.

The floating point precision for real numbers in text files is six digits for
single precision and 15 digits for double precision.

History data is saved after active entities in a form allowing
api_restore_entity list to restore without history if desired.

The returnedislist can be used by the application to nEfLTA_STATE
pointers to unique integers and back again during save and restore to
maintain an association betweBELTA_STATEs and application data.
For example, one might use the following pseudo code

class app_data {
DELTA_STATE* ds;
void save(DELTA_STATE_LIST& dslist) {
write_int(dslist.lookup(ds));
}
void restore(DELTA_STATE_LIST& dslist) {
ds = read_int();

}
void fix_pointers(DELTA_STATE_LIST& dslist) {
if((int)<0){
ds = NULL;
} else {
ds = dslist]i];
}
}

k

DELTA_STATE_LIST dslist;
HISTORY_STREAM_LIST hslist;
ENTITY_LIST elist;
elist.add(entity_to_save);
api_save_entity_list_with_history
(file, TRUE, elist, hslist,dslist);

foreach(app_data* ap) {
ap—>save(dslist);
}

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

Seeapi_restore_entity_list_with_history for an example of how to restore
the aboveapp_data

Some entities may hariSTORY_STREAMSs attached via an
ATTRIB_HISTORY. In this case thaslist would be larger on return than
on entry. The returned list can be used as withdtiist when saving
application data.

Beginning with ACIS release 6.3, itiequired that the product ID and
units be populated for the file header (using ckiksnfo) before you can
save a SAT file. Refer to the reference templates for the Eillessfo and
function api_set_file_info for more information.

Failed to save entities; e.g., unable to write disk file.

None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_save_entity list with_history file

Function:
Action:

Prototype:

Kernel R10

SAT Save and Restore, History and Roll
Writes a list of entities to disk as text or binary.

outcome api_save_entity_list_with_history_file (
FileInterface* file_ptr, /I open file
/I descriptor
ENTITY_LIST const& entity_list, // entities to
/I save
HISTORY_STREAM_LIST& hslist, /I history
/I streams to

/I save
DELTA_STATE_LIST& dslist, /I returns delta
/I states saved
logical mainline_only /I save only active
= FALSE, /I delta States
AcisOptions* ao = NULL // acis options
);

Includes:

Description:

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include "baseutil/logical.h”

#include "kernel/kernapi/api/acis_options.hxx”

The file pointer argument should describe an open file positioned at the
point where this APl begins the entity save. When the save is complete,
the file will be correctly positioned at the end of the entity save; therefore,
an application can save multiple bodies intermixed with other application
specific data in a single save file.

The entities are written to disk as a sequence of records, one per model
entity. Writing records in binary is roughly twice as fast as writing in text
and the files are some 20 per cent shorter however, use binary save files
only for short—term storage. Write and read binary files only by the same
version running on the same type of hardware.

Each entity record begins with a string identifier denoting its type. When a
file is restored, records of unrecognized derived classes will be ignored.

The floating point precision for real numbers in text files is six digits for
single precision and 15 digits for double precision.

History data is saved after active entities in a form allowing
api_restore_entity_list to restore without history if desired.

The returnedislist can be used by the application to nEfLTA_STATE
pointers to unique integers and back again during save and restore to
maintain an association betweBELTA_STATEs and application data.
For example, one might use the following pseudo code:

Kernel R10

Errors:
Limitations:

Library:

Kernel R10

class app_data {
DELTA_STATE* ds;
void save(DELTA_STATE_LIST& dslist) {
write_int(dslist.lookup(ds));
}
void restore(DELTA_STATE_LIST& dslist) {
ds = read_int();

}
void fix_pointers(DELTA_STATE_LIST& dslist) {
if((int) <0){
ds = NULL;
} else {
ds = dslist][i];
}
}

h

DELTA_STATE_LIST dslist;
HISTORY_STREAM_LIST hslist;
ENTITY_LIST elist;
elist.add(entity_to_save);
api_save_entity_list_with_history_file
(filelnt, elist, hslist,dslist);

foreach(app_data* ap) {
ap—>save(dslist);
}

Seeapi_restore_entity_list_with_history_file for an example of how to
restore the abovapp_data.

Some entities may hariSTORY_STREAMSs attached via an
ATTRIB_HISTORY. In this case thaslist would be larger on return than
on entry. The returned list can be used as withdtiist when saving
application data.

Beginning with ACIS release 6.3, itiequired that the product ID and
units be populated for the file header (using ckiksnfo) before you can
save a SAT file. Refer to the reference templates for the Eillessfo and
function api_set_file_info for more information.

Failed to save entities; e.g., unable to write disk file.
None

kernel

Filename:

Effect:

kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_save_history

Function:
Action:

Prototype:

Includes:

Description:

SAT Save and Restore, History and Roll
Writes a history stream and associated entities and entity ID information to
a file.

outcome api_save_history (

FILE* file_ptr, /I open file descriptor
logical text_mode, /I text mode flag
HISTORY_STREAM* hs /I history stream
= NULL, /I to save
logical active_ents_only // TRUE to ignore roll
= FALSE, /I information
logical mainline_only /I TRUE to ignore rolled
= FALSE, /I delta states
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

This API saves a complete history stream to a file. History data is saved
after active entities in the same format as
api_save_entity_list_with_history, in a form that can be restored without
history byapi_restore_entity_list, if desired. If the history stream passed
in is NULL, the default stream will be saved.

The active_ents_only andmainline_only flags can be used to reduce the
size of the saved file. thainline_only is TRUE, then only delta states
needed to get from the beginning of the history stream to the current state
(the main line) are saved. This is equivalent to ignoring all rolled delta
states. Ifactive_ents_only is TRUE, then the active entities frohs are

saved, along with history stream information containing only create
bulletins for these entitieactive_ents_only is a more stringent condition
thanmainline_only; themainline_only flag has no effect when
active_ents_only is TRUE.

Kernel R10

Errors:
Limitations:

Library:

Kernel R10

Unhooked annotations are not considered active entities by this API; rather
they are stored with the history data. This means that they will not be
restored when usingpi_restore_entity_list and will not be saved at all

(even in the history data) whewtive_ents_only is TRUE. If a user wants
unhooked annotations to be saved in the active entities section, he should
find the unowned active entities usiapi_get_active_entities (with
unowned_only = TRUE) and then calépi_save_entity_list_with_history.

In addition to managing roll information, history streams also manage
entity id information; an entity id is unique to a history stream. Entity IDs
can only only be persisted by saving with history (usipigsave_history

or api_save_entity_list_with_history). Entity IDs are ignored when

reading in withapi_restore_entity_list; they are only restored when using
api_restore_entity list_with_history or api_restore_history. The main
difference between usirgpi_save_entity_list andapi_save_history with
active_ents_only = TRUE is thatapi_save_history maintains the tag
information.

The file pointer argument should be an open file positioned at the point
where this API begins the entity save. When the save is complete, the file
will be correctly positioned at the end of the entity save. An application
can save multiple histories intermixed with other application specific data
in a single save file.

The entities are written to a file as a sequence of records, one per model
entity. Writing records in binary is roughly twice as fast as writing in text
and the files are some 20 per cent shorter. It is recommended you use
binary save files only for short—term storage. Write and read binary files
only by the same version running on the same type of hardware.

Errors can also occur if you use two different C runtime DLLs (e.g., one
release and one debug) when using ACIS. Refer to the “C Runtime
Library DLL" section in the3D ACIS Application Development Manual
for more details.

Each entity record begins with a string identifier denoting its type. When a
file is restored, records of unrecognized derived classes will be ignored.

The floating point precision for real numbers in text files is six digits for
single precision and 15 digits for double precision.

Failed to save entities; e.g., unable to write disk file.
None

kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read-only

api_save_history file

Function: SAT Save and Restore, History and Roll
Action: Writes a history stream and associated entities and entity id information to
a file.
Prototype: outcome api_save_history_file (
FileInterface* file_ptr, // open file descriptor
HISTORY_STREAM* hs /l stream to save
= NULL,
logical active_ents_only // TRUE to ignore roll
= FALSE, /I information
logical mainline_only /I TRUE to ignore rolled
= FALSE, /I delta states
AcisOptions* ao = NULL // acis options
)i
Includes: #include "kernel/acis.hxx”

#include "baseutil/logical.h”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kernutil/fileio/fileif.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: This routine is equivalent tapi_save_history, taking aFileInterface*
rather than &ILE*. Please refer to the description of that routine.

Errors: Failed to save entities; e.g., unable to write disk file.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read-only

Kernel R10

api_save_state

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

SAT Save and Restore
Save the current state of global variables into a text file.

outcome api_save_state (

FILE* file_ptr, /I file descriptor
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API saves the current states of global variables such as options and
tolerances into a text file. You may use this function to save the state to a
file in your own application and load the state through the file to Scheme
AIDE to compare the behaviors between your application and the test
applications.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_save_version

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

SAT Save and Restore
Sets the save file format.

outcome api_save_version (
int major_version, /I major version
int minor_version /I minor version

);

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

This API sets the output file format. For Release 1.5 and above, the system
can output data in a format that a previous version can read. This is only
true for objects that are compatible in the previous release.

Errors:

Limitations:

Library:
Filename:

Effect:

Note For the major version starting 4 and above, the minor version
does not have any effect and setting them to zero would allow the
SAT files to be read across all the minor versions for the series.

None

New functionality or structures in the higher release are not correctly
handled by the modeler, and therefore, are not supported.

kernel
kern/kernel/kernapi/api/kernapi.hxx

Read-only

api_set_acis_options

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:

Filename:

ACIS Journal
Copies the AcisJournal and AcisVersion Objects from the arguments to the
data members inside AcisOptions.

outcome api_set_acis_options (

AcisOptions* ao, /I acis options

AcisJournal& aj /I acis journal
= *(AcisJournal*)NULL_REF, // to be copied

AcisVersion& av /I acis version

= *(AcisVersion*)NULL_REF /I to be copied
);

#include "kernel/acis.hxx”

#include "baseutil/version/vers.hxx”

#include "kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Takes the arguments and copies them into the data members contained in
the AcisOptionsinternal data member.

None

The version and journal objects are true copied, they are independent from
the ones contained in the AcisOptions object.

kernel

kern/kernel/kernapi/api/acis_options.hxx

Kernel R10

Effect: System routine

api_set _dbl option

Function: Modeler Control
Action: Sets the value of the specified option to the given double.
Prototype: outcome api_set_dbl_option (
char const* name, /I name of option
double value /I double value to set
)
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

Description: This API sets the named option to the specified value. Refer to the
option:list Scheme extension for a list of the available options.

Errors: NULL or unknown option name specified.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Changes model

api_set_default_history

Function: History and Roll
Action: Sets the inpuHISTORY_STREAM to be the default the history stream.
Prototype: outcome api_set_default_history (
HISTORY_STREAM* hs /l input history stream
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kerndata/bulletin/bulletin.hxx”

Description: Refer to Action.

Kernel R10

Errors:
Limitations:
Library:
Filename:

Effect:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_set file_info

Function:
Action:

Prototype:

Includes:

Description:

SAT Save and Restore
Sets required header info to be written to ACIS save files.

outcome api_set_file_info (

unsigned long, /I mask indicating fields
/I to set

FileInfo const& info /I info to be set

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/savres/fileinfo.hxx”

The API sets the information to be written to the header of later saved
files. Does not alter the model. Beginning with ACIS release 6.3, it is
required that the product ID and units be populated for the file header
before you can save a SAT file.

The mask value indicates which values in the supgliledhfo structure
are to be set. It is composed ®Ring together mask values as indicated
below.

The Filelnfo structure contains the following fields which can be set:

product id Mask = Fileld
String indicating the product and
version that produced the save file.
UNIES o vttt e Mask = FileUnits
Modeling units specified as
millimeters per unit.
units values for common modeling units are:

Kernel R10

1.0. . . = Millimeters
10.0. ..o = Centimeters
1000.0.o = Meters
1000000.0.ot = Kilometers
254 . .. = Inches
304.8. = Feet
914.4. = Yards
1609344.0. = Miles

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read—only

api_set _int_option

Function: Modeler Control
Action: Sets the value of the specified option to the given integer.
Prototype: outcome api_set_int_option (
char const* name, /I name of option
int value /[integer value to set
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

Description: This API sets the named option to the specified value. Refer to the
option:list Scheme extension for a list of the available options.

Errors: NULL or unknown option name specified.
Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx

Effect: Read—only

Kernel R10

api_set _journal

Function: ACIS Journal

Action: Copies the AcisJournal object to AcisOptions.

Prototype: outcome api_set_journal (
AcisOptions* ao, /I acis options
AcisJournal& aj /I acis journal to be

/I copied

)i

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Description: Takes the AcisJournal object and copies it into the data member contained
in the AcisOptionsinternal data member.

Errors: None

Limitations: The journals object is true copied, it is independent from the one contained
in the AcisOptions object.

Library: kernel

Filename: kern/kernel/kernapi/api/acis_journal.hxx

Effect: System routine

api_set_journal_name

Function: ACIS Journal

Action: Sets the snapshot journal file name.

Prototype: outcome api_set_journal_name (
AcisJournal* aj, /I acis journal
char* name /I journal file name
);

outcome api_set_journal_name (

AcisOptions* ao, Il acis options
char* name /I journal file name
);

Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Kernel R10

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Sets the file name for the snapshot journal. The extension name is not
needed.

None

If a name other thaAcisJour is set, then the new name would be used
always. In this case, instead of serializing the output name
(AcisJour_x,scm, x = 0...n), it would create always the same file (e.g.
My_name.scm). This can be really useful because it will not create a large
number of files if the journal is implemented in a function that is called
many times and it is desired to keep only the last call (e.g. when an error
occurs).

kernel
kern/kernel/kernapi/api/acis_journal.hxx

System routine

api_set_str_option

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Modeler Control
Sets the value of the specified option to the given string.

outcome api_set_str_option (

char const* name, /I name of option
char const* value /I double value to set
)

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

This API sets the named option to the specified value. Refer to the
option:list Scheme extension for a list of the available options.

NULL or unknown option name specified.
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

System routine

api_set_version

Function:
Action:

Kernel R10

ACIS Journal
Copies the version object into the acis option.

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_set_version(

AcisOptions* ao, /I acis options
AcisVersion& av /I acis version to set
)

#include "kernel/kernapi/api/acis_options.hxx”
#include "baseutil/version/vers.hxx”

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

Makes a true copy of the version object into the AcisOptions object.

None
None
kernel
kern/kernel/kernapi/api/acis_options.hxx

Read-only

api_spherical_pattern

Function:
Action:

Prototype:

Includes:

Patterns
Creates a spherical pattern.

outcome api_spherical_pattern (
pattern*& pat, /I created pattern
const SPAposition& center,// pattern center

int num_latitudes, /[# of latitudinal rings
/l'in the pattern

const SPAposition& root, // position mapped to

/I pattern sites
double spacing /I desired spacing for
= 0.0, /I pattern elements

AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Kernel R10

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Creates a two—dimensional spherical pattern abouteii@r position,

with the pattern seed entity at one pole of the associated sphere. The
pattern elements are approximately equally spaced, with the parameter
num_latitudes specifying by default the number of latitudinal rings in the
pattern. Ifnum_latitudes is set to zero, this number is instead determined
by the optionabpacing parameter. (This number must be specified if
num_latitudes is zero.) The root position of the pattern is givendmy.

The pattern coordinates for spacing are specified in the order (longitude,
latitude).

Both the spacing and the number of latitudes is zero.
None

kernel

kern/kernel/kernutil/law/pattern_api.hxx

Changes model

api_stackmon_limit

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:

Filename:

Kernel R10

Modeler Control
Sets the limit in bytes of how much stack ACIS may use.

outcome api_stackmon_limit (
size_t limit Il bytes of stack memory

);

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

ACIS can monitor the size of the stack. This function sets the limit in
bytes of how much stack ACIS may use. If the limit is exceeded, ACIS
will trap, returningEXCESSIVE_RECURSION . Passing 0 results in no
stack monitoring.

None
None
kernel

kern/kernel/kernapi/api/kernapi.hxx

Effect:

Read—only

api_start_journal

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

ACIS Journal
Sets the status flag for journalizing to on and initializes journal.

outcome api_start_journal (
AcisOptions* ao /I acis options such as
/I journal, version

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/acis_journal.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include “kernel/kernapi/api/api.hxx”

Sets the status flag on to enable journalizing. It creates the journal file and
writes down the header. It also generates the SAT file name and sets the
file name counters properly.

Starting again an already enabled journal may cause erasing previously
saved files or leaving incomplete journaled files.

None
kernel
kern/kernel/kernapi/api/acis_journal.hxx

System routine

api_start_modeller

Function:
Action:

Prototype:

Includes:

Modeler Control
Starts the modeler.

outcome api_start_modeller (
int /I memory size

);

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

Kernel R10

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

This API starts the modeler, defines some global variables, and does a
simple check on whether static initializers have been called (a problem for
non-Gr+ application developers). This APl must be called before a call to
any other API.

The argument to this API specifies how much memory to allocate for the
application. If this argument is zero, the application uses as much memory
as is needed.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

System routine

api_stop_modeller

Function:
Action:

Prototype:

Includes:

Description:

Kernel R10

Modeler Control
Terminates modeler and releases memaory.

outcome api_stop_maodeller ();

#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

This API attempts to release all memory allocated by ACIS. The
application should not attempt to reference any data returned by earlier
calls to APIs or Direct Interface routines after callapg stop_modeller.

No other APIs should be called urdpi_start_modeller is called again.

This function returns a non—zeFREELIST_IN_USE outcome indicating
remaining memory allocations in the internal freestore. This is due to the
size-based freelist strategy implemented in the MMGR component, which
allows global object constructors to use the internal heap. The memory is
not returned to freestore until the objects are destructed, which occurs after
program execution and consequently afigir stop_modeller. Directly

after anapi_start_modeller call and prior to amapi_stop_modeller call,
compare the number of objects already in freestore with the count still
remaining. The current count of committed objects in ACIS internal
freestore is returned by tlebeck_free_lists function defined in
mmgr/mmgrhusk/freelist.hxx.

Errors:
Limitations:
Library:
Filename:

Effect:

api_str to

Function:
Action:

Prototype:

Includes:

Description:

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

law

Laws
Creates a law from a string and an optional array of law data.

outcome api_str_to_law (

const char* str, /I string of law to be
/I created
law** answer, /[array of supporting
/I data used in the law
/I creation
law_data** data /I size of the law
= NULL, /I data array
int size /I returns created law
= O’
AcisOptions* ao = NULL // acis options
);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “lawutil/law_base.hxx”

#include "lawutil/law_data.hxx”

#include "kernel/kernapi/api/acis_options.hxx”

This API parses a character strirsty), generates the associated law
classes, and returns a pointer to the top-level law that was created
(answer). Deriving thelaw class and all associated classes individually is
possible. However, it is more likely thapi_str_to_law and law string

parsing will be employed, because it is easier and more straightforward to
implement.

The valid syntax for the character strings)(in the law mathematical
functions are given in the law symbol templates. The law mathematical
functions support nesting of law symbols. Once the character sitipg (
has been created, it is passedyd str_to_law along with a pointer to an
output law é&nswer), an array of law dataléta), and the size of the law
data arraydize).

Kernel R10

Errors:

Limitations:

Library:
Filename:

Effect:

Theunary_law, binary_law, andmultiple_law classes are used if the
application is passing only laws into a law class, in which case it becomes
a pointer to a law or an array of pointers to laws, respectively. Numbers,
positions, parametric positions, vectors, and vector fields, in addition to
the law symbols, are passed as input toahiestr_to_law and become

laws for these purposes.

On the other hand, thenary_data_law andmultiple_data_law classes are
used if the application is passing more complicated structures into a law
class. These could be curves, wires, surfaces, transforms, or even laws.
Instead of having a pointer to a law or an array of pointers to laws, the
unary_data_law andmultiple_data_law classes have a pointer to a
law_data class or an array of pointersltov_data classes, respectively.

None
None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Read—only

api_surface pattern

Function:
Action:

Prototype:

Kernel R10

Patterns
Creates a pattern parallel to a surface.

outcome api_surface_pattern (

pattern*& pat, /I created pattern

FACE* in_face, /I guide face

int num_u, /I u—direction elements
int num_v, /l v—direction elements

const SPAposition& root, // position mapped
/ to the pattern sites
logical on_boundary /I flag to begin and end
= FALSE, /I on face boundary
const SPAvector& u_dir // direction mapped to
=*(SPAvector*)NULL_REF,// u—direction
const SPAvector& v_dir // direction mapped to
=*(SPAvector*)NULL_REF,// v—direction
AcisOptions* ao = NULL // acis options

);

outcome api_surface_pattern (
pattern*& pat, /I created pattern
const surface& in_surf, // guide surface
const SPApar_box& face_range,// range of surface
int num_u, /I u—direction elements
int num_v, /I v—direction elements
const SPAposition& root, // position mapped
/ to the pattern sites
logical on_boundary /I flag to begin and end
= FALSE, /I on face boundary
const SPAvector& u_dir // direction mapped to
=*(SPAvector*)NULL_REF,// u—direction
const SPAvector& v_dir // direction mapped to
=*(SPAvector*)NULL_REF,// v—direction
const SPAtransf& in_trans// input
=*(SPAtransf*)NULL_REF,// transform
AcisOptions* ao = NULL // acis options

);

Includes: #include "kernel/acis.hxx”
#include "baseutil/logical.h”
#include "baseutil/vector/param.hxx”
#include "baseutil/vector/position.hxx”
#include “baseutil/vector/transf.hxx”
#include “baseutil/vector/vector.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kerndata/top/face.hxx”
#include "kernel/kerngeom/surface/surdef.hxx”
#include “kernel/kernutil/law/pattern.hxx”
#include “kernel/kernutil/law/pattern_api.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: Creates a two—dimensional pattermafm_u by num_v elements, equally
spaced in parameter space, upon the surface and parameter range indicated
either byin_surf andparam_range or byin_face. The argumentoot
specifies the position (which can be on or off the pattern seed entity, as
desired) to be mapped to the pattern sites. The pattern can be extended to
the face boundary by settimg_boundary to TRUE. By default, pattern
members are oriented identically to one another, but will follow the
surface normal ifi_dir andv_dir are given. In that case, these vectors
specify the directions, relative to the seed entity, that are mappedue the
andv—directions of the face.

The following code snippet shows an example of how this API can be
used.

Kernel R10

Errors:

Limitations:

Library:

Kernel R10

/I Create a hemispherical surface

FACE* face = NULL;

SPAposition origin(0, 0, 0);

double radius = 20.0;

double lo_start = 0.0;

double lo_end = 90.0;

double la_start = —360.0;

double la_end = 360.0;

SPAvector normal(0, 1, 1);

check_outcome(result = api_face_sphere(origin,
radius, lo_start, lo_end, la_start, la_end, &normal,
face));

const surface& surf = face—>geometry()—>equation();
SPApar_box param_range;
sg_get_face_par_box(face, param_range);

/I Create a pattern

pattern* pat = NULL;

int u_num = 8§;

int v_num = 6;

SPAposition root(0, 0, 0);

check_outcome(result = api_surface_pattern(pat, surf,
param_range, u_num, v_num, root));

/I Create a prism

BODY* prism = NULL;

double height = 1.0;

double maj_rad = 1.0;

double min_rad = 0.5;

int num_sides = 3;

check_outcome(result = api_make_prism(height,
maj_rad, min_rad, num_sides, prism));

/I Apply the pattern to the prism
check_outcome(result = api_set_entity pattern(prism,

pat));

/I Clean up
pat—>remove();
check_outcome(result = api_del_entity(face));

The number ofi— orv—values is less than one,wrdir is specified
without specifyingv_dir (or vice—versa), or BIULL face is given.

None

kernel

Filename: kern/kernel/kernutil/law/pattern_api.hxx

Effect: Changes model

api_terminate_kernel

Function: Modeler Control, Entity, Model Geometry, Model Topology, Construction Geometry
Action: Terminates the kernel library.
Prototype: outcome api_terminate_kernel ();
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: System routine

api_terminate_spline

Function: Modeler Control, Spline Interface
Action: Terminates the spline library.
Prototype: outcome api_terminate_spline ();
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/spline/api/spl_api.hxx”

Description: Refer to Action.
Errors: None
Limitations: None
Library: kernel

Kernel R10

Filename:

Effect:

kern/kernel/spline/api/spl_api.hxx

System routine

api_test deep_copy
Model Geometry, Model Object
Test the deep copy functionality for improper sharing.

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Kernel R10

outcome api_test_deep_copy (
ENTITY_LIST const& entity_list,/ list of

/I entities to be
/I deep copied

double numerical_tolerance // tolerance for real

= SPAresnor, /l value comparisons

logical report_all_errors /I flag to skip

= FALSE, /I attributes not
/I deep copyable
char* filel /I file of entities saved
= NULL, /I before deep—copy
char* file2 /I file of entities saved
= NULL, /I after deep—copy

AcisOptions* ao = NULL // acis options

);

#include
#include
#include
#include
#include
#include

"kernel/acis.hxx”

"baseutil/logical.h”
"kernel/kernapi/api/api.hxx”
"kernel/kernapi/api/kernapi.hxx”
"kernel/kerndata/lists/lists.hxx”
"kernel/kernapi/api/acis_options.hxx”

This API deep copies the given list of entities. These entities are saved to
SAT files and restored, and then saved out again before and after a deep
copy. If this function is called in a debug build, the memory from the
original will be pattern filled for additional checking of no sharing after a
deep copy. A comparison is done between the two SAT files created,
original.sat anddeep_copy.sat.

This function is used primarily for internal testing. However, if derived
entities are used outside of ACIS, this function can be used to test their
deep copy capabilities.

None

Limitations:
Library:
Filename:

Effect:

Refer to Description.
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_transform_entity

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:
Library:
Filename:

Effect:

Model Geometry, Transforms, Entity, Modifying Models
Applies a transformation to an entity.

outcome api_transform_entity (
ENTITY* ent, /I entity to transform
const SPAtransf& tform, // transform to apply
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include “baseutil/vector/transf.hxx”

#include "kernel/kernapi/api/acis_options.hxx”

If the entity is @BODY, this API concatenates the transform with any
transform that is already applied. If the entity is not a body, this API
transforms the geometry.

If the Operators Component is linked into the executable, one can do
non-uniform scaling using space warping. For each library your
application links in, call the API that initializes that library. Lowest
libraries (like Kernel) go first.

A NULL pointer to an entity is specified.
An attempt is made to transform an entity that belongs to another entity.

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

Kernel R10

api_unhook_annotations
Function: Feature Naming
Action: Traverses the active list of annotations and removes associated
ATTRIB_ANNOTATIONS.

Prototype: outcome api_unhook_annotations (
is_fun is_function /I Function pointer to
= is_ ANNOTATION, /I the type of annotation
BULLETIN_BOARD* bb /I obsolete, ignored
= NULL,
AcisOptions* ao = NULL // acis options
);
Includes: #include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/bulletin/bulletin.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: The function foris_fun defaults tas_ ANNOTATION. However, anys
function for a class can be used. So, for example, to get the top vertex
annotations from a sweep operation, this function can be passed
is_ SWEEP_ANNO_VERTEX_TOP as an argument.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_update_tolerance

Function: Precision and Tolerance, Tolerant Modeling
Action: Updates the tolerance on an entity.
Prototype: outcome api_update_tolerance (
ENTITY* this_entity, /I entity with tolerance
logical& updated, /I result TRUE is a
/I tolerant entity
/I updated
AcisOptions* ao = NULL // acis options
)i

Kernel R10

Includes: #include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “kernel/kerndata/data/entity.hxx”
#include "baseutil/logical.h”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This function calculates and updates the tolerant topology of the given
entity and its children.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernapi/api/kernapi.hxx
Effect: Read—only

api_wcs_create

Function: Work Coordinate Systems
Action: Creates a new working coordinate system.
Prototype: outcome api_wcs_create (

const SPAposition& origin,// origin of WCS
const SPAposition& xpt, // position on x-axis
const SPAposition& ypt, // position in positive

Il xy-plane
WCS*& new_wcs, /I returns created WCS
AcisOptions* ao = NULL // acis options
)
Includes: #include "kernel/acis.hxx”

#include "kernel/geomhusk/wcs.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include “baseutil/vector/position.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Description: This API creates a new working coordinate systeew(wcs) with its
origin atorigin, its x-axis pointing towarcpt, and itsy-axis pointing
towardypt.

Errors: None

Kernel R10

Limitations:
Library:
Filename:

Effect:

None
kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_wcs_get_active

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Work Coordinate Systems
Gets the active working coordinate system.

outcome api_wcs_get_active (
WCS*& active_wcs, /I returns active WCS
/I or NULL
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include "kernel/geomhusk/wcs.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kernapi/api/kernapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Refer to Action.

None

None

kernel
kern/kernel/kernapi/api/kernapi.hxx

Changes model

api_wcs_set active

Function:
Action:

Prototype:

Kernel R10

Work Coordinate Systems
Sets a specified working coordinate system to be active.

outcome api_wcs_set_active (
WCS* new_active, /I WCS to make active or
/I NULL (model space)
AcisOptions* ao = NULL // acis options

);

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include
#include
#include
#include
#include

"kernel/acis.hxx”
"kernel/geomhusk/wcs.hxx”
"kernel/kernapi/api/api.hxx”
"kernel/kernapi/api’/kernapi.hxx”
"kernel/kernapi/api/acis_options.hxx”

Refer to Action.

None
None

kernel

kern/kernel/kernapi/api/kernapi.hxx

Changes model

Kernel R10

