
Kernel R10

Chapter 25.
Functions Ma thru Rz

Topic: Ignore

make_Scm_Entity
Function: Scheme Interface, Entity

Action: Creates a Scheme entity from a C++ ENTITY.

Prototype: ScmObject make_Scm_Entity (
ENTITY* ent // entity
);

Includes: #include ”kernel/acis.hxx”
#include ”kern_scm/ent_typ.hxx”
#include ”kernel/kerndata/data/entity.hxx”
#include ”scheme/elk/object.h”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kern_scm

Filename: kern/kern_scm/ent_typ.hxx

Effect: Read–only

make_surface
Function: Construction Geometry, Extending ACIS

Action: Creates a surface for the given surface constant.

Prototype: SURFACE* make_surface (
surface const& this_surface // surface
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerndata/geom/cnstruct.hxx”
#include ”kernel/kerndata/geom/surface.hxx”
#include ”kernel/kerngeom/surface/surdef.hxx”

Description: Used by the CURVE_constructor class.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerndata/geom/cnstruct.hxx

Effect: Read–only

proj_pt_to_line
Function: Construction Geometry, Intersectors, Modifying Models

Action: Projects a SPAposition onto a line.

Prototype: SPAposition proj_pt_to_line (
const SPAposition& pt, // position to

// project
const SPAposition& line_pt, // position on line
const SPAunit_vector& line_dir// direction of

// line
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/geomhusk/geom_utl.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/unitvec.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/geomhusk/geom_utl.hxx

Effect: Read–only

Kernel R10

proj_pt_to_plane
Function: Construction Geometry, Intersectors, Modifying Models

Action: Projects a SPAposition onto a plane.

Prototype: SPAposition proj_pt_to_plane (
const SPAposition& pt, // position to project
const SPAposition& c, // position on plane
const SPAunit_vector& n // plane normal
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/geomhusk/geom_utl.hxx”
#include ”baseutil/vector/position.hxx”
#include ”baseutil/vector/unitvec.hxx”

Description: Refer to Action.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/geomhusk/geom_utl.hxx

Effect: Read–only

read_array
Function: SAT Save and Restore

Action: Reads an of array indices.

Prototype: ENTITY* read_array (
ENTITY* array[], // array of entities
int i // number of entities
);

ENTITY* read_array (
ENTITY* array[], // array of entities
const void* ptr // pointer to restore

// routine
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerndata/data/entity.hxx”
#include ”kernel/kerndata/savres/savres_small.hxx”

Kernel R10

Description: This routine is used as part of restore from a SAT or SAB file. It returns an
array of indices or NULL for negative index.

if (i < 0)
return NULL

else
return array[i] Array of indices.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerndata/savres/savres_small.hxx

Effect: Read–only

read_char
Function: SAT Save and Restore

Action: Reads a character written with C printf format “%c”.

Prototype: int read_char ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_char() : EOF;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_data
Function: SAT Save and Restore

Action: Reads a TaggedData item from an unknown ENTITY type.

Kernel R10

Prototype: TaggedData* read_data ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”kernel/kernutil/fileio/tagdata.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work. Reads a
TaggedData item from an unknown ENTITY type. This procedure returns
a new object which is allocated on the heap. It is the callers responsibility
to free it when it is done with it. Normally, the object will be appended to
a TaggedDataList, and the list will assume responsibility for deleting it.

return ActiveFile ? ActiveFile–>read_data() : NULL;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_enum
Function: SAT Save and Restore

Action: Reads an enumeration table.

Prototype: int read_enum (
enum_table const& tbl // enumeration table
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/mmgr/enum_tbl.hxx”

Description: Read an enumeration table. The <identifier> specifies which enumeration
is active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format
“%s”. For compatibility with older files, accept the integer value, even for
interfaces which write the corresponding string. ActiveFile is a
FileInterface object and does most of the actual work.

Kernel R10

return ActiveFile ? ActiveFile–>read_enum(tb1) : 0;

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_float
Function: SAT Save and Restore

Action: Reads a float written with C printf format “%g ”.

Prototype: float read_float ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/meshhusk/mesh/node.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_float() : 0;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/meshhusk/mesh/node.hxx

Effect: Read–only

read_header
Function: SAT Save and Restore

Action: Reads a header.

Prototype: logical read_header (
int& i1, // release level
int& i2, // number of data records
int& i3, // number of entities
int& i4 // history
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/logical.h”

Description: Reads a header. The first record of the ACIS save file is a header, such as:
200 0 1 0

First Integer: An encoded version number. In the example, this is “200”.
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for the .sat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

 ActiveFile is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_header(i1, i2, i3, i4) : FALSE;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_id
Function: SAT Save and Restore

Action: Reads an identifier.

Prototype: int read_id (
char* buf, // id string
int buflen // length of buffer

= 0
);

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: The save identifier written with C printf format “%s ”. Read an entity
identifier. In text mode, this is just a sequence of non–blank characters. In
binary mode, it is a sequence of counted strings, of which all but the last
have negative counts. These strings are assembled into the buffer,
separated by ’–’. The result is placed in a caller–supplied buffer –
overflow causes an error, unless the length is given zero or negative, in
which case no overflow is detected. ActiveFile is a FileInterface object and
does most of the actual work.

return ActiveFile ? ActiveFile–>read_id(buf, buflen) : 0;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_int
Function: SAT Save and Restore

Action: Reads an integer by reading a long and converting.

Prototype: int read_int ();

int read_int(
const char*& test_string // string to be read
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
integer by reading a long and converting. Some compilers will give a
warning for this shortening, but it may be ignored. Implementations for
machines with ints and longs different lengths may well want a different
version. ActiveFile is a FileInterface object and does most of the actual
work.

Kernel R10

return ActiveFile ? (int)(ActiveFile–>read_long()) : 0;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_interval
Function: SAT Save and Restore

Action: Reads an interval as two doubles.

Prototype: SPAinterval read_interval ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/interval.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
interval as two doubles (old–style), or as two instances of ”I” for infinite,
or as ”F <value>” for finite bound.

if (restore_version_number < INFINT_VERSION)
read_real starting
read_real ending

else
read_logical finite: either “I” or “F”
if (finite)

read_real ending

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

Kernel R10

read_logical
Function: SAT Save and Restore

Action: Reads a logical.

Prototype: logical read_logical (
char const* false_str // string for FALSE

= ”F”,
char const* true_str // string for TRUE

= ”T”
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/logical.h”

Description: (false_string, true_string, {or any_valid_string}): Appropriate string
written with C printf format “%s ”. Reads a logical value. Up to
LOGICAL_VERSION, this was an integer 0 or 1. Later than that in text
files it has been keywords defaulting to ”T” or ”F”. For generality, accept
an integer value or any blank–terminated string starting with the first
character of either of the given strings. ActiveFile is a FileInterface object
and does most of the actual work.

return ActiveFile ? ActiveFile–>read_logical(false_str, true_str) : FALSE;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_long
Function: SAT Save and Restore

Action: Reads a long written with C printf format “%ld”.

Prototype: long read_long ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Kernel R10

Description: This routine is used as part of restore from a SAT or SAB file. Reads a
long integer. In text mode, this ignores initial white space, and leaves the
input stream positioned at the character (which should be white space)
which terminates the decimal integer representation. In binary, this simply
reads the correct number of bytes for the internal representation, and then
possibly reorders them. ActiveFile is a FileInterface object and does most
of the actual work.

return ActiveFile ? ActiveFile–>read_long() : 0;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_matrix
Function: SAT Save and Restore, Mathematics

Action: Reads a SPAmatrix as three row vectors.

Prototype: SPAmatrix read_matrix ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/matrix.hxx”

Description: This routine is used as part of restore from a SAT or SAB file.

read_vector vector v1
read_vector vector v2
read_vector vector v3

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Kernel R10

Effect: Read–only

read_pointer
Function: SAT Save and Restore

Action: Reads a pointer.

Prototype: void* read_pointer ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: Reads a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long. ActiveFile is a
FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_pointer() : NULL;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_position
Function: SAT Save and Restore

Action: Reads a position as three doubles.

Prototype: SPAposition read_position ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/position.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_position() : SPAposition(0,0,0);
Call the appropriate SatFile or
SabFile method

Kernel R10

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_ptr
Function: SAT Save and Restore

Action: Reads a pointer for the save file.

Prototype: ENTITY* read_ptr ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerndata/data/entity.hxx”
#include ”kernel/kerndata/savres/savres_small.hxx”

Description: This routine is used as part of restore from a SAT or SAB file.

return (ENTITY *)read_pointer(); Call the other read pointer
function.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerndata/savres/savres_small.hxx

Effect: Read–only

read_real
Function: SAT Save and Restore

Action: Reads a double.

Prototype: double read_real ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Kernel R10

Description: This routine is used as part of restore from a SAT or SAB file. Read a
double. In text mode, this ignores initial white space, and leaves the input
stream positioned at the character (which should be white space) which
terminates the decimal representation, which may be fixed–point or
exponent notation. In binary, this simply reads the correct number of bytes
for the internal representation, and then possibly reorders them. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_double() : 0;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_sequence
Function: SAT Save and Restore

Action: Reads an explicit record sequence number.

Prototype: int read_sequence ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
explicit record sequence number, returning it, or negative if none.
Sequence numbers in text mode consist of a minus sign with no preceding
white space, followed by a positive or zero integer. They do not appear in
binary files. ActiveFile is a FileInterface object and does most of the actual
work.

return ActiveFile ? ActiveFile–>read_sequence() : –1;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Kernel R10

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_string
Function: SAT Save and Restore

Action: Reads a string into a supplied buffer of a given size, maxlen.

Prototype: char* read_string (
int& len // length of buffer
);

int read_string (
char* buf // character string
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. Reads a
string. This consists of an integer length, followed by that number of
literal characters. In text mode, the length and characters are separated by
exactly one space. In int read_string, we assume that the buffer supplied is
of sufficient length for the characters plus the usual terminating null. The
function returns the actual number of characters read. The char*
read_string is a more convenient form of read_string. The string is written
the same as it was for the old version, with a count followed by the actual
string. Unlike the old version however, this version allocates a string of the
correct length and returns a pointer to it, so you do not have to worry
about reading the count, and then backspacing the file to re–read the string
if you want to make sure that you have a buffer which is big enough. If the
length of the string was zero characters, then this will return NULL rather
than ””. ActiveFile is a FileInterface object and does most of the actual
work.

return ActiveFile ? ActiveFile–>read_string(buf) : 0;
Call the appropriate SatFile or
SabFile method

return ActiveFile ? ActiveFile–>read_string(len) : NULL;
Call the appropriate SatFile or
SabFile method

Kernel R10

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_subtype_end
Function: SAT Save and Restore

Action: Reads subtype end braces around the subtypes, written as “} ”.

Prototype: logical read_subtype_end ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/logical.h”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_subtype_end() : FALSE;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_subtype_start
Function: SAT Save and Restore

Action: Reads subtype start braces around the subtypes, written as “{ ”.

Prototype: logical read_subtype_start ();

Kernel R10

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/logical.h”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_subtype_start() : FALSE;
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_transf
Function: SAT Save and Restore, Mathematics, Transforms

Action: Internal to ACIS and not intended for direct usage. Reads a
transformation.

Prototype: SPAtransf read_transf ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/transf.hxx”

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Read a transformation as matrix, translation vector, double scaling factor
and three integer flags.

Kernel R10

read_matrix Affine matrix
read_vector Translation vector
read_real Scaling
read_logical Either “no_rotate” or “rotate”
read_logical Either “no_reflect” or “reflect”
read_logical Either “no_shear” or “shear”

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_unit_vector
Function: SAT Save and Restore

Action: Reads a unit vector as a vector and then normalizes it.

Prototype: SPAunit_vector read_unit_vector ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/unitvec.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. Reads a unit
vector as a vector and then normalizes it.

read_vector Vector to read in.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

read_vector
Function: SAT Save and Restore

Action: Reads a vector as three doubles.

Kernel R10

Prototype: SPAvector read_vector ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kernutil/fileio/fileio.hxx”
#include ”baseutil/vector/vector.hxx”

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_vector() : SPAvector(0,0,0);
Call the appropriate SatFile or
SabFile method

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kernutil/fileio/fileio.hxx

Effect: Read–only

reset_boxes
Function: Construction Geometry

Action: Resets the boxes used.

Prototype: void reset_boxes (
ENTITY* this_entity // entity to reset
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerndata/data/entity.hxx”
#include ”kernel/kerndata/geometry/getbox.hxx”

Description: Resets the bounding box of the topological entity (i.e., set it to NULL),
then do the same for its owners. Its argument must be a BODY, LUMP,
SHELL, SUBSHELL, FACE, LOOP, EDGE, or WIRE.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerndata/geometry/getbox.hxx

Kernel R10

Effect: Read–only

reset_boxes_downward
Function: Construction Geometry

Action: Resets the box of the given entity and then resets the boxes off all
constituent boxes.

Prototype: void reset_boxes_downward (
ENTITY* ent // entity to reset
);

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerndata/data/entity.hxx”
#include ”kernel/kerndata/geometry/getbox.hxx”

Description: Resets the box of the given entity and then resets the boxes off all
constituent boxes. In other words, it sets the box pointer to NULL for the
portion of the topological tree below this entity.

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerndata/geometry/getbox.hxx

Effect: Read–only

restore_curve
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_curve ();

Includes: #include ”kernel/acis.hxx”
#include ”kernel/kerngeom/curve/curdef.hxx”

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Kernel R10

Restores the curve. The restore function does the actual work. It calls the
base class, then reads the selector, if the save file is new enough. This
reads the curve type and then switches in the run–time table to the correct
restore routine.

if (restore_version_number < CURVE_VERSION)
read_int integer for the type of curve.
dispatch_restore_cu Supply the number for the type of

curve
else

read_id Reads in the string associated with
the curve identification.

dispatch_restore_cu Supply the curve identification for
the type of curve

Errors: None

Limitations: None

Library: kernel

Filename: kern/kernel/kerngeom/curve/curdef.hxx

Effect: Read–only

