
Kernel  R10

Chapter 30.
Classes Da thru Dz

Topic: Ignore

DEBUG_LIST
Class: Debugging

Purpose: Defines a simple list pointer, which allows all active lists to be scanned.

Derivation: DEBUG_LIST : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerndata/data/debug.hxx

Description: This class defines a simple list pointer, which allows all active lists to be
scanned.

Limitations: None

References: KERN ENTITY_LIST

Data:
None

Constructor:
public: DEBUG_LIST::DEBUG_LIST (

char const* type // type name
);

C++ initialize constructor requests memory for this object, initialize its
members, and then link it at the end of the chain of headers. The type
argument is in three classes:

NULL pointer – The type name is to be obtained from the first entity in the
list

null string – Same as NULL pointer, except that when performing debug
printout, the list is not printed

non–null string – The type name to be used when identifying the list



Kernel  R10

public: logical DEBUG_LIST::debug_list (
FILE* // file name
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
public: virtual DEBUG_LIST::~DEBUG_LIST ();

C++ destructor, deleting a DEBUG_LIST.

Methods:
public: int DEBUG_LIST::count () const;

Counts the entities in the list.

public: virtual void DEBUG_LIST::debug (
ENTITY const*, // entity
FILE* // file name
) const;

Displays one entity from the DEBUG_LIST.

public: logical DEBUG_LIST::debug_list (
FILE* // file name
);

Displays each entity in the list, starting at the number_printed.

public: char const* DEBUG_LIST::entity_name ();

Allows unprivileged utilities to follow the list pointer to return the entity
type.

public: ENTITY const* DEBUG_LIST::fetch (
int // index number of entity
) const;

Obtains the indexed entity from the list.

public: int DEBUG_LIST::lookup (
ENTITY const*, // entity to lookup
logical // add to list option
);



Kernel  R10

Search for the given entity in the list, optionally adding it, and returning
the index number.

public: DEBUG_LIST* DEBUG_LIST::next ();

Allows unprivileged utilities to follow the list pointer to return the next
entity type.

public: virtual unsigned
DEBUG_LIST::size_list () const;

Determines the total space occupied by all of the entities in the list. It does
not include subsidiary structures.

Related Fncs:
clear_debug_lists, debug_add, debug_all, debug_box, debug_entity,
debug_header, debug_int, debug_leader, debug_lists,
debug_new_pointer, debug_old_pointer, debug_real, debug_sib_pointer,
debug_size, debug_string, debug_title, debug_transform,
format_pointer, size_all

DELTA_STATE
Class: History and Roll, SAT Save and Restore

Purpose: Retrieves a sequence of bulletin boards.

Derivation: DELTA_STATE : ACIS_OBJECT : –

SAT Identifier: “delta_state”

Filename: kern/kernel/kerndata/bulletin/bulletin.hxx

Description: This class returns a sequence of bulletin boards that change the modeler
from the from_state to the to_state. The bulletin boards are created
between successive calls to note_state. They are chained together in a
singly-linked list beginning at bb_ptr.

Limitations: None

References: KERN BULLETIN_BOARD, DELTA_STATE_LIST,
DELTA_STATE_user_data, HISTORY_STREAM

by KERN BULLETIN_BOARD, HISTORY_MANAGER,
HISTORY_STREAM



Kernel  R10

Data:
public BULLETIN_BOARD *bb_ptr;
Pointer to bulletin board.

public DELTA_STATE *next_ds;
A delta state whose from_state equals this to_state.

public DELTA_STATE *partner_ds;
Circular list of delta states with same from_state.

public DELTA_STATE *prev_ds;
The delta state whose to_state equals this from_state.

public DELTA_STATE* merged_with_ds;
The delta state this one merges into.

public DELTA_STATE_LIST* merged_states;
The delta states merged into this one.

public DELTA_STATE_user_data *user_data;
Pointer to optional application data attached to the DELTA_STATE.

public HISTORY_STREAM *owner_stream;
Allows history stream to be found from delta state.

public STATE_ID from_state;
Previous modeler state.

public STATE_ID this_state;
Set when state is noted.

public STATE_ID to_state;
Next modeler state to change to.

public char *name_str;
Name string for the DELTA_STATE.

public logical hidden;
Not counted for roll_n_states or max_states.

public logical rolls_back;
Delta records a backward change.

Constructor:
public: DELTA_STATE::DELTA_STATE (

HISTORY_STREAM* // history
= NULL

);



Kernel  R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a new state, with the to_state set to the current state, the
from_state set to 0, and the bb_ptr set to NULL.

Destructor:
public: DELTA_STATE::~DELTA_STATE ();

C++ destructor, deleting a DELTA_STATE.(and their bulletins) that
constitute the DELTA_STATE.

Methods:
public: void DELTA_STATE::add (

BULLETIN_BOARD* // bulletin board
);

Adds a new bulletin board to this delta state.

public: logical DELTA_STATE::backward () const;

Rolls the current state to the previous one in the DELTA_STATE.

public: BULLETIN_BOARD* DELTA_STATE::bb () const;

Returns the bb_ptr.

public: void DELTA_STATE::clear_history_ptrs ();

Clear reference to this history from entities in the delta state.

public: void DELTA_STATE::compress ();

Performs compression on a given DELTA_STATE.

public: void DELTA_STATE::debug (
FILE* // file name

= debug_file_ptr
) const;

Outputs information about the DELTA_STATE to the debug file or to the
specified file.



Kernel  R10

public: void DELTA_STATE::debug (
int id, // entity id
int level, // entity level
FILE* // file name

= debug_file_ptr
) const;

Outputs debug information about DELTA_STATE to the debug file or to
the specified file.

public: void DELTA_STATE::debug_list (
DELTA_STATE_LIST& dslist, // delta state
int id, // id
int level, // level in state
int ent_level // entity level

= 0,
FILE* // file name

= debug_file_ptr
);

Prints debugging information with annotation support. The second and
third arguments specify a branch of the entity derivation hierarchy to call
debug_ent on, in addition to the normal bulletin board debugging
information. For annotations we use ANNOTATION_TYPE and
ANNOTATION_LEVEL.

public: void DELTA_STATE::debug_list (
DELTA_STATE_LIST& dslist, // delta state
int level // level in state

= 0,
FILE* // file name

= debug_file_ptr
);

Aids in debugging the DELTA_STATE.

public: void DELTA_STATE::find_bulletins (
int type, // entity type
int level, // entity level
BULLETIN_LIST& blist // bulletin list
) const;



Kernel  R10

Function for finding annotations. The first two arguments specify a branch
of the entity derivation hierarchy to return bulletins for. For annotation
use, we can use ANNOTATION_TYPE and ANNOTATION_LEVEL. It
may also be useful to be more specific, such as
SWEEP_ANNOTATION_TYPE and SWEEP_ANNOTATION_LEVEL.
The is_XXXX functions generated by the ENTITY_DEF macro work well.

public: void DELTA_STATE::find_bulletins (
is_function tester, // test function
BULLETIN_LIST& blist // bulletin list
) const;

Function for finding annotations. The first two arguments specify a branch
of the entity derivation hierarchy to return bulletins for. In this form the
tester identifies the type of entity to look for. For annotation use, we can
use ANNOTATION_TYPE and ANNOTATION_LEVEL. It may also be
useful to be more specific, such as SWEEP_ANNOTATION_TYPE and
SWEEP_ANNOTATION_LEVEL. The is_XXXX functions generated by
the ENTITY_DEF macro work well.

public: void DELTA_STATE::find_entities (
enum ENTITY_TYPE, // type of entity
ENTITY_LIST& // entity list
);

Searches in entity list for a type of entity recorded in the bulletin.

public: logical DELTA_STATE::fix_pointers ( 
ENTITY_ARRAY& elist, // pointers to fix
HISTORY_STREAM_LIST& hslist,// hist stream list
DELTA_STATE_LIST& dslist // delta state list
);

The fix_pointers method for each entity in the restore array is called, with
the array as argument. This calls fix_common, which calls its parent’s
fix_common, and then corrects any pointers in the derived class. In
practice there is never anything special for fix_pointers to do, but it is
retained for consistency and compatibility. (Supplied by the
ENTITY_FUNCTIONS and UTILITY_DEF macros.)

public: logical DELTA_STATE::forward () const;



Kernel  R10

Rolls the current state to the next one in the DELTA_STATE.

public: STATE_ID DELTA_STATE::from () const;

Read only access to the originating DELTA_STATE.

public: const char* DELTA_STATE::get_name ();

Returns a name string of the DELTA_STATE.

public: DELTA_STATE_user_data*
DELTA_STATE::get_user_data ();

Returns the user data that was attached to the DELTA_STATE.

public: logical DELTA_STATE::hide (
logical h // hidden or not
);

Hides the given DELTA_STATE.

public: HISTORY_STREAM*
DELTA_STATE::history_stream ();

Returns the owner of the stream.

public: STATE_ID DELTA_STATE::id () const;

Returns the STATE_ID.

public: logical DELTA_STATE::is_empty () const;

Returns true if the DELTA_STATE contains no BULLETINs.

public: logical DELTA_STATE::is_named (
const char* n // name of delta state
);

Returns the name of the delta state.



Kernel  R10

public: void DELTA_STATE::merge_next ();;

Merge with the next DELTA_STATE, keeping all the BULLETINs and
BULLETIN_BOARDs from both states in the correct order in this state,
and then deleting next. If the next state had partners, indicating a branch,
the branch is pruned as there would no longer be a sensible way to roll the
model to states on the branch. Repeated calls can be used to compress any
linear range of delta states with the same roll direction, into one state.

public: logical DELTA_STATE::mixed_streams (
HISTORY_STREAM*& alternate_hs // alternate

// stream
);

Checks for mixed history streams.

public: DELTA_STATE* DELTA_STATE::next () const;

Returns the next DELTA_STATE.

public: DELTA_STATE* DELTA_STATE::partner () const;

Returns the partner DELTA_STATE.

public: DELTA_STATE* DELTA_STATE::prev () const;

Returns the previous DELTA_STATE.

public: void DELTA_STATE::remove (
BULLETIN_BOARD* // bulletin board
);

Removes a new bulletin board from this delta state.

public: void DELTA_STATE::reset_history_on_delete ();

Reset the history stream on deletion.

public: logical DELTA_STATE::restore ();



Kernel  R10

Restores DELTA_STATE to the state provided by a previous bulletin
board.

read_int This state
read_int Rolls back to
read_int hidden
read_pointer Pointer to record in SAT file for

Previous DELTA_STATE
read_pointer Pointer to record in SAT file for

Next DELTA_STATE
read_pointer Pointer to record in SAT file for

Partner DELTA_STATE
read_pointer Pointer to record in SAT file for

Merged with DELTA_STATE
read_pointer Pointer to record in SAT file for

Owner HISTORY_STREAM
read_string_or_null Name string
if (read_int) If there is at least one bulletin

board, represented by a number 1
BULLETIN_BOARD::restore Restore an individual bulletin

board
while (read_int) While there are more bulletin

boards, represented by a number 1
BULLETIN_BOARD::restore Restore an individual bulletin

board
read_int Number of merged states
if(num_merged_states != 0)

while(num_merged_states––)
read_pointer Pointer to record in SAT file to the

merged DELTA_STATE.
read_data Read until terminator

public: void DELTA_STATE::roll ();

Rolls back over a complete delta state, inverting it so as to allow roll
forward the next time.

public: void DELTA_STATE::scan (
DELTA_STATE_LIST& dslist // change state list
) const;

Adds connectees to the delta state list.



Kernel  R10

public: void DELTA_STATE::set_from (
STATE_ID from_id // state ID number
);

Sets the identification of the from STATE_ID.

public: void DELTA_STATE::set_history_ptrs ();

Set history pointers.

public: void DELTA_STATE::set_name (
const char* n // name
);

Changes name of DELTA_STATE.

public: void DELTA_STATE::set_to (
STATE_ID to_id // state ID number
);

Sets the identification of the to_state to STATE_ID.

public: void DELTA_STATE::set_user_data (
DELTA_STATE_user_data* d // pointer to data
);

Permits users to change user data in DELTA_STATE.

public: int DELTA_STATE::size (
logical include_backups // include backups

= TRUE // as part of size
) const;

Returns the size of the DELTA_STATE.

public: STATE_ID DELTA_STATE::to () const;

Read only access to the destination DELTA_STATE.

Internal Use: full_size



Kernel  R10

Related Fncs:
abort_bb, change_state, clear_rollback_ptrs, close_bulletin_board,
current_bb, current_delta_state, debug_delta_state,
delete_all_delta_states, delete_ds_branch, get_default_stream,
initialize_delta_states, open_bulletin_board, release_bb,
set_default_stream

DELTA_STATE_LIST
Class: History and Roll

Purpose: Implements a variable length list of delta states.

Derivation: DELTA_STATE_LIST : –

SAT Identifier: None

Filename: kern/kernel/kerndata/bulletin/bulletin.hxx

Description: This class provides a constructor (which creates an empty list), a
destructor, a function to add an delta state (only if not already there), a
function to look up a delta state by pointer value, and a function to count
the number of delta states listed. Also provides an overloaded “[ ]”
operator for access by position. This was created using the LIST macro.

The functions are all essentially dummy; just indirecting through the
header pointer. This is done in order to insulate the application programs
completely from the implementation of lists.

The current implementation uses hashing so that look up is fast provided
lists are not very long; it is also efficient for very short lists and for
repeated lookups of the same delta state.

When a group of similar arguments must be returned, and the number of
arguments is not known in advance, the system returns the arguments as an
DELTA_STATE_LIST. The number of members of an
DELTA_STATE_LIST can be found using the member function count, and
individual members can be accessed with the subscript operator [ ].

The DELTA_STATE_LIST class is a variable length associative array of
DELTA_STATE pointers. When using the subscript operator, a cast is
required to change the DELTA_STATE pointer into the correct type. Many
ACIS internal algorithms use DELTA_STATE_LIST including the part
copy, save, and restore algorithms. DELTA_STATE_LIST is also useful in
ACIS components and applications.



Kernel  R10

Limitations: NT, UNIX platforms only.

References: by KERN DELTA_STATE, HISTORY_STREAM

Data:
None

Constructor:
public: DELTA_STATE_LIST::DELTA_STATE_LIST ();

C++ constructor, creating a DELTA_STATE_LIST.

Destructor:
public: DELTA_STATE_LIST::~DELTA_STATE_LIST ();

C++ destructor, deleting a DELTA_STATE_LIST.

Methods:
public: int DELTA_STATE_LIST::add (

DELTA_STATE* e // state to add
);

Add a delta state to the list and returns its index number.

public: void DELTA_STATE_LIST::clear ();

Empties a list for construction of a new one.

public: int DELTA_STATE_LIST::count () const;

Returns the number of delta states in a given list.

public: void DELTA_STATE_LIST::init () const;

Initializes the correct position in the list for next.

public: int
DELTA_STATE_LIST::iteration_count () const;

Counts how many delta states there are in the list not including deleted
entries. Uses the iterator.

public: int DELTA_STATE_LIST::lookup (
DELTA_STATE const* ce // delta state
) const;



Kernel  R10

Looks up a delta state in the debug list.

public: DELTA_STATE* DELTA_STATE_LIST::next () const;

Returns the next undeleted entry.

public: DELTA_STATE* DELTA_STATE_LIST::operator[] (
int i // index number of item
) const;

Returns a given item from a list.

public: int DELTA_STATE_LIST::remove (
DELTA_STATE const* ce // state to remove
);

Deletes a delta state from the list; however, it does not free space.

Related Fncs:
None

discontinuity_info
Class: Construction Geometry, SAT Save and Restore

Purpose: Stores discontinuity information for a curve or surface.

Derivation: discontinuity_info : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/curve/discinfo.hxx

Description: Used to store parameter values at which a curve has a discontinuity in
some derivative, or at which a surface has a line of discontinuity in some
derivative. This class stores discontinuity information for a curve or
surface. Only C1, C2, and C3 discontinuities are stored since we are not
interested in C4 discontinuities and above.

Limitations: None

References: by KERN int_cur, intcurve, spl_sur, spline

Data:
None



Kernel  R10

Constructor:
public: discontinuity_info::discontinuity_info ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.

public: discontinuity_info::discontinuity_info (
const discontinuity_info& old // instance to

// copy
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Destructor:
public: discontinuity_info::~discontinuity_info ();

C++ destructor for discontinuity_info which deallocates memory.

Methods:
public: void discontinuity_info::add_discontinuity (

double value, // value to add
int order // where
);

Adds a discontinuity value to the list. In periodic cases, it’s up to the
application to ensure that the values are in the same parameter period. but
we check this here.

public: const double*
discontinuity_info::all_discontinuities (
int& n_discont, // number of

// discontinuities
int order // order of disc
);

Accesses the all discontinuities list, returning a read–only array.

public: void discontinuity_info::debug (
char const*, // title line
FILE* // file pointer
) const;;

Outputs a title line and the details of the <class_name> for inspection to
standard output or to the specified file.



Kernel  R10

public: const double*
discontinuity_info::discontinuities (
int& n_discont, // number of

// discontinuities
int order // order of disc.
) const;

This is an access function that returns a read-only array.

public: int discontinuity_info::discontinuous_at (
double t // where to test
) const;

States whether a particular parameter value is a discontinuity.

public: void discontinuity_info::merge (
discontinuity_info& old // instance to merge
);

Merges two discontinuity_info entities, keeping the supplied one
unchanged. The entries from the second are added into the first one at a
time. Not very efficient, but we don’t expect these arrays to contain much
data.

public: void discontinuity_info::negate ();

Negates the data for the discontinuity_info.

public: discontinuity_info&
discontinuity_info::operator= (
const discontinuity_info& old // list to use
);

Sets the pointer to the current discontinuity_info object to the input object
pointer.

public: double discontinuity_info::period () const;



Kernel  R10

Periodicity. This class handles periodicity, although it does not know the
“base range” of the parameters. When building up the list using
add_discontinuity, the application must ensure that the parameters are in
the correct range (e.g. the param_range of a curve). Once the list is built,
this class will accept parameters out of the base range and interpret them
as though they were in range.

public: void
discontinuity_info::remove_discontinuity (
double value // value to remove
);

Removes a discontinuity value from the list.

public: void discontinuity_info::reparam (
double a, // slope
double b // offset
);

Makes a linear change of parameter to all the discontinuity values (new
value = a * old_value + b).

public: void discontinuity_info::reset ();

Deletes discontinuity information and reinitializes the data fields to zero.

public: void discontinuity_info::restore ();

This method is never called directly. It is called by a higher hierarchical
function if an item in the SAT file is determined to be of this class type.
An instance of this class will already have been created through the
allocation constructor. This method then populates the class instance with
the appropriate data from the SAT file.



Kernel  R10

read_int // number of C1 discontinuities
if (n_C1 > 0) // if any C1 discontinuities

foreach ( n_C1 ) // for each one
read_real // read the discontinuity

read_int // number of C2 discontinuities
if ( n_C2 > 0 ) // if any C2 discontinuities

foreach ( n_C2 ) // for each one
read_real // read the discontinuity

read_int // number of C3 discontinuities
if ( n_C3 > 0 ) // if any C3 discontinuities

foreach ( n_C3 ) // for each one
read_real // read the discontinuity

read_real // total discontinuities

public: void discontinuity_info::save () const;

This method is never called directly. It is called by a higher hierarchical
function if an item in the SAT file is determined to be of this class type
while storing information to a save file.

public: void discontinuity_info::set_periodic (
double per // period
);

Establishes the periodicity.

public: void discontinuity_info::shift (
double incr // amount to shift
);

Shifts all of the discontinuity values by a constant amount.

public: discontinuity_info
discontinuity_info::split (
double param // parameter value
);

Split the discontinuity lists into two at a given parameter value. Like
curve::split, the return value contains the initial values (before the split
parameter), and the original discontinuity_info contains the others (after
the split parameter). If the split parameter is itself a discontinuity, it is
removed from the list.



Kernel  R10

Internal Use: full_size

Related Fncs:
test_discontinuity


