
Kernel R10

Chapter 21.
Functions bs3_surface Aa thru Lz

Topic: Ignore

bs3_surface_3crv
Function: Spline Interface, Construction Geometry

Action: Creates a spline surface that interpolates three boundary curves.

Prototype: bs3_surface bs3_surface_3crv (
const bs3_curve& base, // edge defining curve
const bs3_curve& right, // edge defining curve
const bs3_curve& left // edge defining curve
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_crv/bs3curve.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: The end points of the curves and their directions match up as shown in the
figure. The base defines the u parameterization and the left and right sides
define the v. The apex A is a singularity.

A

B C
base

rightleft

left goes from A to B.
right goes from C to A.
base goes from B to C.

Kernel R10

Errors: If an error occurs, a NULL surface is returned. The original curves remain.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Changes model

bs3_surface_4crv
Function: Spline Interface, Construction Geometry

Action: Creates a spline surface that interpolates four boundary curves.

Prototype: bs3_surface bs3_surface_4crv (
const bs3_curve& bottom, // edge defining curve
const bs3_curve& right, // edge defining curve
const bs3_curve& top, // edge defining curve
const bs3_curve& left // edge defining curve
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_crv/bs3curve.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: The correspondence of the curves and the surface patch is:

bottom––––––––> S (u,v0) (oriented left to right)
top–––––––––––> S (u,v1) (oriented left to right)
left––––––––––> S (u0,v) (oriented bottom to top)
right–––––––––> S (u1,v) (oriented bottom to top)

Errors: If an error occurs, a NULL surface is returned, and the original curves
remain.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Changes model

bs3_surface_accurate_derivs
Function: Spline Interface, Construction Geometry

Action: Gets the number of derivatives that bs3_surface_evaluate evaluates
accurately.

Kernel R10

Prototype: int bs3_surface_accurate_derivs (
bs3_surface // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Returns the number of derivatives that bs3_surface_evaluate evaluates
accurately.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_add_knot
Function: Spline Interface, Construction Geometry

Action: Adds knots to a surface.

Prototype: int bs3_surface_add_knot (
double par, // given parameter
int multp, // multiplicity wanted

// at added knot
bs3_surface in_sur, // given surface
int u_or_v, // add a knot: 0=u,

// 1=v direction
double knot_tol // knot tolerance
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Adds knot to a surface up to the requested multiplicity with in the given
knot tolerance. This routine returns the number of knots added.

The input parameter has to be with in the parameter bounds of the given
surface. The final multiplicity of the added knot cannot be greater than the
degree of the surface in the requested direction.

Kernel R10

Use the tolerance to distinguish between the knots. It is used to test
whether the knot being added already exists.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Changes model

bs3_surface_bicubic
Function: Spline Interface, Construction Geometry

Action: Creates a surface that is a bi-cubic interpolant.

Prototype: bs3_surface bs3_surface_bicubic (
int num_upts, // number of knots in u
int num_vpts, // number of knots in v
double u_params[], // u knots, size num_upts
double v_params[], // v knots, size num_vpts
SPAposition points[], // points on surface

// implicit 2D array
SPAvector u_tans[], // tangent vectors in u

// direction – implicit
// 2D array

SPAvector v_tans[], // tangent vectors in v
// direction – implicit
// 2D array

SPAvector twists[] // twist vectors –
// implicit 2D array

);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/vector.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: This routine interpolates a mesh of points, u tangent, v tangents and twist
vectors at each point. A bs3_surface is constructed and returned as the
function return. The routine also requires knot values associated with each
point that is interpolated in both u and v direction.

Kernel R10

The control points are contained in an array of positions. The v index
varies first. That is, a row of v control points for the first u value is
specified first. Then, the row of v control points for the next u value. The
other 2D arrays are specified in the same order.

The size of the points, u_trans, v_trans, and twists arrays is
num_upts*num_vpts, and the ordering is [num_upts][num_vpts].

Errors: If an error occurs, the function returns a NULL surface.

Limitations: No two adjacent points to be interpolated can be same within tolerance.
However the interpolated points can be same at start and end for closed
surfaces, so does other types of configurations are allowed which result in
self–intersecting surfaces.

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Changes model

bs3_surface_bispan
Function: Spline Interface, Construction Geometry

Action: Creates a surface from a simple patch of a surface.

Prototype: bs3_surface bs3_surface_bispan (
int i, // span number in u

// direction
int j, // span number in v

// direction
bs3_surface sur // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Creates a new surface that consists only of the (i,j) th simple patch of the
given surface. The knot vectors of the new surface will have start and end
multiplicities equal to the degree; therefore, the new surface will represent
a single Bezier patch. In the case of a rational surface, the weights
associated with the boundary control points have not been normalized.

Errors: If an error occurs, this function returns a NULL surface.

Kernel R10

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

bs3_surface_bispan_poly
Function: Spline Interface, Construction Geometry

Action: Converts a span into a rational bipolynomial vector with normalized
parameterization in each direction.

Prototype: rat_bipoly_vec bs3_surface_bispan_poly (
int nuspan, // ith span in u

// direction
int nvspan, // ith span in v

// direction
bs3_surface sur // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/bipoly/bipoly.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Converts the (i,j)th span into a rational bipolynomial vector, with a
normalized [0, 1] parameterization in each direction. Assumes that a
bs3_surface is a piecewise rational bipolynomial vector function of its
parameters. The return type is rat_bipoly_vec.

Errors: If an error occurs, this routine returns the zero vector.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

bs3_surface_bispan_range
Function: Spline Interface, Construction Geometry

Action: Gets the parameter bounds of a simple surface patch.

Kernel R10

Prototype: SPApar_box bs3_surface_bispan_range (
int i, // span number in u
int j, // span number in v
bs3_surface sur // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/param.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Returns the parameter bounds of the (i,j) th simple patch of the surface,
where the argument i runs from 0 for the first span to one fewer than the
number returned by bs3_surface_nspans_u, and j is similar in the
v-direction.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_boundary_angle
Function: Spline Interface, Construction Geometry

Action: Gets the boundary angle.

Prototype: void bs3_surface_boundary_angle (
bs3_surface sur, // given surface
double& u_angle, // u angle
double& v_angle // v angle
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: Returns the maximum turning angle over the surface boundaries.

Errors: None

Limitations: None

Kernel R10

Library: kernel

Filename: kern/kernel/spline/d3_bs3/spd3rtn.hxx

Effect: Read–only

bs3_surface_box
Function: Spline Interface, Construction Geometry

Action: Gets a box that encloses a portion of a three-dimensional B-spline surface.

Prototype: SPAbox bs3_surface_box (
bs3_surface bs, // given surface
SPApar_box const& // parameter range of

 =*(SPApar_box*)NULL_REF// interest
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/box.hxx”
#include ”baseutil/vector/param.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: The box will not be the smallest possible, but will be a compromise
between a tight fit and fast evaluation.

If the parameter box is NULL, the box will contain the whole surface.
ACIS ensures that any parameter box given is entirely within the
parameter range for the surface; however, if the surface is periodic, it may
be partially or wholly outside the basic range of the periodic parameter.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_check
Function: Spline Interface, Construction Geometry

Action: Checks for errors in the approximating surface.

Kernel R10

Prototype: check_status_list* bs3_surface_check (
bs3_surface bs3, // given surface
const spline& spl // given spline

=*(spline*)NULL_REF,
const check_fix& fix // available fixes

=*(check_fix*)NULL_REF,
check_fix& fixed // fixes made

=*(check_fix*)NULL_REF,
const check_status_list* // list of things

check // to be checked
= NULL

);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerngeom/surface/spldef.hxx”
#include ”kernel/kernint/d3_chk/chk_stat.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: If supplied with a spline, this extension uses that for evaluation in the
continuity check.

In addition, it checks whether the control points of a bs3 surface are valid,
whether for coincident adjacent control points, and surfaces which are
closed but shouldn’t be, or surfaces which are not closed but should be.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/d3_bs3/spd3rtn.hxx

Effect: Read–only

bs3_surface_closed_u
Function: Spline Interface, Construction Geometry

Action: Determines whether a given surface is closed in the u-parameter.

Prototype: logical bs3_surface_closed_u (
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Kernel R10

Description: This routine returns TRUE if the parameter line on the surface
corresponding to minimum u-parameter is geometrically identical to that
for maximum u-parameter; otherwise it returns FALSE.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_closed_v
Function: Spline Interface, Construction Geometry

Action: Determines whether the given surface is closed in the v-parameter.

Prototype: logical bs3_surface_closed_v (
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”

Description: This routine returns TRUE if the parameter line on the surface
corresponding to minimum v-parameter is geometrically identical to that
for maximum v-parameter; otherwise it returns FALSE.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_control_points
Function: Spline Interface, Construction Geometry

Action: Gets the number of control points in the u and v directions, and the array
of control points, for the given surface.

Kernel R10

Prototype: void bs3_surface_control_points (
bs3_surface bs, // input surface
int& num_u, // number of u control

// points
int& num_v, // number of v control

// points
SPAposition*& ctrlpts // control points array
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: This function creates an array of the control points for the given surface.
The length of the array is num_u*num_v. The order the control points are
stored in the array is [u][v], such that v increments more quickly. It is the
responsibility of the calling application to delete the control point array.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_copy
Function: Spline Interface, Construction Geometry

Action: Creates an exact copy of the surface in free store.

Prototype: bs3_surface bs3_surface_copy (
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: ACIS calls this routine only when a change is to be made to one copy of
the surface, so there is no advantage to be gained by deferring the
duplication further. Ordinary duplication of ACIS spline surfaces merely
creates a new reference to the same underlying bs3_surface.

Kernel R10

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

bs3_surface_cross
Function: Spline Interface, Construction Geometry

Action: Evaluates the cross curvature of a three-dimensional B-spline surface at a
given uv.

Prototype: double bs3_surface_cross (
SPApar_pos const& uv, // given parameter point
SPAunit_vector const& dir,// object space tangent

// direction
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/unitvec.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Evaluates the cross curvature of a three-dimensional B-spline surface at a
given uv.

This is equivalent to constructing a plane through the given point and
perpendicular to the given direction, which must be tangent to the surface
at the given point, and returning the curvature of the intersection curve
between the plane and the surface at that point.

If the intersection curve is convex when viewed from the outside of the
surface (the side that the normal points toward), the sign of the result is
negative. If the curve is is concave, the sign is positive. If there is a
discontinuity in curvature at the given point, the value returned is for the
left-hand side of the intersection curve as viewed in the given tangent
direction with the surface normal upwards.

Errors: Returns –1 if the input surface is null.

Kernel R10

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_debug
Function: Spline Interface, Construction Geometry, Debugging

Action: Gets a readable representation of the curve and writes it to a file.

Prototype: void bs3_surface_debug (
bs3_surface sur, // given surface
char const* leader, // string to precede

// second and subsequent
// lines

FILE* fp // output file
= debug_file_ptr

);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”
#include ”kernel/acis.hxx”

Description: Produces a readable representation of the surface on the given open file, in
any convenient format.

If this extends to more than one text line (as is almost certain), start all
lines but the first with the leader string. Do not terminate the last line by a
newline character.

If the intersection curve is convex when viewed from the outside of the
surface (the side that the normal points toward), the sign of the result is
negative. If the curve is is concave, the sign is positive. If there is a
discontinuity in curvature at the given point, the value returned is for the
left-hand side of the intersection curve as viewed in the given tangent
direction with the surface normal upwards.

Errors: none

Limitations: None

Library: kernel

Kernel R10

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: System routine

bs3_surface_degree_u
Function: Spline Interface, Construction Geometry

Action: Gets the spline degree in the u direction.

Prototype: int bs3_surface_degree_u (
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx

Description: Refer to Action.

Errors: Returns –1 if the input surface is null.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Read–only

bs3_surface_degree_v
Function: Spline Interface, Construction Geometry

Action: Gets the spline degree in the v direction.

Prototype: int bs3_surface_degree_v (
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx

Description: Refer to Action.

Errors: Returns –1 if the input surface is null.

Kernel R10

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Read–only

bs3_surface_delete
Function: Spline Interface, Construction Geometry

Action: Deletes storage occupied by the given surface.

Prototype: void bs3_surface_delete (
bs3_surface& bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sps3srtn.hxx

Description: No assumptions are made by ACIS about how the underlying surface
package manages its storage space, provided that it does not prevent the
standard C memory allocation mechanism from working.

Errors: None.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: System routine

bs3_surface_dim
Function: Spline Interface, Construction Geometry

Action: Gets the dimensionality of a surface.

Prototype: int bs3_surface_dim (
bs3_surface bs // input surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Kernel R10

Description: Returns the dimensionality of the surface. Usually this will be 3.

Errors: None.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Read–only

bs3_surface_dim
Function: Spline Interface, Construction Geometry

Action: Gets the dimensionality of a surface.

Prototype: int bs3_surface_dim (
bs3_surface bs // input surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Returns the dimensionality of the surface. Usually this will be 3.

Errors: None.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Read–only

bs3_surface_estimate_param
Function: Spline Interface, Construction Geometry

Action: Estimates the parameter values of the foot of a perpendicular from a given
point to the surface.

Prototype: SPApar_pos bs3_surface_estimate_param (
SPAposition const& pos, // given point
bs3_surface surface, // given surface
logical recurse // use recursion

= FALSE
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: It is expected that this function, followed by a call to bs3_surface_perp
using the estimated parameter value, will be substantially faster than a call
to bs3_surface_perp with no estimated parameter value; however, the
result may not give the nearest perpendicular, even if the given point is
very near to the surface. Use bs3_surface_estimate_param only with
algorithms that are resistant to such unexpected results.

Errors: None.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_eval
Function: Spline Interface, Construction Geometry

Action: Evaluates a bs3_surface for position, first, and second derivatives at the
given parameter value.

Prototype: void bs3_surface_eval (
SPApar_pos const& uv, // given parameter point

// uv
bs3_surface bs, // given surface
SPAposition& pos, // position returned
SPAvector* d1 // du and dv returned in

= NULL, // an array of 2 vectors
SPAvector* d2 // duu, duv and dvv

= NULL // returned in array
// of 3 vectors

);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Kernel R10

Description: If pos is a non-null reference, it is set to the evaluated position of the
surface at the given parameter values. If d1uv is not NULL, it must point
to an array of vectors of length 2, and these are set to the surface
derivatives with respect to the parameters u and v respectively. If d2uv is
not NULL, it must point to an array of vectors of length 3, and these are
set to the second derivatives of the surface, with respect to u twice, u and
v, and v twice. (For all ordinary surfaces we may assume that the
derivative with respect to v and u will be the same as that with respect to u
and v.)

Errors: None.

Limitations: There is no provision to handle discontinuities of second derivative, so it is
assumed that the second derivatives are continuous across the portion of
the surface that is of interest. Also, it is assumed that the first derivatives
are continuous everywhere. The direction of the surface normal is always
required to be continuous throughout the interior of the portion of interest.

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_evaluate
Function: Spline Interface, Construction Geometry

Action: Evaluates the position and an arbitrary number of derivatives of the
surface.

Kernel R10

Prototype: int bs3_surface_evaluate (
SPApar_pos const& uv, // given parameter

// position
bs3_surface sur, // given surface
SPAposition& pos, // returned position
SPAvector** deriv // returned derivatives

= NULL, // array of pointers to
// arrays of vectors,each
// such array containing
// one more vector than
// the order of the
// derivative

int nderiv // returned number of
= 0, // derivatives

// to be evaluated, equal
// to the length of the
// deriv array

int uindex // returned senses at u
= 0, // discontinuities

int vindex // returned senses at v
= 0 // discontinuities

);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/vector.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Evaluates the position and an arbitrary number of derivatives of the
surface, with control over the handedness of the evaluation if the
derivatives are discontinuous.

deriv specifies an array of pointers to arrays, containing at least nderiv
values, though any or all may NULL. If not NULL, entry n (representing
the (n+1)th derivative) must point to an array of at least n+1 vectors.

uindex specifies the sense of evaluation at a u discontinuity: negative
means evaluate to the left, positive means evaluate to the right, and 0
means “don’t care.”

vindex specifies the sense of evaluation at a v discontinuity: negative
means evaluate below, positive means evaluate above, and 0 means “don’t
care.”

Errors: Returns –1 if input surface is null, or nderiv < 0.

Kernel R10

Limitations: There is a limit on the number of evaluated derivatives, as returned by
bs3_surface_accurate_derivs; any further derivatives requested are set to
0.

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_fit
Function: Spline Interface, Construction Geometry

Action: Fits a mesh of points to a bs3_surface.

Prototype: bs3_surface bs3_surface_fit (
double fittol, // fit tolerance
int num_u, // number of points in u
int num_v, // number of points in v
const SPAposition pts[], // points
const SPAunit_vector // u derivatives

du_s[], // at start
const SPAunit_vector du_e[]// u derivatives at

end
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/unitvec.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Fits a mesh of points using optionally specified start and end derivatives in
the u direction only. The start and end derivatives must all be specified or
all be NULL.

The control points are contained in an array of positions. The v index
varies first. That is, a row of v control points for the first u value is
specified first. Then, the row of v control points for the next u value. The
(num_v) u tangent vectors are specified in increasing v order.

Errors: If an error occurs, this routine returns a NULL surface.

Limitations: The distance between any two adjacent points to be fitted can not be
within tolerance. However the fit points can be the same at the start and
end for closed surfaces, and similarly for other types of configurations
which result in self–intersecting surfaces.

Kernel R10

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Changes model

bs3_surface_fitol
Function: Spline Interface, Construction Geometry

Action: Determines the fit tolerance of a surface.

Prototype: double bs3_surface_fitol (
bs3_surface sur // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: The computed fit tolerance is not less than 10*SPAresabs.

Errors: None.

Limitations: None.

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_from_ctrlpts
Function: Spline Interface, Construction Geometry

Action: Creates a B-spline surface from a collection of control points and knot
vectors.

Kernel R10

Prototype: bs3_surface bs3_surface_from_ctrlpts (
int degree_u, // degree in u
logical rational_u, // rational in u
int form_u, // type in u
int& pole_u, // pole in u
int num_ctrlpts_u, // number of control

// points in u
int degree_v, // degree in v
logical rational_v, // rational in v
int form_v, // type in v
int& pole_v, // pole in v
int num_ctrlpts_v, // number of control

// points in v
const SPAposition // position control

ctrlpts[], // points
const double weights[], // weights
double, // tolerance to determine

// if two control points
// are the same

int num_knots_u, // number of knots in u
const double knots_u[], // knots in u
int num_knots_v, // number of knots in v
const double knots_v[], // knots in v
double knot_tol // tolerance to determine

// if two knots are the
// same

);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: The spline is defined by the given sequence of control points and knots. If
the argument rational_u is TRUE, the surface is rational in the u
parameter; if FALSE, it is not. Similarly, for rational_v.

The argument form_u specifies whether the surface is open (0), closed (1),
or periodic (2) in the u direction. Similarly for form_v.

Kernel R10

The argument pole_u indicates whether or not the surface has a singularity
at the u-min or u-max parameter boundaries according to the following:

0 = No singularity at u-min or u-max boundary

1 = Has a singularity at the u-min boundary

2 = Has a singularity at the u-max boundary

3 = Has a singularity at both boundaries

Similarly for pole_v.

The control points are contained in an array of positions. The v index
varies first. That is, a row of v control points for the first u value is found
first. Then, the row of v control points for the next u value. If the surface
is rational in either parameter, it is considered a rational surface and the
associated weights are in the array of doubles. The values in this array are
in the same sequential order as the control points.

The point_tol tolerance value determines when two control points are
identical and the knot_tol tolerance value performs the same function for
the knot sequence.

Errors: None.

Limitations: The knots input have to be in an strictly increasing order.

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Changes model

bs3_surface_hermite
Function: Spline Interface, Construction Geometry

Action: Creates a single patch Bezier surface from Hermite data at the patch
corners.

Prototype: bs3_surface bs3_surface_hermite (
const SPAposition* corners, // corners
const SPAvector* uderivs, // u derivatives
const SPAvector* vderivs, // v derivatives
const SPAvector* twists // twists
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/vector.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: The only point to bear in mind is that data is passed in ascending u order
first, but ag_srf_data thinks it’s in ascending v order first. Therefore care
must be taken when copying control points into the big array.

The arrays each have length 4, and contain data at (0,0), (1,0), (0,1) and
(1,1) in that order. The derivatives are with respect to a unit
parameterization.

Errors: None.

Limitations: None.

Library: kernel

Filename: kern/kernel/spline/d3_bs3/sp3srtn.hxx

Effect: Changes model

bs3_surface_hermite_intp
Function: Spline Interface, Construction Geometry

Action: Creates a bi-cubic Hermite interpolant using a mesh of points, tangents,
twists, and knot vectors.

Prototype: bs3_surface bs3_surface_hermite_intp (
int nu, // number of points in u
int nv, // number of points in v
SPAposition* pts, // object space points

// array [nu][nv]
SPAvector* u_partials, // u partial array

// [nu][nv]
SPAvector* v_partials, // v partial array

// [nu][nv]
SPAvector* uv_partials, // uv partial array

// [nu][nv]
double* u_knots, // u knots array [nu]
double* v_knots // v knots array [nv]
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/vector.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: Creates a bi-cubic Hermite interpolant using a mesh of points, u tangents,
v tangents, uv twists, and the corresponding knot vectors.

Errors: If an error occurs, the function returns a NULL surface.

Limitations: No two adjacent points to be interpolated can be same within tolerance.
However the interpolated points can be same at start and end for closed
surfaces, so other types of configurations are allowed which result in
self–intersecting surfaces.

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sp3srtn.hxx

Effect: Changes model

bs3_surface_hull_planes
Function: Spline Interface, Construction Geometry

Action: Creates a bounding hull around a surface.

Prototype: int bs3_surface_hull_planes (
bs3_surface surface_, // given surface
SPAposition* points, // six points on planes
SPAunit_vector* normals // six plane normals
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/unitvec.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: The hull is a set of six planes that (in some sense) closely bounds the
entire surface. In principle, these could be the standard box planes, but this
function will probably generate a significantly tighter bound, preferably
transformation-independent, at the expense of moderate extra effort. By
choosing two planes to be roughly parallel to the surface, the distance
between them will fall as the square of the linear dimension of a smooth
surface. As that dimension gets small, the volume of the bound can be
made to fall more rapidly than the cube of the length.

Kernel R10

Errors: None.

Limitations: Call this function only after a box test using the standard boxes. It returns
the number of planes constructed and allocates an array of planes in free
space, which it is the caller’s responsibility to delete.

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

bs3_surface_ij_ctrlpt
Function: Spline Interface, Construction Geometry

Action: Gets the [i,j] control point of a given spline surface.

Prototype: void bs3_surface_ij_ctrlpt (
bs3_surface in_sur, // given surface
int i, // ith points in u

// direction
int j, // jth points in v

// direction
SPAposition& ctrl_pos, // returned object space

// control point
double& weight, // weight if is_rational
logical& is_rational, // set TRUE if surface is

// rational in u and–or v
int& dimension // dimension of the

// object space point,
// >3 is not supported

);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/logical.h”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Refer to Action.

Errors: Returns (–1,–1,–1) on bad input: null surface or negative indices.

Limitations: None

Library: kernel

Kernel R10

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_ij_knu
Function: Spline Interface, Construction Geometry

Action: Gets the ith knot in u direction.

Prototype: double bs3_surface_ij_knu (
bs3_surface bs, // given surface
int i, // ith point in u

// direction
int j // jth point in v

// direction
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Refer to Action.

Errors: Returns –1 on bad input: null surface or negative indices.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_ij_knv
Function: Spline Interface, Construction Geometry

Action: Gets the ith knot in v direction.

Prototype: double bs3_surface_ij_knv (
bs3_surface bs, // given surface
int i, // ith point in u

// direction
int j // jth point in v

// direction
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Refer to Action.

Errors: Returns –1 on bad input: null surface or negative indices.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_init
Function: Spline Interface, Construction Geometry

Action: Initializes the spline surface system.

Prototype: void bs3_surface_init ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: ACIS calls this routine once; it should not be called more than once.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: System routine

bs3_surface_interp_knots
Function: Spline Interface, Construction Geometry

Action: Creates a bicubic surface that interpolates or fits a set of points, with
specified boundary derivatives and twist vectors.

Kernel R10

Prototype: bs3_surface bs3_surface_interp_knots (
int nu, // number points in u
int nv, // number points in v
SPAposition* points, // position array
double knotsu[], // u knot array
double knotsv[], // v knot array
SPAvector* deru, // u derivative array of

// end conditions
SPAvector* derv, // v derivative array of

// end conditions
SPAvector deruv[] // uv derivative array of

// corner twist vectors
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/vector.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: This function interpolates or fits an array of positions, using knot vectors
in the u and v directions, boundary derivatives (i.e., tangent vectors) and
twist vectors.

nu is the number of positions in the u direction, nv the number of positions
in the v direction. points is a two dimensional array of positions [nu*nv].
knotsu is the u knot vector, knotsv the v knot vector. Initially there is a
one–to–one correspondence between knots and positions; however, it is
required that the –1, –2, n and n+1 element of the knot vectors be
addressable, though they need not be set. Therefore the knotsu and knotsv
should both be of size [nu+4]. The point for u knot i and v knot j is points
[j*nu + i]. The increasing u values are stored contiguously.

deru contains the start and end derivatives for the u direction, elements 0
to nv–1 for the bottom u knot end, and elements nv to 2*nv–1 for the top
end. Specifying a zero length vector means that natural end conditions will
be used for that place on the surface. derv and deru work the same way,
replacing nv by nu.

Finally, deruv is an array of four vectors giving the twist vectors, i.e., the
uv cross derivative at the corners of the domain. They are stored in the
following order:

(lo_u,lo_v), (hi_u,lo_v), (lo_u,hi_v), (hi_u,hi_v)

As with first derivatives along the boundaries, a zero length vector is an
indicator to use natural end conditions.

Kernel R10

The interpolation algorithm assumes that all the knot values are distinct,
the surface is open in both directions, and that there is generally nothing
unusual going on.

 As a side effect of the interpolation algorithm, this routine will set any
vectors in derv which you have passed in as zero vectors. deru is left
alone.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/d3_bs3/spd3rtn.hxx

Effect: Changes model

bs3_surface_intp
Function: Spline Interface, Construction Geometry

Action: Interpolates a mesh of points.

Prototype: bs3_surface bs3_surface_intp (
int num_u, // number of points in u
int num_v, // number of points in v
const SPAposition pts[], // points [num_u][num_v]
const SPAunit_vector // u derivatives at start

du_s[], // [num_v]
const SPAunit_vector // u derivatives at end

du_e[], // [num_v]
const SPAunit_vector // v derivatives at start

dv_s[], // [num_u]
const SPAunit_vector // v derivatives at end

dv_e[] // [num_u]
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/unitvec.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: Interpolates a mesh of points, optionally specifying the u and v tangent
directions along the edges of the surface.

Kernel R10

The points are stored in a single dimension array with u varying first, then
v. The interpolation scheme is cubic in both the u and v directions. The
start and end derivatives must all be specified or all be NULL.

Errors: None

Limitations: No two adjacent points to be interpolated can be same with in tolerance.
However the interpolated points can be same at start and end for closed
surfaces, so other types of configurations are allowed which result in
self–intersecting surfaces.

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Changes model

bs3_surface_invdir
Function: Spline Interface, Construction Geometry

Action: Gets the direction in the parameter space of a surface at a given position
that corresponds to a given object-space tangent direction.

Prototype: SPApar_dir bs3_surface_invdir (
SPAunit_vector const& dir,// given direction
SPApar_pos const& uv, // given parameter point
bs3_surface bs // given surface
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/unitvec.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Usually, this routine will normalize the result of calling
bs3_surface_unitvec.

Errors: Returns an empty SPApar_dir if the input surface is null.

Limitations: Results are not defined for points that do not lie on the surface.

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Kernel R10

Effect: Read–only

bs3_surface_invert
Function: Spline Interface, Construction Geometry

Action: Gets the parameter of a point on a 3D B-spline surface.

Prototype: SPApar_pos bs3_surface_invert (
SPAposition const& pos, // given point
bs3_surface bs, // given surface
SPApar_pos const& uv // uv guess

=*(SPApar_pos*)NULL_REF
);

Includes: #include ”kernel/acis.hxx”
#include ”baseutil/vector/param.hxx”
#include ”baseutil/vector/position.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: If initial parameter values are given, they may be assumed to be close to
the desired point compared with any other point of (local) minimum
distance, so there is no requirement to check that the value obtained is
indeed the nearest point.

Errors: Returns an empty SPApar_pos if the input surface is null.

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_join_u
Function: Spline Interface, Construction Geometry

Action: Joins two compatible three–dimensional B–spline surfaces together.

Prototype: bs3_surface bs3_surface_join_u (
bs3_surface first_part, // left–hand surface
bs3_surface last_part // right–hand surface
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Joins two compatible three–dimensional B–spline surfaces together
(without checking for compatibility). The surfaces are joined along the
high u–parameter edge of the first, and the low u–parameter edge of the
second.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

bs3_surface_join_v
Function: Spline Interface, Construction Geometry

Action: Joins two compatible three–dimensional B–spline surfaces together.

Prototype: bs3_surface bs3_surface_join_v (
bs3_surface first_part, // left–hand surface
bs3_surface last_part // right–hand surface
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: Joins two compatible three–dimensional B–spline surfaces together
(without checking for compatibility). The surfaces are joined along the
high v–parameter edge of the first, and the low v parameter edge of the
second.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Changes model

Kernel R10

bs3_surface_knots_u
Function: Spline Interface, Construction Geometry

Action: Gets the number of knots in the u direction and the knot values in the u
direction, for the given surface.

Prototype: void bs3_surface_knots_u (
bs3_surface bs, // input surface
int& num_knots_u, // number of knots
double*& uknots // knot vector
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Description: This function creates an array of knot points in the u direction for the
given surface. The knot multiplicity (i.e., the number of knots in the array
with the same value), will be equal to the degree plus one at both ends of
the array. It is the responsibility of the calling application to delete the
knot array.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_knots_v
Function: Spline Interface, Construction Geometry

Action: Gets the number of knots in the v direction and the knot values in the v
direction, for the given surface.

Prototype: void bs3_surface_knots_v (
bs3_surface bs, // input surface
int& num_knots_v, // number of knots
double*& vknots // knot vector
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/sg_bs3s/sps3srtn.hxx”

Kernel R10

Description: This function creates an array of knot points in the v direction for the
given surface. The knot multiplicity (i.e., the number of knots in the array
with the same value), will be equal to the degree plus one at both ends of
the array. It is the responsibility of the calling application to delete the
knot array.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/sg_bs3s/sps3srtn.hxx

Effect: Read–only

bs3_surface_knottol
Function: Spline Interface, Construction Geometry

Action: Gets the parametric criterion used to decide whether a given parameter is a
knot.

Prototype: double bs3_surface_knottol ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_srf/sp3srtn.hxx”

Description: This routine is for the purpose of choosing between discontinuous “sided”
derivatives.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/bs3_srf/sp3srtn.hxx

Effect: Read–only

bs3_surface_loft_curves
Function: Spline Interface, Construction Geometry

Action: Lofts a surface from an array of n bs3_curves.

Kernel R10

Prototype: bs3_surface bs3_surface_loft_curves (
bs3_curve* curves[], // curves
double knots[], // knots
double fitol, // fit tolerance
int n, // position
double& actual_tol // returns the actual

// tolerance used
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_crv/bs3curve.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Description: The array contains n+2 curves, the nth and n+1th being derivative curves
to give the correct start and end derivatives while splining across the
control points of the given curves. The curves proper are stored in
elements 0 to n–1 inclusive. This does some casting of positions to vectors
which isn’t quite proper. It doesn’t worry about potential periodicity or any
other such details. The given knot vector becomes the u knot vector of the
surface.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/d3_bs3/spd3rtn.hxx

Effect: Changes model

bs3_surface_loft_u_curves
Function: Spline Interface, Construction Geometry

Action: Lofts a series of similar bs3_curves into a bs3_surface.

Prototype: bs3_surface bs3_surface_loft_u_curves (
int n_crvs, // number of curves
bs3_curve crvs[], // array of curves
double knots[] // array of knots
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/spline/bs3_crv/bs3curve.hxx”
#include ”kernel/spline/bs3_srf/bs3surf.hxx”
#include ”kernel/spline/d3_bs3/spd3rtn.hxx”

Kernel R10

Description: Loft a series of similar bs3_curves into a bs3_surface by splining across
the control points of the curves with a cubic interpolation, and using the
given knot vector which will become the v knot vector of the surface. The
knot vector of the curves becomes the u knot vector of the surface. Closure
forms both left as open.

This function is essentially the same as bs3_surface_loft_curves.
However it does it with u and v transposed. So the supplied curves become
the u parameter curves, and the longitudinal direction becomes the v
direction. n_crvs is the number of curves not including the two derivative
curves, which are the final two of the array. knots must be addressable 2
above and 2 below its start.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/spline/d3_bs3/spd3rtn.hxx

Effect: Changes model

