Chapter 32.
Classes Fa thru Kz

Topic:

FACE

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

Kernel R10

Ignore

Model Topology, SAT Save and Restore
Represents a bounded portion $W@RFACE.

FACE : ENTITY : ACIS_OBJECT : —
ufacen
kern/kernel/kerndata/top/face.hxx

A face is a bounded portion of a single geometric surface, the
two-dimensional analog of a body. The boundary is represented by one or
more loops or edges. Each face is simply connected, implying that one can
traverse from any point on the interior of the face to any other point on the
interior of the face without crossing the boundary of the face. In general, it
is not meaningful to distinguish exterior and interior loops of edges,

though for certain surface types this may be possible and some algorithms
may do so.

Face loops need not necessarily be closed, and if not, either open end may
be finite or infinite. If either end is infinite, then the face is infinite; if

either end is finite, then the face is “incompletely-bounded”, or just
“incomplete.” Although such faces can be represented in ACIS, most
algorithms cannot handle such faces.

Users may also find the topological traversal functions located in
kernel/kerndata/top/query.hxx useful for generating lists of faces on other
topological entities or lists of edges and vertices on faces. The
get_face_box function may be useful to retrieve or recalculate a face’s
bounding box. Theeset_boxes function may be useful to reset the
bounding box of a face and its parents. Other functions of note include:

Limitations:

References:

Data:

Constructor:

point_in face determines the containment of a
point versus a face.

raytest face determines the intersection of a ray
with a face.

sg_get face_ normal Calculates a normal at a point on a
face.

find_cls_ptto face finds the closest point to a

specified point on a face.
None

KERN LOOP, SHELL, SUBSHELL, SURFACE
by KERN LOOP, SHELL, SUBSHELL, pattern_holder

None

public: FACE::FACE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloadsd

operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: FACE::FACE (

FACE*, // old FACE

LOOP*, /I first loop

logical /I update FACE list
= TRUE

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloadeew operator, because this

reserves the memory on the heap, a requirement to support roll back and
history management.

Creates &ACE, using the givehOOP list, but taking geometry, senses,

and shell and subshell owners from the FACE. Optionally updates the
SHELL or SUBSHELL FACE list to contain the neWACE (by default).

Kernel R10

Destructor:

Methods:

Kernel R10

public: FACE::FACE (

LOOP*, /I first LOOP
FACE*, /I next FACE
SURFACE?*, /I SURFACE
REVBIT /] sense

);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloadedw operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Creates &ACE. initializing the record and interfacing with the bulletin
board. The arguments initialize the fitsDOP on the face, the nelBACE

on theBODY, the underlyingSURFACE geometry, and the sense of the
FACE relative to the surfaceOQRWARD or REVERSED) respectively. It
increments th&URFACE use count to reflect this new use. It also sets the
backpointers (to thEACE) in theLOOPSs that must be correctly chained
together before this constructor is called. The calling routine must set
shell_ptr or subshell_ptr to refer to the ownin@HELL or SUBSHELL,

and if desiredbound_ptr, usingset_shell or set_subshell andset_bound.

public: virtual void FACE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. Tlhee methods for attached attributes
are also called.

protected: virtual FACE::~FACE ();

This G+ destructor should never be called directly. Instead, applications
should use the overloadé&mbe method inherited from thENTITY class,
because this supports history management. (For exarspieyw

FACE(...) then lateix—>lose.)

public: SPAbox* FACE::bound () const;

Returns a pointer to a geometric bounding region (a box), within which the
entire FACE lies. The pointer i®ULL if no such bound was calculated
since theFACE was last changed.

protected: virtual logical
FACE::bulletin_no_change_vf (

ENTITY const* other, /I other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data — called by
bulletin_no_change. For theidentical_comparator argument to b& RUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non—overridden subclasges) SE indicates
tolerant compares and retulR&LSE as a default.

public: CONTBIT FACE::cont () const;

Returns the containment of the fa&O{H_OUTSIDE or
BOTH_INSIDE). This value is meaningless if the face is single-sided.

public: logical FACE::copy_pattern_down (
ENTITY* target /I target
) const;

Copies the pattern through all children of the target entity.

public: virtual void FACE::debug_ent (
FILE* /I file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: SURFACE* FACE::geometry () const;
Returns a pointer to the underlyiS§ RFACE defining theFACE.

public: void FACE::get_all_patterns (
VOID_LIST& list /I pattern list

);

Returns all patterns.

Kernel R10

Kernel R10

public: virtual int FACE::identity (
int /I level
=0
) const;

If level is unspecified or 0, returns the type identi#&CE_TYPE. If
level is specified, returnBACE_TYPE for that level of derivation from
ENTITY. The level of this class is defined &&CE_LEVEL.

public: virtual logical FACE::is_deepcopyable (
) const;

ReturnsTRUE if this can be deep copied.

public: LOOP* FACE::loop () const;
Returns a pointer to the firsDOP of COEDGES bounding thé&ACE.

public: FACE* FACE::next (
PAT_NEXT_TYPE next_type // face type
= PAT_CAN_CREATE /I for patterns
) const;

Returns the next face in a complete enumeration of all the faces in the
shell.

The next_type argument controls how theext method treats patterns, and
can take any one of three values:

PAT_CAN_CREATE: if the next face is to be generated from a pattern,
create it if it doesn’t yet exist and return its pointer.

PAT_NO_CREATE: if the next face is to be generated from a pattern, but
hasn’t yet been created, bypass it and return the pointer of the next
already—created face (if any).

PAT_IGNORE: behave as though there is no pattern on the face.

public: FACE* FACE::next_in_list (
PAT_NEXT_TYPE next_type //
= PAT_CAN_CREATE 1
) const;

Returns a pointer to the neACE in the list of FACEs contained directly
by aSHELL or SUBSHELL.

public: ENTITY* FACE::owner () const;

Returns a pointer to the owning entity.

public: logical FACE::patternable () const;

ReturnsTRUE.

public: logical FACE::remove_from_pattern ();

Removes the pattern element associated with this entity from the pattern.
ReturnsFALSE if this entity is not part of a pattern element, otherwise
TRUE.

Note The affected entities are not destroyed, but are merely made
independent of the pattern. The pattern itself is correspondingly
modified to “drop out” the newly disassociated element.

public: logical FACE::remove_from_pattern_list ();

Removes this entity from the list of entities maintained by its pattern, if
any. Return&ALSE if no pattern is found, otherwiS&RUE.

public: logical FACE::remove_pattern ();

Removes the pattern on this and all associated entities. REALSE if
no pattern is found, otherwig&RUE.

public: void FACE::restore_common ();

The RESTORE_DEF macro expands to threstore_common method,

which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

Kernel R10

Kernel R10

if (restore_version_number >= PATTERN_VERSION
read_ptr Pointer to record in save file for
APATTERN on loop
if (apat_idx != (APATTERN*)(-1)))
restore_cache();

read_ptr Pointer to record in save file for
nextFACE in shell or subshell
read_ptr Pointer to record in save file for
first LOOP bounding face
read_ptr Pointer to record in save file for
SHELL containing face
read_ptr Pointer to record in save file for
SUBSHELL containing face
read_ptr Pointer to record in save file for
SURFACE on which face lies
read_logical (“forward”, “reversed”) Direction
of face normal with respect to the
surface
if (restore_version_number >= TWOSIDE_VERSION)
read_logical (“single”, “double”) Double sided
face
if (sides_data) if double sided face
read_logical “out”, “in”), Double sided face
containment. Containment data.
else containment data IBALSE.
else Side data iSINGLE_SIDED and

containment data iBALSE.

public: REVBIT FACE::sense () const;

Returns the sense of tRACE (FORWARD or REVERSED) relative to

the SURFACE. EverySURFACE has a direction sense. Its normal
direction is a continuous function of position. The normal toRhE€E can
be the same as that of tBERFACE at any position, or can be the reverse
of it, as determined by sense. WheRALCE bounds a region of space, its
normal always points away from the region bounded.

public: REVBIT FACE::sense (
REVBIT rev /] sense
) const;

Return the sense of tlACE compounded with the sense argument.
Useful when traversing tHeACE in a reverse direction.

public: void FACE::set_bound (
SPAbox* /I bounding box

)i
Sets thé=ACE’s boundingSPAbox pointer to the givei$sPAbox. Before
performing a change, it checks if the data structure is posted on the

bulletin board. If not, the method calblackup to put an entry on the
bulletin board.

public: void FACE::set_cont (

CONTBIT, /I containment bit
logical reset_pattern /I reset or not

= TRUE

);

Sets thé=ACE’s containment bit to indicate whether th&CE is fully
contained within the pare®HELL or not. Before performing a change, it
checks if the data structure is posted on the bulletin board. If not, the
method calldbackup to put an entry on the bulletin board.

public: void FACE::set_geometry (

SURFACE?, /I new SURFACE geometry
logical reset_pattern /I reset or not

= TRUE

)i

Sets thé=ACE's geometry pointer to the giveiSURFACE. A side effect

of this method is the routine adjusts the use counts of the existing and new
geometry and deletes the old if it is no longer referenced. Before
performing a change, each routine checks whether the data structure is
posted on the bulletin board. If not, the routine dadiskup to put an

entry on the bulletin board.

public: void FACE::set_loop (

LOOP*, /I new LOOP
logical reset_pattern /I reset or not

= TRUE

)i

Sets thé=ACE'’s loop pointer to the givehOOP. Before performing a
change, each routine checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

Kernel R10

Kernel R10

public: void FACE::set_next (

FACE*, /l next FACE
logical reset_pattern /I reset or not

= TRUE

)i

Sets thé=ACE's next FACE pointer to the givelrACE. Before

performing a change, each routine checks whether the data structure is
posted on the bulletin board. If not, the routine dadiskup to put an

entry on the bulletin board.

public: void FACE::set_pattern (
pattern* in_pat /I pattern

);

Set the current pattern.

public: void FACE::set_sense (

REVBIT, /I sense
logical reset_pattern /I reset or not
= TRUE

);

Sets thé=ACE'’s sense to FORWARD or REVERSED with respect to the
SURFACE. Before performing a change, each routine checks whether the
data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: void FACE::set_shell (

SHELL?*, /I SHELL
logical reset_pattern /I reset or not

= TRUE 1

)i

Sets thé=FACE’s SHELL pointer to the giveSHELL. Before performing a
change, each routine checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

public: void FACE::set_sides (

SIDESBIT, /I sidedness
logical reset_pattern /I reset or not

= TRUE

);

Sets thé=ACE's sides to single or double sided. Before performing a
change, each routine checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

public: void FACE::set_subshell (

SUBSHELL?*, /I SUBSHELL
logical reset_pattern /I reset or not

= TRUE

)i

Sets théFACE’'s SUBSHELL pointer to the giveiSUBSHELL. Before
performing a change, each routine checks whether the data structure is
posted on the bulletin board. If not, the routine dadiskup to put an

entry on the bulletin board.

public: SHELL* FACE::shell () const;

Returns a pointer to the@HELL containing the=ACE, either directly or
through a hierarchy SUBSHELLS.

public: SIDESBIT FACE::sides () const;

ReturnsSINGLE_SIDED if the FACE is single-sidedDOUBLE_SIDED if
double-sided.

public: SUBSHELL* FACE::subshell () const;

Returns a pointer to tf®UBSHELL containingFACE directly. The return
is NULL if the FACE belongs directly to the owningHELL.

public: virtual const char* FACE::type_name () const;

Returns the stringface”.

Kernel R10

Internal Use:

Related Fncs:

Filelnfo

Class:
Purpose:

Derivation:
SAT ldentifier:
Filename:

Description:

Limitations:
References:

Data:

Constructor:

Kernel R10

next_face, save, save_common

is_ FACE

SAT Save and Restore
Contains additional required file header information.

Filelnfo : ACIS_OBJECT : —
None
kern/kernel/kerndata/savres/fileinfo.hxx

Contains additional file header information, such as ID of the product used
to save the model, ACIS version, millimeters per model unit, date model
was saved, ACIS save file version, and other relevant model data.

Beginning with ACIS Release 6.3, itfisquired that the product ID and

units scale be populated for the file header before you can save a SAT file,
regardless of the save file version. If you do not set both of these data,
ACIS will generate an error. Refer to thet_product_id andset_units

methods of this class.

None

None

None

public: Filelnfo::Filelnfo ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: Filelnfo::Filelnfo (
FileInfo const& /I file name

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Destructor:

Methods:

public: Filelnfo::~Filelnfo ();

C++ destructor folFileInfo which deallocates memory.

public: const char* Filelnfo::acis_version () const;

Returns the ACIS version number used to save the model.

public: const char* Filelnfo::date () const;

Returns the date on the save file.

public: int Filelnfo::file_version () const;

Returns the save file version used in storing the file.

public: FileInfo& Filelnfo::operator= (
FileInfo const& /I file name

);

Performs an assignment operation.

public: const char* Filelnfo::product_id () const;

Returns the ID of the product.

public: void Filelnfo::reset ();

Resets the values to the default settings for the file information.

public: void Filelnfo::reset_vars ();

Routine to reset the values for the file information to the default values.

public: void Filelnfo::restore ();
Restores the file information from a save file.
if (restore_version_number >= FILEINFO_VERSION)

read_string Product
read_string ACIS Version
read_string Date

read_real Units
read_real Tolerance, abs
read_real Tolerance, nor

Kernel R10

Kernel R10

public: void Filelnfo::save ();

Saves the product ID, version, time, un®Aresabs, andSPAresnor.

public: void Filelnfo::set_masked (

unsigned long, /I number of fields
FileInfo const& /I file name
);

Copy selected fields from another instance.

public: void Filelnfo::set_product_id (
const char* /I'ID

);

Sets the product ID. The product ID can be any string greater than 4
charactersSpatial recommends that the string contain your product name
and the product version, so that SAT files generated by your product can
be easily identified.

Beginning with ACIS Release 6.3, itfisquired that the product ID and
units scale be populated for the file header before you can save a SAT file.

public: void Filelnfo::set_units (
double /I number of millimeters

);

Sets the model units scale (in millimeters). Set the scale to the appropriate
units for your product (1.0 indicates that 1 unit equals 1 millimeter).

Beginning with ACIS Release 6.3, itfisquired that the product ID and
units scale be populated for the file header before you can save a SAT file.

public: double FileIlnfo::tol_abs () const;

Returns the value of tieéPAresabs when the model was saved.

public: double Filelnfo::tol_nor () const;

Returns the value of th&PAresnor when the model was saved.

public: double Filelnfo::units () const;

Returns the value of the millimeters per model unit.

public: void Filelnfo::valid ();
Checks the values of the units and product id.

Related Fncs:
None

FileInterface

Class: SAT Save and Restore
Purpose: Defines the abstract base class.
Derivation: FileInterface : ACIS_OBJECT : —

SAT ldentifier: None
Filename: kern/kernel/kernutil/fileio/fileif.hxx

Description: Defines the abstract base class that defines the interface that ACIS uses to
save and restofeNTITY data.

All ACIS save and restore operations use an object of this class to control
the reading or writing of the data. There are two main reasons for having
this class:

The first reason is to allow saving and restoNTITY data to targets

other than a standard C stream file; i.eFJlz&E*. To do this derive a new
subclass from this one, which implements reading and writing for the new
target.

The second reason is to allow saving and restoring unkENTIITY data

in binary format. This is the reason that this class has so many virtual
methods. To support unknovEENTITY data, the data is tagged with its

type when it is written to a file. This allows manipulation of the data when
it is loaded back in even if the data is unknown.

When deriving a new class to support a different kind of storage
target,derive it from th8&inaryFile class, which is derived from this one
and is declared ihinfile.hxx. TheBinaryFile class has a standard
implementation for most of the virtual methods of this class that already
take care of the details for saving and restoring the unkENMTY data.
Implementation of the actual read and write methods are all that is
necessary.

Kernel R10

Limitations: None

References: None
Data:

None
Constructor:

public: Filelnterface::FileInterface ();
C++ constructor, creating Rilelnterface.

Destructor:
public: virtual FileInterface::~Filelnterface ();

C++ destructor, deleting Bilelnterface.

Methods:
public: virtual FilePosition
Filelnterface::goto_mark (
FilePosition /I file position.
)=0;

Goes to the mark.

public: virtual char Filelnterface::read_char () = 0O;

Reads a character. Written with C printf format “%c”.

public: virtual TaggedData*
FileInterface::read_data ();

Reads the data.

public: virtual double
FileInterface::read_double () = 0;

Reads a double. Written with C printf format “%g ”.

public: virtual int Filelnterface::read_enum (
enum_table const& /I enumeration table
)=0;

Read an enumeration table. The <identifier> specifies which enumeration
is active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format

“%s".

Kernel R10

public: virtual float
FileInterface::read_float () = O;

Reads a float. Written with C printf format “%g .

public: virtual logical Filelnterface::read_header (

int&, /I first integer
int&, /I second integer
int&, /I third integer
int& /I fourth integer
);

Reads a header. The first record of the ACIS save file is a header, such as:
200010

First Integer: An encoded version number. In the example, this is “200".
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for thesat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

public: virtual int FileInterface::read_id (
char*, /I 1D string buffer
int /I buffer length
=0
)=0;

Reads an identifier. The save identifier written with C printf format “%s ”.

public: virtual logical Filelnterface::read_logical (

const char* f /I FALSE keyword
= p

const char* t /I TRUE keyword
=

)=0;

Kernel R10

Kernel R10

Reads a logicalfalse_string, true_string, {or any_valid_string})
Appropriate string written with C printf format “%s ".

public: virtual long Filelnterface::read_long () = 0O;

Reads a long. Written with C printf format “%ld".

public: virtual void*
Filelnterface::read_pointer () = 0;

Reads a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual SPAposition
FileInterface::read_position ();

Reads the positior, y, zcoordinates written as real numbers.

public: virtual int Filelnterface::read_sequence ();

Reads a sequence. Written as “—” followed by the entity index written as
long.

public: virtual short
FileInterface::read_short () = 0;

Reads a short. Written with C printf format “%d".

public: virtual char* Filelnterface::read_string (
int& len /I length
) =0;

Reads a string, allocates memory for it, and the argument returns the
length of the string. Length written as long followed by string written with
C printf format “%s".

public: virtual size_t Filelnterface::read_string (

char* buf, /I buffer

size_t maxlen /I maximum length
=0

)=0;

Reads a string, allocates memory for it, and the argument returns the
length of the string. Length written as long followed by string written with
C printf format “%s".

public: virtual logical
FileInterface::read_subtype_end () = 0;

Reads subtype end. Braces around the subtypes, written as “} ” in the SAT
file.

public: virtual logical
FileInterface::read_subtype_start () = O;

Reads subtype start. Braces around the subtypes, written as “{ ” in the SAT
file.

public: virtual SPAvector Filelnterface::read_vector

0;

Reads the vectox, y, zcomponents written as real numbers.

public: virtual FilePosition
FileInterface::set_mark () = 0;

Sets the mark.

public: virtual logical
FileInterface::unknown_types_ok ();

Determines if unknowENTITY types are OK. This returi®RUE for
everything except old style binary files, so it has a default implementation.

public: virtual void Filelnterface::write_char (
char /I character
) =0;

Writes a character. Written with C printf format “%c”.

public: virtual void Filelnterface::write_data (
const TaggedData& /l tagged data

);

Kernel R10

Kernel R10

Writes the data.

public: virtual void Filelnterface::write_double (
double Il real
)=0;

Writes a real. Written with C printf format “%g .

public: virtual void Filelnterface::write_enum (
int, /I value
enum_table const& /I enumeration table
)=0;

Writes enumeration table. The <identifier> specifies which enumeration is
active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format

“%s".

public: virtual void Filelnterface::write_float (
float /I float
) =0;

Writes a float. Written with C printf format “%g ”.

public: virtual void Filelnterface::write_header (

int, /I first integer

int, /I second integer
int, /[third integer
int /I fourth integer
);

Writes a header. The first record of the ACIS save file is a header, such as:
200010

First Integer: An encoded version number. In the example, this is “200".
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for thesat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

public: virtual void Filelnterface::write_id (
const char*, /I 1D string
int /I'ID level (1 or 2)
)=0;

Writes an identifier. The save identifier written with C printf format “%s ”.

public: virtual void
FileInterface::write_literal_string (

const char*, /I string

size_tlen /I length
=0

);

Writes a literal string.

public: virtual void Filelnterface::write_logical (

logical, /I logical value

const char* f /I FALSE keyword
="F,

const char* t /I TRUE keyword
=T

)=0;

Writes a logical(false_string, true_string, {or any_valid_string})
Appropriate string written with C printf format “%s ".

public: virtual void Filelnterface::write_long (
long /I long
) =0;

Writes a long. Written with C printf format “%ld”.

public: virtual void Filelnterface::write_newline (
int /l number of new lines

Kernel R10

Kernel R10

Writes a new line character.

public: virtual void Filelnterface::write_pointer (
void* /I pointer
) =0;

Writes a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual void Filelnterface::write_position (
const SPAposition& /I position

);

Writes a positionx, y, zcoordinates written as real numbers.

public: virtual void Filelnterface::write_sequence (
int Il integer

);

Writes a sequence. Written as “—” followed by the entity index written as
long.

public: virtual void Filelnterface::write_short (
short /I short
) =0;

Writes a short. Written with C printf format “%d”.

public: virtual void Filelnterface::write_string (

const char*, /I string

size_tlen /I length
=0

)=0;

Writes a string. Length written as long followed by string written with C
printf format “%s”.

public: virtual void
FileInterface::write_subtype_end () = 0;

Writes a subtype end. Braces around the subtypes, written as “} ” in the
SAT file.

public: virtual void
FileInterface::write_subtype_start () = O;

Writes a subtype start. Braces around the subtypes, written as “{ ” in the
SAT file.

public: virtual void
FileInterface::write_terminator () = 0;

Writes a terminator. Written as “#” in the SAT file.

public: virtual void Filelnterface::write_vector (
const SPAvector& /I vector name

)i
Writes a vectorx, y, zcomponents written as real numbers.

Related Fncs:

None
gedge
Class: Graph Theory
Purpose: Creates an instance of a graph edge for use in graph theory.
Derivation: gedge : ACIS_OBJECT : —

SAT Identifier: None
Filename: kern/kernel/kernutil/law/generic_graph.hxx

Description: The concepts of vertex, edge, and graph have been implemented as the
C++ classegvertex, gedge, andgeneric_graph. (entity_gvertex is derived
from gvertex except that it contains a pointer to an entity in the model.
Such an entity could be a cell or a face gvertex may be created with an
optionalchar *name. A gedge may be created with twgvertex pointers.
An empty graph may be created and edges and vertices may be added to it
by calling itsadd_vertex andadd_edge methods. Once created, a graph
may be interrogated, ordered, or subsetted in a number of ways.

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling trenove method.

Kernel R10

Limitations:

References:

Data:

Constructor:

Destructor:

Methods:

Kernel R10

To make agvertex or gedge contain data, derive a class from the base
classes ofjvertex andgedge. Use a technique similar to the
entity_gvertex class which enables it to contain an entity pointer.

None

KERN gvertex

protected gvertex *v1;
First vertex of the edge.

protected gvertex *v2;
Second vertex of the edge.

public static int how_many;
Keeps track of how manyvertexes have been created.

public: gedge::gedge (

gvertex const* in_vl, /] vertex one

gvertex const* in_v2, /I vertex two

double in_weight /I weight of the edge
=0.0

)i

Creates an instance gédge between the two graph vertices supplied.

public: gedge::gedge ();

C++ allocation constructor requests memory for this object but does not
populate it.

protected: virtual gedge::~gedge ();

Do not call this destructor directly. An instancegetige is deleted by
calling theremove method. This is necessary, becagesége is use
counted. This destructor will throwsgs_error if it is called when its
use_count is not equal to zero.

public: void gedge::add () const;

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling trenove method.

public: void gedge::clear_kind ();

Sets the user-definddnd array for this graph item tdULL. kind is
actually a dynamic array. Thalue argument specifies whether or not this
graph edge is of thend number specified.

public: virtual ENTITY* gedge::get_entity () const;

ReturnsNULL.

public: int gedge::get_kind_size () const;

Returns the number of entries in tied array.

public: double gedge::get_weight () const;

Gets the weight of the gedge.

public: logical gedge::is_kind (
int which /I kind to test
) const;

Tests to see if this instance of the graph edge is of a particular
(user-defined) kind.

public: logical gedge::is_loop () const;

ReturnsTRUE if the first vertex is the same as the last vertex, thus
forming a loop.

public: logical gedge::operator!= (
gedge const& in_edge /I test graph edge
) const;

Determines whether or not the supplied graph edge is not equal to this
graph edge.

public: logical gedge::operator==
gedge const& in_edge /I test graph edge
) const;

Kernel R10

Determines whether or not the supplied graph edge is equal to this graph
edge.

public: void gedge::remove ();

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling treenove method.

public: void gedge::set_kind (
int which, /I kind to use
logical value /I turn on or off

);

Assigns a user-definddnd to this graph edgéind is actually a dynamic
array. Thevalue argument specifies whether or not this graph edge is of
thekind number specified.

public: void gedge::set_weight (
double in_weight /I weight
) const;;

Sets the weight of thgedge.

public: gvertex const* gedge::vertex1 () const;

Returns the first vertex associated with this graph edge.

public: gvertex const* gedge::vertex2 () const;
Returns the second vertex associated with this graph edge.
Internal Use: id, isa, same, type

Related Fncs:
None

generic_graph

Class: Graph Theory
Purpose: Creates an instance of a graph for the graph theory mathematical
operations.

Kernel R10

Derivation: generic_graph : ACIS_OBJECT : —
SAT Identifier: None
Filename: kern/kernel/kernutil/law/generic_graph.hxx

Description: The concepts of vertex, edge, and graph have been implemented as the
C++ classegvertex, gedge, andgeneric_graph. (entity_gvertex is derived
from gvertex except that it contains a pointer to an entity in the model.
Such an entity could be a cell or a face gvertex may be created with an
optionalchar *name. A gedge may be created with twgvertex pointers.
An empty graph may be created and edges and vertices may be added to it
by calling itsadd_vertex andadd_edge methods. Once created, a graph
may be interrogated, ordered, or subsetted in a number of ways.

The generic_graph class has methods to tell if a graph is connected, a
tree, linear, or a cycle. It also has methods to tell how many components
the graph has and to return each of the components as a subgraph.
Moreover, the components may be identified by giving an edge or vertex

in them.
Limitations: None
References: None
Data:
None
Constructor:
public: generic_graph::generic_graph (
char const* in_str /I name of the graph
= NULL
);
Creates a graph with the given name.
Destructor:
protected: generic_graph::~generic_graph ();
Destructor for the graph. This destructor will throwya_error if it is
called when itsise_count is not equal to zero.
Methods:

public: void generic_graph::add () const;;

Increments the use count of how many references there are to this
generic_graph instance. The object will not be destroyed until all
references to it have been removed.

Kernel R10

public: void generic_graph::add_edge (
char const* /I name for edge

)i
Adds the named graph edge to a graph structure.

public: void generic_graph::add_edge (
gedge const* /I pointer to edge

)i
Adds the specified graph edge to the graph structure using its pointer.

public: void generic_graph::add_edge (

gvertex const*, /I first vertex of edge
gvertex const*, /I 2nd vertex of edge
ENTITY* in_ent Il optional entity to
= NULL /I associate with edge
)i
Adds a graph edge to the graph structure by specifying pointers to its
vertices.

public: void generic_graph::add_edge (

gvertex const*, /I first vertex of edge
gvertex const*, /I 2nd vertex of edge
double weight /I weight

=0.0
)i

Adds a graph edge to the graph structure by specifying pointers to its
vertices. Optionally an entity can be associated with the graph edge, to, for
example, tie the graph to features of a geometric model.

public: void generic_graph::add_vertex (
char const* /I name of vertex

);

Adds a vertex to the graph structure by specifying its name.

public: void generic_graph::add_vertex (
gvertex const* /Il pointer to vertex

);

Kernel R10

Adds a vertex to the graph structure by specifying a pointer to the graph
vertex.

public: logical generic_graph::adjacent (

gvertex const*, /I first gvertex
gvertex const* /I second gvertex
) const;

Determines if the two specifieglertexes share a commaedge.

public: generic_graph* generic_graph::branch (

generic_graph* trunk, /I linear trunk portion
/I of the graph
generic_graph* which, /I sub—portion of trunk

/I from which to collect
/I branches

logical keep_trunk /I if true, include
/I segments of the trunk.
/I if false, include only
/I branches.

) const;

Returns a graph of branches off of a specified portion of the given trunk.

public: generic_graph* generic_graph::branch (

generic_graph* trunk, /I linear trunk portion

/I of the graph
int order, /I n’th gvertex on trunk
logical keep_trunk /I if true, include

/I segments of the trunk.
/I'if false, include only
/I branches.

) const;

Returns the branch(es) from a specific ordeyesttex of the trunk.

public: void generic_graph::clear_kind ();

Sets the user-definddnd array for this graph item tdULL. kind is
actually a dynamic array that can be used to assign arbitrary flags to
gedges andgvertexes on the graph.

Kernel R10

Kernel R10

public: generic_graph* generic_graph::component (
int /I number of components
) const;

Specifies the number of components that part of the graph structure.

public: int generic_graph::component (
gedge const* /I pointer to edge
) const;

Returns a number representing the component to which the graph edge
belongs.

public: int generic_graph::component (
gvertex const* /Il pointer to vertex
) const;

Returns the number representing the component to which the graph vertex
belongs.

public: int generic_graph::components () const;

Returns the number of components in the graph structure.

public: generic_graph* generic_graph::copy () const;

Copies the graph structure into another graph structure.

public: generic_graph*
generic_graph::cut_edges () const;

This returns a new graph structure containing all of the graph edges that
are considered cut edges. Cut edges are defined as those edges whose
removal results in more graph components than were originally present.

public: generic_graph*
generic_graph::cut_vertices () const;

This returns a new graph structure containing all of the graph vertices that
are considered cut vertices. Cut vertices are defined as those vertices
whose removal results in more graph components than were originally
present.

public: generic_graph*
generic_graph::cycle_edges () const;

This returns a new graph structure containing all of the graph edges that
are considered cycle edges. Cycle edges are defined as the shortest path
through a graph structure resulting in a closed loop.

public: int generic_graph::degree (
gvertex const* /l pointer to vertex
) const;

Returns the degree of the specified graph vertex.

public: int generic_graph::find_all_edges_by_vertex (

gvertex const*, /I first gvertex
gvertex const*, /I second gvertex
gedge**& out Il ge_list

= * (gedge** *) NULL_REF,
int /I target

=0
) const;

Uses the two givegvertexes to find allgedges that connects the
gvertexes. This method returns the numbegefiges found.ge_list and
target are optionalge_list returns thegedges found. The caller may
specify how manyedges are required by setting a target number. The
defaulttarget is 0, which gets aljedges.

public: gedge const*
generic_graph::find_edge_by_entities (

ENTITY* entl, /I first entity
ENTITY* ent2 /I second entity
) const;

Uses the two given entities to find two gvertex’s, then uses these two
gvertex’s to find a gedge that is defined by them. Returns NULL if such
gedge does not exist.

public: gedge const*
generic_graph::find_edge_by name (
char const* v1 /I name to search
) const;

Kernel R10

Kernel R10

Locates a graph edge in the graph structure by its specified name.

public: gedge const*
generic_graph::find_edge_by vertex (

gvertex const*, /I first vertex
gvertex const*, /I second vertex
ENTITY const* ref_ent /I optionally return only
= NULL /I gedges associated with

/I a particular entity
) const;

Locates a graph edge in the graph structure by its bounding vertices.

public: generic_graph*
generic_graph::find_shortest_cycle (
gvertex const* /I starting vertex
) const;

Returns a graph structure which represents the shortest cycle that contains
the given graph vertex.

public: generic_graph*
generic_graph::find_shortest_path (

gvertex const*, /I starting vertex
gvertex const*, /I ending vertex
logical weighted /l shortest (false) or
= FALSE /I 'lightest (true)
) const;

Returns a graph structure that represents the shortest path between the two
specified graph vertices. Weighted is FALSE, the method will return the
shortest path (fewest numbergyertexes in it.) If weighted i§RUE, the

method will return the lightest path (where the sum of all the weights
applied togvertexes andgedges is lowest.)

public: gvertex const*
generic_graph::find_vertex_by_entity (
ENTITY* ent /Il entity to search
) const;

Returns a pointer to the graph vertex by following its model entity.

public: gvertex const*
generic_graph::find_vertex_by name (
char const* name /I name to search
) const;

Returns a pointer to the named graph vertex.

public: gedge** generic_graph::get_adjacent_edges (

gvertex const*, /I test vertex
int& size /I number of edges
) const;

Returns an array of graph edges that are adjacent to the specified vertex.
User must supply a pointer to a variable representing the size of the array.

public: gvertex**
generic_graph::get_adjacent_vertices (

gvertex const*, /I test vertex
int& size /I number of vertices
) const;

Returns an array of graph vertices that are adjacent to the specified vertex.
User must supply a pointer to a variable representing the size of the array.

public: gedge** generic_graph::get_edges (
int& size /I number of edges
) const;

Returns an array of graph edges that are part of the graph structure. User
must supply a pointer to a variable representing the size of the array.

public: void generic_graph::get_entities (

ENTITY_LIST&, /I pointer to entities
logical use_ordering // ordering on or off

= FALSE
) const;

Lists all entities associated with gkkdges andgvertexes of the graph.

public: void generic_graph::get_entities_from_edge (
ENTITY_LIST& /I list of entities
) const;

Kernel R10

Kernel R10

Lists all entities associated with gkdges of the graph

public: void
generic_graph::get_entities_from_vertex (
ENTITY_LIST&, /I list of entities
logical use_ordering /I ordering on or off
= FALSE
) const;

Lists all entities associated with glertexes of the graph

public: gvertex** generic_graph::get_leaves (
int& size I size of returned array
) const;

Gets a list of all thgvertexes with exactly ongedge (leaves of the tree.)

public: int generic_graph::get_order (
gvertex const* /l pointer to vertex
) const;

Once a graph has been ordered, the order of a vertex may be found by
calling theget_order method.

public: gvertex** generic_graph::get_vertices (
int& size /I number of vertices
) const;

Returns an array of graph vertices that make up the graph structure. User
must supply a pointer to a variable which represents the size of the array.

public: generic_graph* generic_graph::intersect (
generic_graph* /I test graph
) const;

Returns a graph structure that represents the intersection of this graph
structure with the specified test graph structure.

public: logical generic_graph::is_connected () const;

Determines whether or not the graph is connected.

public: logical generic_graph::is_cut_edge (

gedge const* / test edge

) const;
Determines whether or not the specified graph edge is a cut edge.
public: logical generic_graph::is_cut_vertex (

gvertex const* /I test vertex

) const;

Determines whether or not the specified graph vertex is a cut vertex.

public: logical generic_graph::is_cycle () const;
Determines whether or not the graph structure is cyclic.
public: logical generic_graph::is_cycle_vertex (

gvertex const* /I test vertex

) const;

Determines whether or not the specified graph vertex is a cycle vertex.

public: logical generic_graph::is_linear () const;
Determines whether or not the graph structure is linear.
public: logical generic_graph::is_multiple_edge (
gedge const* /I gedge
) const;
ReturnsTRUE if there is more than one gedge spanning this gedge’s

vertices.

public: logical generic_graph::is_simple (
gedge const* /I gedge
) const;

ReturnsTRUE if the graph has no multiple edges.

Kernel R10

Kernel R10

public: logical generic_graph::is_subset (
generic_graph const* /I graph that might be a
/I subset of the THIS
/I graph.
) const;

ReturnsTRUE if in_graph is a subset of the THIS graph.

public: logical generic_graph::is_tree () const;

Determines whether or not the graph structure is a tree.

public: generic_graph* generic_graph::kind (

int which, /I kind to test
logical value /I on or off

= TRUE
) const;

This assigns a user-defined kind and its on/off status to the graph structure.

public: int generic_graph::max_kind () const;

Returns the largest number of kinds used to markgaastex or gedge.
This is useful for determining the number of the next unused kind.

public: int generic_graph::max_order () const;

Once a graph has been ordered, the maximum order in the graph may be
found by calling themax_order method.

public: int generic_graph::min_order () const;

Once a graph has been ordered, the minimum order in the graph may be
found by calling themin_order method.

public: void generic_graph::negate ();

Once a graph has been ordered, its ordering may be negated with this
method. Negation is a special operation and returns different results for
cycles and trees depending upon the start vertex. In the following figure,
the graph vertex A was initially 0 in the ordering before the negation
operation.

A B C D E
© S S S o
4 3 2 1 0
B C
A D
F E

Negation of the
Ordering in Graphs

public: int generic_graph::number_of _edges () const;
Returns the number of graph edges in the graph structure.
public: int generic_graph::number_of_vertices ()

const;

Returns the number of graph vertices in the graph structure.

public: void generic_graph::order_cyclic (

gvertex const*, /I first vertex
gvertex const* /I last vertex
);

If a graph is cyclic, then it may be ordered by ¢hger_cyclic method.
This sets a given vertex’s order to zero and the other vertices in a cyclic
order as shown in the following figure.

Kernel R10

F E

Cyclic Ordering

public: void generic_graph::order_from (
generic_graph* /I graph
)i

The order—from method of ordering a graph works well for trees and linear
graphs. The two graphs show in the Ordering Graphs figure have been
ordered by distance from vertex A.

A
(-
0
A B C D E
(- o o o =
0 1 2 3 4
Ordering Graphs

Kernel R10

public: void generic_graph::order_from (
gvertex const* /I starting vertex

);

The order—from method of ordering a graph works well for trees and linear
graphs. The two graphs show in the Ordering Graphs figure have been
ordered by distance from vertex A.

public: void generic_graph::order_with (
generic_graph*, /I other graph
logical compress /I remove gaps in
/I ordering if TRUE
= TRUE

);

Another way to order a graph G is to order it with respect to an ordered
graph H such that G is a subgraph of H. drder_with method imposes

the order of H onto G and rescales the ordering on G to remove gap. The
type of ordering (i.e. cyclic or not) is inherited from the ordered graph H.

If the compress option is turned on, the resulting gvertexes are numbered
sequentially. In the example below, gvertexes in the uncompressed result
would be numbered 124, but in the compressed result would be numbered
012.

The following figure shows a linear graph imposing its order on a
subgraph.

A B C D E
(= = = = =]
0 1 2 3 4
A C E
[[[
0 1 2

Ordering a Graph
with another Graph

Kernel R10

Kernel R10

public: void generic_graph::remove ();

Decrements the use count for the generic graph, and destroys the object
when the use count reaches zero.

public: void generic_graph::set_kind (

generic_graph*, /I reference graph

int which, /I which kind

logical value /I turn kind on if TRUE,
= TRUE /I off if FALSE

);

Turn the given kind on or off for afjvertexes andgedges in the reference
graph. The reference graph is a subset of the full graph.

public: void generic_graph::set_order (
gvertex const*, Il gvertex
int /I order

);

Manually assigns an order tayeertex in a graph.

public: int generic_graph::split_branches (
generic_graph**& out_graphs // subgraph list
)i

Finds all branches in the graph and return a set of subgraphs that do not
have a branch.

public: generic_graph* generic_graph::subset (

int, /I integer a
int /I integer b
) const;

The subset method with two integers takes a and b and returns a subgraph
in one of two ways.

If a<b, then the set of all vertices with orders between a and b is returned
along with all edges that have both of their adjacent vertices in this set.

If b<a, then the set of all vertices with orders not between a and b is
returned along with all edges that have both of their adjacent vertices in
this set.

Internal Use:

public: generic_graph* generic_graph::subset (
law* /I law for evaluation
) const;

Thesubset method with a law returns the set of all vertices such that their
order evaluates as true along with the all edges that have both of their
adjacent vertices evaluating as true orders.

public: generic_graph* generic_graph::subtract (

generic_graph*, /I graph to remove
logical keep /I flag for keep
) const;

Removes the specified graph from this graph structure.

public: generic_graph*
generic_graph::subtract_edges (
generic_graph* /[input graph
) const;

Subtracts the gedges of the input graph from the full graph.

public: double generic_graph::total_weight () const;
Returns the sum of the weights of all trexiges in the graph.
public: generic_graph* generic_graph::unite (
generic_graph* /I graph to add
) const;

Unites this graph with the specified graph. Graph edges and vertices only
appear once.

public: logical generic_graph::vertex_exists (
gvertex const* in_vertex Il gvertex

)i
Returns TRUE if the givepvertex exists in the graph.

get_root, mark_branches

Kernel R10

Related Fncs:

None
gvertex
Class: Graph Theory
Purpose: Creates an instance of a graph vertex for use in graph theory.
Derivation: gvertex : ACIS_OBJECT : —

SAT Identifier: None
Filename: kern/kernel/kernutil/law/generic_graph.hxx

Description: The concepts of vertex, edge, and graph have been implemented as the
C++ classegvertex, gedge, andgeneric_graph. (entity_gvertex is derived
from gvertex except that it contains a pointer to an entity in the model.
Such an entity could be a cell or a face yvertex may be created with an
optionalchar *name. A gedge may be created with twgvertex pointers.
An empty graph may be created and edges and vertices may be added to it
by calling itsadd_vertex andadd_edge methods. Once created, a graph
may be interrogated, ordered, or subsetted in a number of ways.

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling trenove method.

To make agvertex or gedge contain data, derive a class from the base
classes ofjvertex andgedge. Use a technique similar to the
entity_gvertex class which enables it to contain an entity pointer.

Limitations: None
References: by KERN gedge

Data:
protected char *internal_name;
Character representation used to refer to this vertex.

public static int how_many;
Keeps track of how many gvertexes have been created.

Constructor:
public: gvertex::gvertex (
char const* name /I name of vertex
= NULL

);

Kernel R10

Destructor:

Methods:

Creates an instance of a graph vertex and supplies it with a name.

protected: virtual gvertex::~gvertex ();

Do not call this destructor directly. An instancegoértex is deleted by
calling theremove method. This is necessary, becagsertex is use
counted. This destructor will throwsgs_error if it is called when its
use_count is not equal to zero.

public: void gvertex::add () const;

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling trenove method.

public: void gvertex::clear_kind ();

Sets the user-definddnd array for this graph item tdULL. kind is
actually a dynamic array. Thalue argument specifies whether or not this
graph edge is of thend number specified.

public: virtual ENTITY* gvertex::get_entity () const;

This returns a pointer to the entity that the graph vertex refers to. Initially,
this can be &£ELL or aFACE.

public: int gvertex::get_kind_size () const;
Returns the size of thend array.
public: logical gvertex::is_kind (

int which /I kind to test

) const;

Determines whether or not this graph vertex is of the specified kind.

public: char const* gvertex::name () const;

Every graph vertices can be supplied a character string as a name. This
method returns its name.

Kernel R10

public: logical gvertex::operator!= (
gvertex const& in_vertex// gvertex
) const;

Determines whether or not the supplied vertex is not equal to this graph
vertex.

public: logical gvertex::operator==
gvertex const& in_vertex// supplied vertex
) const;

Determines whether or not the supplied vertex is equal to this graph
vertex.

public: void gvertex::remove ();

The G+ classes ofjvertex andgedge are use counted in the same way
that laws are use counted. That is to say that the are copied by calling the
add method and deleted by calling trenove method.

public: void gvertex::set_kind (
int which, /I kind to use
logical value /I turn on or off

);

Assigns a user-definddnd to this graph edgéind is actually a dynamic
array. Thevalue argument specifies whether or not this graph edge is of
thekind number specified.

Internal Use: id, isa, same, type

Related Fncs:
None

history callbacks

Class: History and Roll, Callbacks
Purpose: Provides callbacks for history management.
Derivation: history_callbacks : toolkit_callback : —

SAT ldentifier: None

Kernel R10

Filename:
Description:

Limitations:

References:

Data:

Constructor:

Destructor:

Methods:

kern/kernel/kerndata/bulletin/hist_ch.hxx
Refer to Purpose.
None

None

None

None

None

public: virtual void
history_callbacks::After_Roll_Bulletin_Board (

BULLETIN_BOARD*?, /I bulletin board
logical discard /I discard
);

Callback method, called after rolling a bulletin boardli$tcard is TRUE,
the roll is due to error processing, and Bt LETIN_BOARD will be
deleted along with all of itBULLETINS.

public: virtual void
history_callbacks::After_Roll_State (
DELTA_STATE* /I delta state

);

Callback method, called after rolling one state.

public: virtual void
history_callbacks::After_Roll_States ();

Callback method, called after rolling all states.

public: virtual void
history_callbacks::Before_Roll_Bulletin_Board (

BULLETIN_BOARD?, /I bulletin board
logical discard /I discard
);

Kernel R10

Related Fncs:

Callback method, called before rolling a bulletin boardlid€ard is
TRUE, the roll is due to error processing, and Biu# LETIN_BOARD
will be deleted along with all of itBULLETINS.

public: virtual void
history_callbacks::Before_Roll_State (
DELTA_STATE* /I delta state

)i
Callback method, called before rolling one state.
public: virtual void
history_callbacks::Before_Roll_States ();

Callback method, called before rolling all states.

None

history callbacks_list

Class:
Purpose:

Derivation:
SAT Identifier:
Filename:
Description:
Limitations:
References:

Data:

Constructor:

Destructor:

Kernel R10

History and Roll, Callbacks
Provides a list of callbacks for history.

history_callbacks_list : toolkit_callback_list : ACIS_OBJECT : —
None

kern/kernel/kerndata/bulletin/hist_ch.hxx

Refer to Purpose.

None

None

None

None

None

Methods:
public: void history_callbacks_list::add (
history_callbacks* cb /I callback

)
Adds a callback to the list.

public: virtual void history_callbacks_list::
After_Roll_Bulletin_Board (

BULLETIN_BOARD*?, /I bulletin board
logical discard /I will be discarded
);

Callback method, called after rolling a bulletin boardlistcard is TRUE,
the roll is due to error processing, and Bt LETIN_BOARD will be
deleted along with all of itBULLETINS.

public: virtual void
history_callbacks_list::After_Roll_State (
DELTA_STATE* /I delta state

);

Callback method, called after rolling one state.

public: virtual void
history_callbacks_list::After_Roll_States ();

Callback method, called after rolling all states.

public: void history_callbacks_list::append (
history_callbacks* cb /I callback

)i
Appends a history callback to the callback list.

public: virtual void history_callbacks_list::
Before_Roll_Bulletin_Board (

BULLETIN_BOARD?, /I bulletin board
logical discard /I will be discarded
);

Callback method, called before rolling a bulletin boardlid€ard is
TRUE, the roll is due to error processing, and Biu# LETIN_BOARD
will be deleted along with all of itBULLETINS.

Kernel R10

Related Fncs:

public: virtual void
history_callbacks_list::Before_Roll_State (
DELTA_STATE* /I delta state

)i
Callback method, called before rolling one state.
public: virtual void
history_callbacks_list::Before_Roll_States ();

Callback method, called before rolling all states.

None

HISTORY_MANAGER

Class:
Purpose:

Derivation:
SAT ldentifier:
Filename:

Description:

Limitations:
References:

Data:

Constructor:

Destructor:

Kernel R10

History and Roll, SAT Save and Restore

Creates a history state on the specified history stream.

HISTORY_MANAGER : ACIS_OBJECT : —
None

kern/kernel/sg_husk/history/history.hxx

Takes the bulletins in the current delta state and creates a history state on
the specified history stream. The current delta is left with nothing in it.
Returns the newly created history state. If the current delta state is empty
(has no bulletins)NULL is returned. When all is done, the current delta

state is (optionally) cleared.
None

by KERN StreamFinder

None

None

None

Methods:

public: static DELTA_STATE*
HISTORY_MANAGER::acquireCurrentDelta (

HISTORY_STREAM*, /I history stream
logical clearDeltaState // clear status

= TRUE
)i

Takes the bulletins in the current delta state and creates a history state on
the specified history stream. The current delta is left with nothing in it.
Returns the newly created history state. If the current delta state is empty
(has no bulletins)NULL is returned. When all is done, the current delta
state is (optionally) cleared.

public: static void HISTORY_MANAGER::changeToState (
HISTORY_STREAM* pStream,// source stream
DELTA_STATE* pTarget, /I target
int& statesChanged /I counter for rolling
/I states

);

The state knows which stream it is in, so it does not need to be passed.

public: static outcome
HISTORY_MANAGER::checkDeltaForDistribute (

DELTA_STATE* pState, /l delta state
StreamFinder* pStreamFinder // finds stream
)i

Perform advance checks ofD<A_ STATE to make sure it is OK to
distribute it. Thus, problems can be detected before changing any of the
data structure.

public: static void
HISTORY_MANAGER::clearCurrentDelta ();
Discards all the bulletins in the current delta state and clears it.

public: static int HISTORY_MANAGER::count_bulletins (
DELTA_STATE* pState /[delta state

);

Kernel R10

Gets the number of bulletins in the given delta state.

public: static void
HISTORY_MANAGER::debugCurrentDelta ();

Dumps bulletin board into current delta.

public: static void HISTORY_MANAGER::detach (
ENTITY* I entity

);

Detaches the given entity from any history stream it may be attached to.
Strips the entity of the connecting attribute.

public: static outcome
HISTORY_MANAGER::distributeDeltaState (

DELTA_STATE* pState, /l delta state
StreamFinder* pStreamFinder,// stream finder
logical clearDeltaState /I clear ds flag
= TRUE,
logical hideStates /I hide delta state
= FALSE
);

Takes the bulletins in the current delta state and “distributes” them onto
history streams based on their “owning entities”. Bulletins that do not
belong to any entity that has a history stream attached to it are simple left
in the current delta state. When all is done, the current delta state is
(optionally) cleared.

public: static HISTORY_STREAM*
HISTORY_MANAGER::getAttachedStream (
ENTITY* /I entity

)i
Gets the history stream attached to this entity, if any provided here to hide
details of the connecting attribute.

public: static logical
HISTORY_MANAGER::isStateEmpty (
DELTA_STATE* pState /I delta_state

);

Kernel R10

Tests for the existence of any BULLETINS in the given state.

public: static logical HISTORY_MANAGER::makeRootDS (
DELTA_STATE* pState /I given pState

);

Makes the given pState the root delta state of the history stream it is a part
of. States prior to the given pState are deleted. The effect is that one
cannot roll back over the changes in that delta state. It is useful when
initializing the system to prevent rolling back over the initialization. The
toolkit uses it to prevent rolling back ovapi_initialize_faceter.

public: static logical HISTORY_MANAGER::restore (

HISTORY_STREAM*&, I history stream
ENTITY** /I entity
)i

Restores a history stream that was saved.

public: static int HISTORY_MANAGER::rolINStates (
HISTORY_STREAM* pStream, // history stream
int nstates /I number of states

);

Rolls a stream a given number of states or to the end of a branch, which
ever comes first. Returns the number of states actually rolled.

public: static logical HISTORY_MANAGER::save (

HISTORY_STREAM*, /I history stream list
ENTITY_LIST&, /I entity list
logical activeOnly /I active branch only
/I if TRUE
)i

Saves the history stream and associated entities.

public: static void HISTORY_MANAGER::setNewBulletin (

BULLETIN* b, I bulletin
ENTITY* n Il entity
);

Sets the giveBULLETIN to point to the giveENTITY, and sets its next
and previous pointers fULL.

Kernel R10

Related Fncs:

None

HISTORY_STREAM

Class:
Purpose:

Derivation:
SAT ldentifier:
Filename:

Description:

Limitations:

References:

Data:

Kernel R10

History and Roll, SAT Save and Restore
Implements a method for saving past states.

HISTORY_STREAM : ACIS_OBJECT : —
“history_stream”
kern/kernel/kerndata/bulletin/bulletin.hxx
Externally useful functions to control roll back.

Starts a new bulletin board. At the outermost level of checkpointing,
removes any failed previous bulletin board and constructs a new one to run
sequentially with any previous successful ones. At any other level of
checkpointing, if the argument FALSE, it takes no action, so that the
current bulletin board continues in use. If the argumenRISE, in effect

it pushes a new bulletin board on a stack, whence it may subsequently be
removed by a matchingose_bulletin_board, restoring everything to its
previous state.

None

KERN ATTRIB_HISTORY, DELTA_STATE, DELTA_STATE_LIST,
ENTITY, ENTITY_LIST

by KERN ATTRIB_HISTORY, BULLETIN_BOARD, DELTA_STATE,
HISTORY_MANAGER, model_context

public ATTRIB_HISTORY* attribute;
Persistent only to make a connection during save and restore.

public DELTA_STATE *active_ds;
Pointer to the active delta state.

public DELTA_STATE *current_ds;
Pointer to the current delta state.

public DELTA_STATE *root_ds;
Pointer to the root delta state.

public DELTA_STATE_LIST* merged_states;
Pointer to a list of delta states merged into this list.

public ENTITY_LIST* active_check_list;
Used in checking the history stream.

public STATE_ID current_state;
Current state.

public STATE_ID next_state;

Acts as a state number server giving a new (unused) state number on
request. When model is rolled back to earlier state, the current state
number is reset to the state number of the earlier state, but subsequent new
states are taken from next_state. State numbers increment from 1.

public int logging_level;
The number of api_begin’s minus the number of api_end’s made so far. In
effect, this is the current API nesting level.

public logical link_states;
Indicates if there are link states. Used by api_stop_modeler.

public unsigned max_states_to_keep;
Limit on the number of states to be kept to control the memory used by a
stream. Enforced in note_state by pruning. Hidden states are not counted.

Constructor:
public: HISTORY_STREAM::HISTORY_STREAM ();

C++ allocation constructor requests memory for this object but does not
populate it.

Destructor:
public: HISTORY_STREAM::~HISTORY_STREAM ();

C++ destructor, deleting HISTORY_STREAM.

Methods:
public: void HISTORY_STREAM::add (
DELTA_STATE* /I delta state

);

Add delta state to history stream.

public: void
HISTORY_STREAM::add_create_bulletins_to_root_ds (
ENTITY_LIST& survivors, /I survivors
logical remove_existing_from_survivors// remove
/I or not

);

Kernel R10

Kernel R10

Adds create bulletins to ro®ELTA_STATE, for use when pruning or
saving and restoring empty histories.

public: logical HISTORY_STREAM::assign_tag (

const ENTITY* ent, /I entity
tag_id_type id /I tag
);

Assign a tag to an entity.

public: void HISTORY_STREAM::attach (

DELTA_STATE?, /I delta state
DELTA_STATE* /I delta state
);

Attach two delta states to one another in history stream.

public: logical HISTORY_STREAM::can_roll_back ();

Simple test to see whether stream can be rolled back.

public: logical HISTORY_STREAM::can_roll_forward ();

Simple test to see whether stream can be rolled forward.

public:outcome
HISTORY_STREAM::check_tags_validity (); ;

Function to verify the stream is correct.

public: void HISTORY_STREAM::clear ();

Re—initialize to an empty stream with just teet_ds sys_error if
logging_level is not equal to zero.

public: void HISTORY_STREAM::clear_history_ptrs ();;

Clear reference to this history from entities in delta state.

public: BULLETIN_BOARD*
HISTORY_STREAM::current_bb ();

Obtains access to the current bulletin board for update functions.

public: DELTA_STATE*
HISTORY_STREAM::current_delta_state ();

Returns pointer to current value of thELTA_STATE.

public: void HISTORY_STREAM::debug (

int id /I id for delta states
= O’
int ent_level /I bulletin board
=0, /I debugging level
int level /I delta state
=1, /I debugging level
FILE* fp /I debug file pointer

= debug_file_ptr
);

Prints debugging information about the history stream.

public: void HISTORY_STREAM::delete_delta_states ();

Removes delta states from the history stream.

public: HISTORY_STREAM* HISTORY_STREAM::detach (
DELTA_STATE* /I delta state

);

Detaches the given bulletin from the given bulletin board.

public: logical
HISTORY_STREAM::distribution_on () const;

Returns thalistribute_flag value.

public: void HISTORY_STREAM::dump (
int level /I number of levels
=0
);

Number of history stream levels to save to output file.

Kernel R10

Kernel R10

public: void HISTORY_STREAM::find_entities (

enum ENTITY_TYPE, I type of entity
ENTITY_LIST& elist /I entity list
)i

Finds the entity from the history stream based on type.

public: void HISTORY_STREAM::find_entities (

is_function, /I flag for an if entity
ENTITY_LIST& elist /I entity list
)i

Finds the entity from the history stream based on functionality.

public: DELTA_STATE*
HISTORY_STREAM::get_active_ds ();

Retrieves the activBELTA STATE.

public: DELTA_STATE*
HISTORY_STREAM::get_current_ds ();

Gets the currerELTA_STATE.
public: STATE_ID
HISTORY_STREAM::get_current_state ();

Gets the current state.

public: void HISTORY_STREAM::get_delta_state (

STATE_ID& cs, /I current state
STATE_ID& ns, /I next state
DELTA_STATE*& ds /l delta state
);

Retrieves the delta state matching the state parameters.

public: ENTITY* HISTORY_STREAM::get_entity_from_tag (
tag_id_type tag_no, /I tag
outcome& result /I result
= * (outcome*)NULL_REF

)

Get anENTITY from the given tag.

public: int HISTORY_STREAM::get_logging_level ();

The logging level is the number of api_begin calls minus the number of
api_end calls, and represents the current nesting of api calls.

public: DELTA_STATE* HISTORY_STREAM::get_root_ds ();

Retrieves the rodDELTA_STATE.

public: DELTA_STATE*
HISTORY_STREAM::get_state_from_id (
STATE_ID id /I tag

);

Get the delta state from a given tag.

public: void HISTORY_STREAM::get_tagged_entities (
ENTITY_LIST& elist /I entity list

)i

Function to verify the stream is correct.

public: void
HISTORY_STREAM::initialize_delta_states ();

Resets the delta states to beginning.

public: logical HISTORY_STREAM::in_stream (
DELTA_STATE* ds /I delta state

)i
Determines whether a given state is in this stream.

public: void HISTORY_STREAM::list_delta_states (
DELTA_STATE_LIST& dslist// delta state list

);

Lists the delta states.

Kernel R10

public: void HISTORY_STREAM::merge (
HISTORY_STREAM* /I history stream

);

Merge this delta state in this history stream.

public: logical HISTORY_STREAM::mixed_streams (
HISTORY_STREAM*& alternate_hs // alternate
/Il stream

)

Function to verify the stream is correct.

public: STATE_ID HISTORY_STREAM::new_state ();

Create a new modeler state identifier.

public:HISTORY_STREAM*
HISTORY_STREAM::next_stream () const ;

Get the next stream.

public:logical
HISTORY_STREAM::owns_entities () const ;

Read the flag for owning entities.

public: HISTORY_STREAM*
HISTORY_STREAM::previous_stream () const;

Get the previous stream.

public: void HISTORY_STREAM::prune (
DELTA_STATE* ds /I delta state

);

Snips the graph dPELTA_STATES just before the given state and deletes
the piece that does not includetive_ds. Thus one can prune forward
branches by passing a state aftetive_ds. One can prune past history by
passingactive_ds or one prior to it. It is impossible to prune away
active_ds.

Kernel R10

public: void HISTORY_STREAM::prune_following ();

Prune away all states aftaective_ds. There is naumToSave here
because we don’t know what branch to chop if there is a branch. This is
not believed to be a practical limitation.

public: void HISTORY_STREAM::prune_inactive ();

The active path runs from the root, to the current state of the model
(active_ds). This routine prunes away states not in the active path.

public: void HISTORY_STREAM::prune_inactive_branch (
DELTA_STATE* ds /I delta state

)i
The active path runs from the root, to the current state of the model

(active_ds). This routine prunes away states not in the active path, limiting
the prune to inactive branches.

public: void HISTORY_STREAM::prune_previous (
int numToSave /I number to save

)i
Prune away the earlier parts of the stream, saadtige_ds and

numToSave earlier states. This can be used to control the memory
required for history by limiting the number of states to keep.

public: void HISTORY_STREAM::remove (
DELTA_STATE* /I delta state

);

Remove a bulletin board from this delta state.

public: ENTITY*
HISTORY_STREAM::remove_tag_reference (
tag_id_type tag_no /I entity id
)i

Remove arENTITY from theTAG array.

public: void HISTORY_STREAM::reset_state (
STATE_ID n /[state to reset to

);

Kernel R10

Resets the modeler state to the given state.

public: logical HISTORY_STREAM::restore ();

Restores history stream.

read_int Current State

read_int Next State

read_int Maximum states to keep

if(restore_version_number >= ENTITY_TAGS_VERSION)

read_int new next tag

read_pointer Pointer to record in SAT file with
the current DELTA _STATE

read_pointer Pointer to record in SAT file with
the active DELTA_STATE

read_pointer Pointer to record in SAT file with
the root DELTA_STATE

read_pointer Pointer to record in SAT file with
ATTRIB_HISTORY

read_data Intended for unknown data

public: tag_id_type
HISTORY_STREAM::restore_tag_reference (
const ENTITY* ent /I entity

)i
Add an ENTITY to the TAG array.

public: void HISTORY_STREAM::roll_links (
DELTA_STATE* /I delta state

);

This function manages the links between delta states during roll. For
internal use only.

public: logical HISTORY_STREAM::save (

ENTITY_LIST& elist, /I entity list
HISTORY_STREAM_LIST& hslist,// history stream

I list
DELTA_STATE_LIST& dslist /Il delta state list
)i

Kernel R10

Saves the id level, next state, maximum states to keep, pointers to the
current delta state, active delta state, and root delta state, and attributes.

public: logical HISTORY_STREAM::set_current_state (

STATE_ID cs, /I current state
DELTA_STATE* ds /I delta state
);

Sets the current state to the given ID in Dt TA_STATE.

public: logical HISTORY_STREAM::set_delta_state (

STATE_ID cs, /I current state
STATE_ID ns, /I next state
DELTA_STATE* ds /I delta state
);

Sets the current delta state to the given state.

public: void HISTORY_STREAM::set_distribute_flag (
logical o /I distribution flag

)

Set the flag for distribution.

public: void HISTORY_STREAM::set_max_states_to_keep (
int /I number to set

)i
Establishes the maximum number of states to keep in history stream.

Additional states above this maximum are pruned.

public: void HISTORY_STREAM::set_owners ();

Resets the owning stream after moving states between streams.

public: void HISTORY_STREAM::set_owns_entities (
logical o /l owning flag

);

Set the flag for owning entities.

Kernel R10

Internal Use:

Related Fncs:

public: logical HISTORY_STREAM::set_state_linking (
logical sl /I state link flag

);

Sets the state link.

public: int HISTORY_STREAM::size (
logical include_backups // backup entities
= TRUE /I counted if TRUE
) const;

Returns the amount of space taken by this history stream. This includes all
the history stream structure and optionally the backup entities, but not the
active entities.

public: tag_id_type HISTORY_STREAM::tag (

const ENTITY* ent, /I entity
logical check /I perform checks
= TRUE, /I or not
tag_id_type required_id // required flag
=-1
);

Return the tag on @NTITY in theHISTORY_STREAM.

fix_pointers, full_size

abort_bb, change_state, clear_rollback_ptrs, close_bulletin_board,
current_bb, current_delta_state, debug_delta_state,
delete_all_delta_states, delete_ds_branch, get_default_stream,
initialize_delta_states, open_bulletin_board, release_bb,
set_default_stream

HISTORY_STREAM_LIST

Class:
Purpose:

Derivation:

SAT ldentifier:

Kernel R10

History and Roll
Stores a list of history streams.

HISTORY_STREAM_LIST : -

None

Filename:
Description:

Limitations:

References:

Data:

Constructor:

Destructor:

Methods:

kern/kernel/kerndata/bulletin/bulletin.hxx
Refer to Purpose.
NT, UNIX platforms only.

None

None

public: HISTORY_STREAM_LIST::HISTORY_STREAM_LIST ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: HISTORY_STREAM_LIST::~HISTORY_STREAM_LIST ();

This should not be called directly. Ussnove instead. Laws may not be

be deleted because other classes may point to them. To delete a copy of a
law call the member functioremove which decrements theése count

field and calls the destructorube_count falls to zero.

public: int HISTORY_STREAM_LIST::add (
HISTORY_STREAM* e /I history stream
/ to add

);
Adds aHISTORY_STREAM to theHISTORY_STREAM_LIST.

public: void HISTORY_STREAM_LIST::clear ();

Removes all items from tHeISTORY_STREAM_LIST.

public: int HISTORY_STREAM_LIST::count () const;

Returns the items in théISTORY_STREAM_LIST.

public: void HISTORY_STREAM_LIST::init () const;

Initializes theHISTORY_STREAM_LIST.

Kernel R10

public: int
HISTORY_STREAM_LIST::iteration_count () const;

Returns the iteration count for theSTORY_STREAM_LIST.

public: HISTORY_STREAM*
HISTORY_STREAM_LIST::next () const;

Returns the neXISTORY_STREAM in theHISTORY_STREAM_LIST.

public: HISTORY_STREAM*
HISTORY_STREAM_LIST::operator[] (
inti /[index of desired
/I history stream
) const;

Returns theHISTORY_STREAM specified by the index number in the
HISTORY_STREAM_LIST.

public: int HISTORY_STREAM_LIST::remove (
HISTORY_STREAM const* ce// history stream
/l to remove

);

Removes the giveHISTORY_STREAM from the
HISTORY_STREAM_LIST.

Internal Use: lookup
Related Fncs:
None
Class: Model Geometry, SAT Save and Restore
Purpose: Defines a parametric curve as an object in the model.
Derivation: INTCURVE : CURVE : ENTITY : ACIS_OBJECT : —

SAT ldentifier:

Filename:

Kernel R10

“intcurve”

kern/kernel/kerndata/geom/intcurve.hxx

Description:

Limitations:
References:

Data:

Constructor:

INTCURVE is a model geometry class that contains a pointer to a
(lowercase)ntcurve, the corresponding construction geometry class. In
general, a model geometry class is derived fEMTITY and is used to
define a permanent model object. It provides model management
functionality, in addition to the geometry definition.

INTCURVE is one of several classes derived frOGdRVE to define a
specific type of curve. Thiatcurve record consists of a pointer to an
int_cur and aogical denoting its sense

An INTCURVE is the general representation of any curve that is not
defined by an explicit equation, but by reference to other geometric
entities. This includes the intersection between two surfaces, the
projection of a curve onto a surface, an exact spline curve, or any other
general curve.

A use count allows multiple references toldMCURVE. The

construction of a neWNTCURVE initializes the use count to 0. Methods

are provided to increment and decrement the use count, and after the use
count returns to 0, the entity is deleted.

None

KERN intcurve

None

public: INTCURVE::INTCURVE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloadsd

operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: INTCURVE::INTCURVE (
intcurve const& /] intersection curve

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloadeew operator, because this

reserves the memory on the heap, a requirement to support roll back and
history management.

Kernel R10

Destructor:

Methods:

Kernel R10

public: virtual void INTCURVE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. Tlhee methods for attached attributes
are also called.

protected: virtual INTCURVE::~INTCURVE ();

This G+ destructor should never be called directly. Instead, applications
should use the overloadé&mbe method inherited from thENTITY class,
because this supports history management. (For exarspiew
INTCURVE(...) then lateix—>lose.)

protected: virtual logical
INTCURVE::bulletin_no_change_vf (

ENTITY const* other, /I other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data — called by
bulletin_no_change. For theidentical_comparator argument to b& RUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non—overridden subclasges) SE indicates
tolerant compares and retulR&LSE as a default.

public: virtual void INTCURVE::debug_ent (
FILE* /I file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: curve const& INTCURVE::equation () const;

Returns the curve’s equation, for reading only.

public: curve& INTCURVE::equation_for_update ();

Returns theurve’s equation. Before performing a change it checks
whether the data structure is posted on the bulletin board. If not, the
routine callshackup to put an entry on the bulletin board.

public: virtual int INTCURVE::identity (
int /I level
=0
) const;

If level is unspecified or 0, returns the type identifédTCURVE_TYPE.
If level is specified, returnBNTCURVE_TYPE for that level of derivation
from ENTITY. The level of this class is defined IASFCURVE_LEVEL.

public: virtual logical INTCURVE::is_deepcopyable (
) const;

ReturnsTRUE if this can be deep copied.

public: SPAbox INTCURVE::make_box (

APOINT*, /[first point

APOINT*, /I second point

SPAtransf const*, /I transform

double /I tolerance
=0.0

) const;

Makes aSPAbox enclosing a segment of tiifTCURVE between two
points, and transforms it.

public: void INTCURVE::operator*= (
SPAtransf const& /I transform

);

Transforms atNTCURVE. Before performing a change it checks whether
the data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: void INTCURVE::restore_common ();

The RESTORE_DEF macro expands to threstore_common method,

which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

Kernel R10

Internal Use:

Related Fncs:

intcurve

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Kernel R10

intcurve::restore_data intcurve low-level geometry
definition

public: void INTCURVE::set_def (
intcurve const& /I definition curve

);

Sets thdNTCURVE's definition curve to the givemtcurve. Before

performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

public: curve* INTCURVE::trans_curve (

SPAtransf const& /I transform
= * (SPAtransf*) NULL_REF,

logical Il reversed flag
= FALSE

) const;

Transforms the curve’s equation. If the logical BUE, the curve is
reversed.

public: virtual const char*
INTCURVE::type_name () const;

Returns the stringifitcurve”.

full_size

is_INTCURVE

Construction Geometry, SAT Save and Restore
An interpolated curve type.

intcurve : curve : ACIS_OBJECT : —
“intcurve”

kern/kernel/kerngeom/curve/intdef.hxx

Description: An intcurve is the general representation of any curve that is not defined
by an explicit equation, but by reference to other geometric entities. This
includes the intersection between two surfaces, the projection of a curve
onto a surface, an exact spline curve, or any other general curve.

Theintcurve class represents parametric object-space curves that map an
interval of the real line into a 3D real vector space (object-space). This
mapping is continuous, and one-to-one except possibly at the ends of the
interval whose images may coincide. It is differentiable twice, and the
direction of the first derivative with respect to the parameter must be
continuous. This direction is the positive sense of the curve.

If the two ends of the curve are different in object space, the curve is open.
If they are the same, it is closed. If the curve joins itself smoothly, the
curve is periodic, and its period is the length of the interval that it is
primarily defined. A periodic curve is defined for all parameter values by
adding a multiple of the period to the parameter value so that the result is
within the definition interval, and evaluating the curve at that resultant
parameter. The point at the ends of the primary interval is known as the
seam.

Theintcurve class provides an abstraction of the concept of a parametric
representation of an interpolated curve. This interpolated curve can be
either an “exact” curve or an “approximate” curve that is a fit to a true
curve within some fit tolerance.

Theintcurve contains a “reversed” bit together with a pointer to another
structure, arint_cur or something derived from it that contains the bulk of
the information about the curve.

Providing this indirection serves two purposes. First, wheintaarve is
duplicated, the copy simply points to the santecur, avoiding copying
the bulk of the data. The system maintains a use count inrgactr, that
allows automatic duplication if a shared cur is to be modified, and
deletes anynt_cur no longer accessible.

Second, thént_cur contains virtual functions. These virtual functions
perform all the operations defined fatcurves that depend on the method
of definition of the true curve, so new curve types can be defined by
declaring and implementing derived classes. iflmirve and everything
using it require no changes to make use of the new definition.

The base classt_cur contains the following information for defining the
curve:

Kernel R10

Limitations:

References:

Data:

Constructor:

Kernel R10

— A use count indicating the number of timesititecur is referred.

— A pointer to &s3_curve, that represents a spline approximation to
the true curve.

— Afitting tolerance representing the precision of the spline
approximation to the true curve. This is 0.0 for an exact fit and
greater than 0.0 for an approximation.

— Pointers to two surfaces containing the true curve. A class derived
from int_cur can use them in different ways but the true curve must
lie on each of the surfaces. Either or both surface caxUhé.

— A pointer to two 2D parametric space curves, one on each of the
nonNULL, spline surfaces defined above, that represent the 3D
spline approximation.

Classes derived fromnt_cur can contain additional information and
record the creation method of the true spline curve.

This file defines the cladstcurve, the base classt_cur, which

implements curves of intersection between two surfaces (as well as exact
spline curves), and an auxiliary classtore_ic_def, which is used to
declareint_cur and any derived class to the “restore” system, to allow the
correct derived class to be restored from backing store.

None
KERN discontinuity_info, int_cur
by KERN INTCURVE, imp_par_cur, int_cur, int_int_cur

None

public: intcurve::intcurve ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: intcurve::intcurve (

bs3_curve, /I bs3_curve

double, /I tolerance

surface const&, /I first surface

surface const&, /I second surface

bs2_curve /I first bs2_curve
= NULL,

bs2_curve /I second bs2_curve
= NULL,

const SPAtransf& /I interval

= * (SPAtransf*) NULL_REF,
logical parametric_is_primary// parametric is

= FALSE /I primary
)i

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Usually, this method is used for constructing exact spline curves.

public: intcurve::intcurve (
curve_interp&, /Il interpolated curve
SPAbox const& /I bounding box
=* (SPAbox*) NULL_REF

);

C++ interpolation constructor requests memory for this object and
populates it with the data supplied as arguments.

The curve_interp object contains all the data and methods needed to do
the interpolation. In addition, a box is supplied within which the fit
tolerance must be met.

public: intcurve::intcurve (
intcurve const& I intcurve

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: intcurve::intcurve (
int_cur* /I int_cur

);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

This creates aimtcurve object when the underlyingt_cur has been
constructed. Thént_cur is a derived type which does not need a curve fit
or uses a non-standard one.

Destructor:
public: intcurve::~intcurve ();

C++ destructor, deleting aintcurve. Deletes arintcurve by manipulating
the use count of the underlyiing_cur structure.

Methods:
public: virtual int intcurve::accurate_derivs (
SPAinterval const& /I interval
= * (SPAinterval*) NULL_REF
) const;

Returns the number of derivatives tleatluate finds accurately and
directly, rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, this
method returns the valid.L_CURVE_DERIVATIVES.

public: virtual const double*
intcurve::all_discontinuities (

int& n_discont, /I number of

/I discontinuities
int order /I order
)

Return in a read-only array the number and parameter values of
discontinuities of the curve, up to the given order (maximum three).

public: virtual double
intcurve::approx_error () const;

Returns a distance value, which represents the greatest discrepancy
between positions calculated by callset@l or eval_position with the
approximate results Ological set by turns tdRUE andFALSE.

Kernel R10

public: SPAbox intcurve::bound (

double start, /I first position
double end, I/l second position
SPAtransf const& t /I transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box enclosing the two given points on the undefined curve line.

public: virtual SPAbox intcurve::bound (

SPAbox consté&, /l bounding box

SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF

) const;

Returns a box surrounding that portion of the curve within the given box.

public: virtual SPAbox intcurve::bound (

SPAinterval const&, /I interval

SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF

) const;

Returns a box surrounding that portion of the curve within the given
parameter interval.

public: virtual SPAbox intcurve::bound (

SPAposition const&, /I first position

SPAposition const&, /I second position

SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF

) const;

Returns a box enclosing the two given points on the undefined curve line.
public: int intcurve::bs1l_hull_angles_ok () const;
Returns 1 if the bs1_curve hull turning angles are known to be acceptable,

0 if they are not acceptable, and -1 if unknown.

public: int
intcurve::bsl_hull_self intersects () const;

Kernel R10

Kernel R10

Returns 1 if the bs1l_curve hull is known to self intersect, O if it does not,
and -1 if unknown.

public: int intcurve::bsl_knots_on_curve () const;

Returns 1 if the bs1_curve knots are known to lie on the curve, O if they do
not, and —1 if unknown.

public: int intcurve::bs2_hull_angles_ok () const;

Returns 1 if the bs2_curve hull turning angles are known to be acceptable,
0 if they are not acceptable, and -1 if unknown.

public: int
intcurve::bs2_hull_self _intersects () const;

Returns 1 if the bs2_curve hull is known to self intersect, O if it does not,
and -1 if unknown.

public: int intcurve::bs2_knots_on_curve () const;

Returns 1 if the bs2_curve knots are known to lie on the curve, 0O if they do
not, and —1 if unknown.

public: virtual void intcurve::change_event ();
Notifies the derived type that the curve has been changed (e.g. the

subset_range has changed) so that it can update itself.

public: virtual check_status_list* intcurve::check (

const check_fix& input /I flags for
= * (const check_fix*) /I allowed
NULL_REF, /I fixes
check_fix& result /I fixes applied
= * (check_fix*) NULL_REF,
const check_status_list* /I checks to be
= (const check_status_list*)// made, default
NULL_REF Il is none
)i

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: virtual logical intcurve::closed () const;

Indicates if a curve is closed. A closed curve joins itself (smoothly or not)
at the ends of its principal parameter range. This method always returns
TRUE if periodic returnsTRUE.

public: virtual void intcurve::closest_point (
SPAposition const& pos, /I position
SPAposition& foot, /I foot position
SPAparameter const& param_guess // input guess
= * (SPAparameter*)NULL_REF,// value of

/I param
SPAparameter& param_actual /I actual value
= * (SPAparameter*)NULL_REF// of param

) const;

Finds the closest point on the curve (the foot) to the given point, and
optionally its parameter value. If an input parameter value is supplied (as
the first parameter argument), the foot found is only a local solution
nearest to the supplied parameter position. Any of the return value
arguments may be a NULL reference, in which case it is simply ignored.

public: bs3_curve intcurve::cur (
double tol /I tolerance
=-1.0
) const;

Returns the underlyings3_curve; otherwise, it returnslULL if there is
noint_cur.
public: logical intcurve::cur_present () const;

ReturnsTRUE if the nth parameter—space curve is defined (i.e. pcur()
would return a norNULL pcurve pointer)FALSE otherwise.

Kernel R10

public: virtual void intcurve::debug (

char const*, /I title line

FILE* /I file name
= debug_file_ptr

) const;

Outputs a title line and the details of ih&urve for inspection to standard
output or to the specified file.

public: virtual curve* intcurve::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual const double*
intcurve::discontinuities (

int& n_discont, /I # discontinuities
int order /I curve order
) const;

Returns the number and parameter values of discontinuities of the curve in
a read—only array of the given order (maximum three).

public: virtual int intcurve::discontinuous_at (
double t /I parameter value
) const;

Determines whether a particular parameter value is a discontinuity.

public: virtual curve_boundcyl
intcurve::enclosing_cylinder (
const SPAinterval& /I interval
= * (SPAinterval*) NULL_REF
) const;

Returns a cylinder that encloses the portion of the curve bounded by the
interval.

Kernel R10

public: virtual void intcurve::eval (

double, /I parameter value
SPAposition&, /I position
SPAvector& /I first derivative
= * (SPAvector*) NULL_REF,
SPAvector& /I second derivative
= * (SPAvector*) NULL_REF,
logical /I perform a repeat
= FALSE, /I evaluation on a

/I curve whose
/I underlying
/I geometry data has
/I not changed?
logical /I approx results OK?
= FALSE
) const;

Evaluates the curve, giving the position and the first and second
derivatives.

public: virtual int intcurve::evaluate (

double, /I parameter value
SPAposition&, /I point
SPAvector** /I first derivative
= NULL,
int /I second derivative
= O’
evaluate_curve_side /I which side of

/I discontinuity to
= evaluate_curve_unknown// evaluate
) const;

Evaluates the position and the first and second derivatives at given
parameter value.

Kernel R10

public: virtual int intcurve:
double,
curve_evaldata*,

SPAposition&,

SPAvector**
= NULL,

int

0,

evaluate_curve_side

:evaluate_|

iter (
/I parameter
/I data supplying
/I initial values,
/I and set to reflect
/I the results of
/I this evaluation
/I point on curve at

/I given parameter

/I array of pointers

/I to vectors, of
/I size nd. Any of
/I the pointers may
/I be null, in which
/I case the
/I corresponding
/I derivative will
/I not be returned

/I number of

/I derivatives
/I required (nd)

/I evaluation

/I location — above,
/I below or don't

= evaluate_curve_unknown // care
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation, for use as
initial values for any iteration involved.

public: virtual SPAvector intcurve::eval_curvature (

double, /I parameter value
logical /I perform a repeat
= FALSE, /I evaluation on a
/I curve whose underlying
/I geometry data has not
/I changed?
logical /I approx results OK?
= FALSE
) const;

Kernel R10

Finds the curvature at a point on the curve.

public: virtual SPAvector intcurve::eval_deriv (

double, /I parameter value
logical /I perform a repeat
= FALSE, /I evaluation on a

/I curve whose underlying
/I geometry data has not
/I changed?
logical /I approx results OK?
= FALSE
) const;

Finds the parametric derivative, magnitude, and direction, at a point on the
curve.

public: virtual SPAunit_vector
intcurve::eval_direction (

double, /I parameter on the curve
logical /I determine tangency
= FALSE,
logical /[approx results OK?
= FALSE
) const;

Find the tangent direction at the given parameter value on the curve.

public: virtual SPAposition intcurve::eval_position (

double, /I parameter value
logical /I perform a repeat
= FALSE, /I evaluation on a

/I curve whose underlying
/I geometry data has not
/I changed?
logical /I approx results OK?
= FALSE
) const;

Finds the position on a curve at the given parameter value.

Kernel R10

public: virtual curve_extremum*
intcurve::find_extrema (
SPAunit_vector const& /I direction
) const;

Finds the extrema of an intersection curve in a given direction, ignoring its
ends unless it is closed.

public: double intcurve::fitol () const;

Returns the fit tolerance; otherwise, it returns O if there is no precise
int_cur.

public: virtual const discontinuity_info&
intcurve::get_disc_info() const;

Returns read-only access taliacontinuity_info object, if there is one. The
default version of the function returfgJLL.

public: int_cur const&
intcurve::get_int_cur () const;

Returns the fit tolerance, but should not be used unless absolutely
necessary.

public: int intcurve::hulll_enclosure () const;

Returns 1 if thévs1_curve hull is known to enclose the curve, 0 if it does
not, and —1 if unknown.

public: int intcurve::hull2_enclosure () const;

Returns 1 if thévs2_curve hull is known to enclose the curve, 0 if it does
not, and —1 if unknown.

public: logical intcurve::join (
intcurve& second, /I intcurve
int order /I discontinuity order
=-1
);

Kernel R10

Join two pieces ahtcurve together, adding a discontinuity of the given
order at the join (if order is not supplied, or is nonpositive, then it is
calculated).

The curves must be suitable for joining. The following conditions must be
satisfied:

1. The start of the second curve must match the end of ‘this’.

2. The underlyingnt_curs must have the same type.

3. The first curve must be unlimited above, and the second curve
unlimited below.

If any of these conditions are violated, the function ret@&isSE and the
curves are unchanged.

The other ends may also match, in which case they will also be joined and
the final curve will be periodic.

public: law* intcurve::law_form ();

Returns the law form for aintcurve.

public: virtual double intcurve::length (

double, /I first parameter
double /I second parameter
) const;

Returns the algebraic distance along the curve between the given
parameters. The value is positive if the parameter values are given in
increasing order and negative if they are in decreasing order. The result is
undefined if either parameter value is outside the parameter range of a
bounded curve. For a periodic curve, the parameters are not reduced to the
principal range, and so the portion of the curve evaluated may include
several complete circuits. This method is always a monotonically
increasing function of its second argument if the first is held constant, and
a decreasing function of its first argument if the second is held constant.

public: virtual double intcurve::length_param (

double, /I datum parameter
double /Il arc length
) const;

Kernel R10

Kernel R10

Returns the parameter value of the point on the curve at the given
algebraic arc length from that defined by the datum parameter. The result
is not defined for a bounded nonperiodic curve if the datum parameter is
outside the parameter range, or if the length is outside the range bounded
by the values for the ends of the parameter range.

public: virtual curve* intcurve::make_copy () const;

Virtual function to copy a curve without knowing what its type is.

public: virtual curve_evaldata*
intcurve::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

public: void intcurve::make_single_ref ();

Ensure that the reference supplied points to a singly—used record. Take no
action if it is already single, otherwise copy everything.

public: virtual curve& intcurve::negate ();

Negates aintcurve in place. This is a curve virtual function, which is why
it returns acurve& instead of arntcurve&.

public: virtual curve& intcurve::operator*= (
SPAtransf const& /I transformation

);

Transforms a curve in place. This is complicated by the effort to maintain
sharing when severaltcurves sharing the samist_cur are transformed
successively with the same transformation. A list of transformed versions
of eachint_cur is maintained, and this method searches for a match before
making a new one.

public: intcurve intcurve::operator— () const;

Negates the curve.

public: intcurve& intcurve::operator= (
intcurve const& I intcurve

);

Assignment operator, which copies only thieurve record and adjusts
the use counts of the underlying information.

public: virtual logical intcurve::operator==
curve const& I intcurve
) const;

Tests two curves for equality. This method does not guarantee to say
“equal” for effectively-equal curves, but it is guaranteed to say “not equal”
if they are indeed not equal. Use the result for optimization, but not where
it really matters. The default always says “not equal.”

public: virtual double intcurve::param (

SPAposition const&, /I position

SPAparameter const& /I parameter
= * (SPAparameter*) NULL_REF

) const;

Returns the parameter value for a given point.

public: virtual double
intcurve::param_period () const;

Returns the period of a periodic curve; otherwise, it returns O if the curve
is not periodic.

public: virtual SPAinterval intcurve::param_range (
SPAbox const& /I bounding box
=* (SPAbox*) NULL_REF
) const;

Returns the range of parameter values.

public: virtual pcurve* intcurve::pcur (
int /I index
) const;

Kernel R10

Kernel R10

Returns the parametric curves with respect to the surfaces defining this
intcurve. int may be 1 or 2, representing the two surfaces in order, or —1 or
—2 meaning the negation of thgseurves.

public: bs2_curve intcurve::pcurl (
logical force /I force surface return
= FALSE
) const;

Returns a curve in parameter space of surface returned by surfl or surf2
respectively, if the surface is parametric. Returns NULL if the surface (as
returned by the functions above) is NULL or not parametric.

public: bs2_curve intcurve::pcur2 (
logical force /I force surface return
= FALSE
) const;

Returns a curve in parameter space of surface returned by surfl or surf2
respectively, if the surface is parametric. Returns NULL if the surface (as
returned by the functions above) is NULL or not parametric.

public: virtual logical intcurve::pcur_present (
int /I nth parameter—space
/I curve
) const;

ReturnsTRUE if the nth parameter-space curve is defined (peur
returns a noMNULL pcurve pointer); otherwise, it returRALSE.

public: virtual logical intcurve::periodic () const;

Indicates if the curve is periodic. A periodic curve joins itself smoothly
with matching derivatives at the ends of its principal parameter range so
that edges may span the seam.

public: virtual SPAvector intcurve::point_curvature (

SPAposition const&, /I point

SPAparameter const& /I param guess
= * (SPAparameter*) NULL_REF

) const;

Finds the curvature at a point on th&urve.

public: virtual SPAunit_vector
intcurve::point_direction (

SPAposition const&, /Il point

SPAparameter const& /I param guess
= * (SPAparameter*) NULL_REF

) const;

Finds the tangent direction to thretcurve at a given point.

public: virtual void intcurve::point_perp (

SPAposition const&, /I position
SPAposition&, // foot
SPAunit_vector&, /I tangent
SPAvector&, /I curvature
SPAparameter const& /I guess value
= * (SPAparameter*) NULL_REF,
SPAparameter& /I actual value
= * (SPAparameter*) NULL_REF,
logical f_weak I
= FALSE
) const;

Finds the foot of the perpendicular from the given point to the curve and
the curve tangent direction and curvature at that point and its parameter
value. If an input parameter value is supplied as the guess value, the
perpendicular found is the one nearest to the supplied parameter position;
otherwise, it is the one at which the curve is nearest to the given point.
Any of the return value arguments mayNidLL reference, in which case

it is simply ignored.

public: void intcurve::point_perp (

SPAposition const& pos, /I position
SPAposition& foot, /I foot
SPAparameter const& guess /I guess value
= * (SPAparameter*) NULL_REF,
SPAparameter& actual /I actual value
= * (SPAparameter*) NULL_REF,
logical f_weak I
= FALSE
) const;

Kernel R10

Kernel R10

Finds the foot of the perpendicular from the given point to the curve and

its parameter value. If an input parameter value is supplied as the guess
value, the perpendicular found is the one nearest to the supplied parameter
position; otherwise, it is the one at which the curve is nearest to the given
point. Any of the return value arguments may B&LA L reference, in

which case it is simply ignored.

public: void intcurve::point_perp (

SPAposition const& pos, /I position
SPAposition& foot, /I foot
SPAunit_vector& foot_dt, /I normal
SPAparameter const& guess /I guess value
= * (SPAparameter*) NULL_REF,
SPAparameter& actual /I actual value
= * (SPAparameter*) NULL_REF,
logical f_weak I
= FALSE
) const;

Finds the foot of the perpendicular from the given point to the curve and
the tangent direction to the curve at that point and its parameter value. If
an input parameter value is supplied as the guess value, the perpendicular
found is the one nearest to the supplied parameter position; otherwise, it is
the one at which the curve is nearest to the given point. Any of the return
value arguments may B&ULL reference, in which case it is simply

ignored.

public: void intcurve::reparam (

double, /I start point
double /I end point
)

Reparameterizes the splines to start and end at the given values, which are
in increasing order.

public: void intcurve::restore_data ();

Restores the data from a save file. The restore operation switches on a
table defined by static instances of thstore_cu_def class. This invokes

a simple friend function which constructs an object of the right derived
type. Then it calls the appropriate base class member function to do the
actual work. Theestore_data function for each class can be called in
circumstances when it is known what type of surface is to be expected and
a surface of that type is on hand to be filled in.

read_logical Curve direction either “forward” or “reversed”.
if (restore_version_number < INTCURVE_VERSION)

/I Restore as a surface—surface intersection object. The

/I restore function for int_int_cur handles the possibility

/l that it is in fact exact or a surf_int_cur.

subtype_object * dispatch_restore_subtype

Called with “cur” and “surfintcur”. Restore just the data
associated with that type of curve.
In earlier versions, there was only
one type ofnt_cur, which covered
what is now “exact”, “surf’, and
“int”. There was no ID.
else
/I Switch to the right restore routine, using the standard
/I system mechanism. Note that the argument is to enable
/I the reader to distinguish old—style types where “exact”
/I was both an int_cur and a spl_sur. They are now “exactcur”
/I and “exactsur”.
subtype_object * dispatch_restore_subtype
Called with “cur”
curve:restore_data Restore the underlying curve.
Generic curve data.

public: logical intcurve::reversed () const;

ReturnsTRUE if theintcurve is reversed.

public: SPAinterval intcurve::safe_range () const;

Returns the safe range or an empty interval if there istnour.

public: virtual void intcurve::save () const;

Saves the curve type or id, then calise_data.

Kernel R10

Kernel R10

public: void intcurve::save_data () const;

Saves théntcurve data to a save file.

public: void intcurve::set_bs_hull_angles_ok (

int pcu_no, /I enclosure

int hull_angles_ok /I unknown, false,
/I or true

)i

Sets the property in the underlyiimg_cur, of thebs2_curve hull not

turning too sharply. The first argument should be 1 or 2 to indicate the
bs2_curve which the enclosure is being set for, and the second integer
argument should be -1, 0 or 1, to indicate that the property is unknown,
FALSE or TRUE.

public: void intcurve::set_bs_hull_self_intersects (

int pcu_no, /I enclosure
int hull_self_ints /I unknown, false,

/I or true
)

Sets the property in the underlyiig_cur, of thebs2_curve hull
self—intersecting (or not). The first argument should be 1 or 2, to indicate
thebs2_curve which the enclosure is being set for, and the second integer
argument should be -1, 0 or 1, to indicate that the property is unknown,
FALSE or TRUE.

public: void intcurve::set_bs_knots_on_curve (

int pcu_no, /I enclosure

int knots_on_cu /I unknown, false,
/I or true

)

Sets the property in the underlyiimg_cur, of thebs2_curve of whether

the knots lie on thantcurve. The first argument should be 1 or 2, to

indicate thebs2_curve which the enclosure is being set for, and the

second integer argument should be -1, 0 or 1, to indicate that the property
is unknown,FALSE or TRUE.

public: void intcurve::set_cur (

bs3_curve, /I bs3 curve data

double tol /I tolerance
=-1.0

);

Replaces the underlyings3_curve approximation. If the supplied
tolerance is negative, then it will be left unchanged.

public: void intcurve::set_hull_enclosure (
int pcu_no, /I enclosure
int encl I value

);

Sets the curve enclosure in the underlyimgcur. The first argument

should be 1 or 2, to indicate the2_curve which the enclosure is being

set for, and the second integer argument should be -1, 0 or 1, to give the
value for the hull enclosure.

public: void intcurve::set_periodic ();

Marks anintcurve as periodic. This is used after splitting a periodic
intcurve to restore the periodic status that the split changed to closed.

public: virtual curve* intcurve::split (
double, /I param value
SPAposition const& /I exact position
= * (SPAposition*) NULL_REF
);

Divides anintcurve into two pieces at a parameter value. This method
creates a newntcurve on the heap, but either one of theurves may

have aNULL actual curve. The supplied curve is modified to be the latter
section, and the initial section is returned as a value.

public: curve* intcurve::subset (
SPAinterval const& /I interval
) const;

Constructs a new curve, which is a copy of the portion of the given one
within the specified parameter bounds.

Kernel R10

Kernel R10

public: surface const& intcurve::surfl (
logical force /I force surface to
= FALSE /I be returned
) const;

Returns the first surface supporting the curve. By default, surfaces are only
returned if the true curve lies on the surface. Surfaces defining the curve
but distant from it are not returned. To force the surface to be returned
regardless, the logical flag should be set to TRUE.

public: surface const& intcurve::surf2 (
logical force /I force surface to
= FALSE /I be returned
) const;

Returns the second surface supporting the curve. By default, surfaces are
only returned if the true curve lies on the surface. Surfaces defining the
curve but distant from it are not returned. To force the surface to be
returned regardless, the logical flag should be set to TRUE.

public: curve_tancone intcurve::tangent_cone (
SPAinterval const& range, /I interval

logical approx_OK, /I approx results OK?
SPAtransf const& t /I transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a cone bounding the tangent direction of a curve. The cone has its
apex at the origin and a given axis direction and (positive) half-angle. If
approx_OK is TRUE, then a quick approximation may be found. The
approximate result may lie wholly within or wholly outside the guaranteed
bound (obtained with BALSE argument), but it may not cross from inside

to outside. Flags in the returned object indicate whether the cone is in fact
the best available, and if this result is inside or outside the best cone.

public: virtual logical intcurve::test_point_tol (

SPAposition const&, /I point

double /I tolerance
= O’

SPAparameter const& /I start point
= * (SPAparameter*) NULL_REF,

SPAparameter& /I end point
= * (SPAparameter*) NULL_REF

) const;

Tests a point-on-curve to a given tolerance. Only true points are near to the
end points.

public: virtual int intcurve::type () const;

Returns the type adhftcurve.

public: virtual char const*
intcurve::type_name () const;

Returns the stringifitcurve”.

public: virtual logical intcurve::undef () const;
Indicates if the curve is defined or undefined.
Internal Use: full_size

Related Fncs:
restore_intcurve, restore_int_int_cur

friend: intcurve operator* (
intcurve const&, /I intcurve
SPAtransf const& /I transform

);

Returns a copy of the transformed curve.

Class:_ Construction Geometry, SAT Save and Restore
Purpose: Defines interpolated curves.

Kernel R10

Derivation:

SAT ldentifier:

Filename:

Description:

Limitations:

References:

Data:

Kernel R10

int_cur : subtrans_object : subtype_object : ACIS_OBJECT : —
int_cur
kern/kernel/kerngeom/curve/intdef.hxx

This class defines interpolated curves, which are defined to allow the use
of use-counts to avoid copying and to allow derivation to construct curves
only approximated by thatcurve.

This class is supported by virtual functions that depend on the true
definition of the curve. The virtual functions allow the derived curves to
implement the functionality on their own. For curves with an exact
bs3_curve, there is no need to implement the functionality because the
methods written for the base class are sufficient.

None

KERN discontinuity_info, summary_bs3_curve, surface
by KERN intcurve, summary_bs3 curve

BASE SPAinterval

protected bs2_curve pcurl_data;
A parametric-space curve with respect to the give surface. It idlban-
only if the corresponding surface exists, and it is parametric.

protected bs2_curve pcur2_data;
A parametric-space curve with respect to the give surface. It idSlban-
only if the corresponding surface exists, and it is parametric.

protected bs3_curve cur_data;
The object-space approximation to the true curve.

protected closed_forms closure;

Takes the valu®PEN, CLOSED or PERIODIC (or unset if thent_cur is
undefined). If an approximating curve is presémt Cur_data) then the
closure of the approximating curve will be consistent.

protected discontinuity_info disc_info;

Discontinuity information. If the supporting surfaces of the curve has
discontinuities, or if the curve has a default (tangent) extension, then it

will have discontinuities. These are stored here. Note that this is a copy of
the data stored in the correspondam] sur, but with values outside the

subset range removed. It is necessary to keep a separate copy to provide a
read—only array to the data because the curve may be periodic, and the
subset may span the periodic joins, resulting in discontinuities which may
be outside the periodic range.

protected double fitol_data;
The precision to which the spline approximates to the true object-space
curve.

protected int bsl_properties;
Refer tobs2_curve_properties below.

protected int bs2_properties;
Defines the following properties of ths2_curves:
a. Whether or not all of thes2_curve knots lie on the int_cur.
b. Whether all of thés2_curve hull turning angles are not too sharp.
c. Whether théns2_curve hull is known to self-intersect or not.
d. Whether thés2_curve hull fully encloses thént_cur.
It has a value consisting of four digits.
The first digit has the following values :
0 if Knots on curve property is unknown
1 if Knots on curve property IBALSE
2 if Knots on curve property iBRUE
The second digit has the following values :
0 if Turning angles ok property is unknown
1 if Turning angles ok property BALSE
2 if Turning angles ok property ERUE
The third digit has the following values :
0 if Hull self—intersection property is unknown
1 if Hull self-intersection property BALSE
2 if Hull self-intersection property iBRUE
The fourth digit has the following values :
0 if Hull enclosure property is unknown
1 if Hull enclosure property IBALSE
2 if Hull enclosure property iSRUE

protected SPAinterval range;

The full range of thént_cur, as returned by param_range. If an
approximating curve is preserimt(cur_data) then range and
bs3_curve_range(cur_data) should be identical.

protected SPAinterval safe_range;

A sub-range of the curve that avoids any terminators at the ends of the
curve is safe for relaxation. Outside this range, but inside the full curve
range, the approximating curve is taken to define the curve. Typically
when no terminators or surface singularities are presensafaerange is
the full range; if a terminator is present, #afe_range stops just short of

it. The base class administers tafe_range; for example it updates it
following re-parameterization. It is the responsibility of the derived class
to set it initially.

Kernel R10

protected logical calling_make_approx;
Prevents recursion taake_approx().

protected summary_bs3_curve* summary_data;
bs3_curve data in summary form. This field may be set on restore, if the
full curve is not available. It may be used to make the abtBalcurve.

protected surface *surfl_data;

The first of up to two surfaces defining the true curve. Derived classes
may use this in different ways, but in the base class, the true curve lies on
any surface specified here.

protected surface *surf2_data;

The second surface defining the true curve. Derived classes may use this
in different ways, but in the base class, the true curve lies on any surface
specified here.

Constructor:
protected: int_cur::int_cur ();

C++ allocation constructor requests memory for this object but does not
populate it.

Initializes safe_range to initialize interval infinitefitol_data to 0 and all
other data toNULL. This provides flexibility for the constructors for
derived curve classes to set the common data members in the most
convenient way.

protected: int_cur::int_cur (

bs3_curve, /I given curve
double, /I fit tolerance
surface const&, /I first surface
surface const&, /I second surface
bs2_curve, /I pcurve for

/I 1st surface
bs2_curve, /I pcurve for

/I 2nd surface
const SPAinterval& /I safe ranges

= * (SPAinterval*) NULL_REF,

const discontinuity_info& /I discontinuity

= * (discontinuity_info*) NULL_REF
)i

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Kernel R10

Destructor:

This constructor cannot be called directly to makénarint_cur; however,
the following procedure can be used to make an object afitthet cur
class type.

1. Make an object of typiat_int_interp (refer to the definition of
int_int_interp in thecurve_interp class description).

2. Call theint_int_interp method,make_int_cur. This method returns an
int_cur class object.

protected: int_cur::int_cur (
const int_cur& / intersection curve

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

protected: int_cur::int_cur (

SPAinterval, /I interval
closed_forms, /I OPEN, CLOSED,
/I PERIODIC,
/I or undefined
surface const&, /I 1st surface
surface const&, /I 2nd surface
bs2_curve, /I pcurve for
/I 1st surface
bs2_curve, /I pcurve for
/I 2nd surface
const SPAinterval& /I safe ranges
= * (SPAinterval*)NULL_REF,
const discontinuity_info& /I discontinuity

= * (discontinuity_info*)NULL_REF
);

A version of the constructor which takes the range and closure instead of
the approximating curve. Available for derived class constructors.
protected: virtual int_cur::~int_cur ();

C++ destructor, deleting aint_cur. Eliminates all the dependent spline

curve and surface data. Each derived class must have a destructor if it adds
further dependent data.

Kernel R10

Methods:

Kernel R10

protected: virtual int int_cur::accurate_derivs (
SPAinterval const& /l int_cur interval
= * (SPAinterval*) NULL_REF
) const;

Returns the number of derivatives tleatluate can find accurately and
directly, rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, this
method returns the valualLL_CURVE_DERIVATIVES.

protected: virtual void int_cur::append (
int_cur& /I curves to be joined

);

Concatenates the contents of two curves into one. The curves are
guaranteed to be the same base or derived type, and to have contiguous
parameter ranges (“this” is the beginning part of the combined curve, the
argument gives the end part).

protected: virtual SPAbox int_cur::bound (
SPAinterval const& /I range
= * (SPAinterval*) NULL_REF
) const;

Finds an object-space bounding box, for the subset of the curve within the
given parameter bounds. The default finds the bound on the spline
approximation of the appropriate subset of the curve, expanded by the fit
tolerance, so it is suitable for most derived classes.

protected: int int_cur::bsl_hull_angles_ok () const;

Returns 1 if the bs1_curve hull turning angles are known to be acceptable,
0 if they are not acceptable, and -1 if unknown.

protected: int
int_cur::bsl_hull_self_intersects () const;

Returns 1 if the bs1l_curve hull is known to self intersect, O if it does not,
and -1 if unknown.

protected: int int_cur::bsl_knots_on_curve () const;

Returns 1 if the bs1_curve knots are known to lie on the curve, O if they do
not, and —1 if unknown.

protected: int int_cur::bs2_hull_angles_ok () const;

Returns 1 if the bs2_curve hull turning angles are known to be acceptable,
0 if they are not acceptable, and -1 if unknown.

protected: int
int_cur::bs2_hull_self_intersects () const;

Returns 1 if the bs2_curve hull is known to self intersect, O if it does not,
and -1 if unknown.

protected: int int_cur::bs2_knots_on_curve () const;

Returns 1 if the bs2_curve knots are known to lie on the curve, 0O if they do
not, and —1 if unknown.

protected: closed_forms
int_cur::calculate_closure ();

Calculates the closure of the curve from geometric tests.

public: virtual void
int_cur::calculate_disc_info ();

Calculates the discontinuity information for time¢_cur if none had been
stored indisc_info. This function is intended to support restore of old
versions ofint_cur.

protected: virtual
check_status_list* int_cur::check (

const check_fix& input /I flags for
= * (const check_fix*) /I allowed
NULL_REF, /I fixes
check_fix& result /I fixes
= * (check_fix*) NULL_REF, // applied
const check_status_list* /I list of
= (const check_status_list*)// checks to
NULL_REF /l be made
)i

Kernel R10

Kernel R10

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: logical int_cur::closed () const;

Indicate whether a curve is closed, that is joins itself (smoothly or not) at
the ends of its principal parameter range. This method always returns
TRUE if periodic returnsTRUE. The default version uses the
corresponding function for the approximating spline.

protected: virtual void int_cur::closest_point (
SPAposition const& pos, /I position
SPAposition& foot, /I foot position
SPAparameter const& param_guess // input guess
= * (SPAparameter*)NULL_REF,// value of

/I param
SPAparameter& param_actual /I actual value
= * (SPAparameter*)NULL_REF// of param

) const;

Finds the closest point on the curve (the foot) to the given point, and
optionally its parameter value. If an input parameter value is supplied (as
the first parameter argument), the foot found is only a local solution
nearest to the supplied parameter position. Any of the return value
arguments may be a NULL reference, in which case it is simply ignored.

protected: void int_cur::
closest_point_with_cache (

SPAposition const& pos, /I position
SPAposition& foot, /I foot position
SPAparameter const& /I input guess
= * (SPAparameter*)NULL_REF,// value of
/I param
SPAparameter& /I actual value
= * (SPAparameter*)NULL_REF// of param
) const;

This method, rather than closest_point, should be called by classes derived
from int_cur, to get the benefit of caching.

protected: virtual subtrans_object*

int_cur::copy () const = 0;
Construct a new object as a copy of an old object. Duplication cannot be
done by the constructor.

protected: bs3_curve int_cur::cur () const;

Returns underlying curve information.

protected: virtual void int_cur::debug (

char const*, /I class—identifying line

logical, // option to suppress too
/I much detall

FILE* /I file name

) const = 0;

Prints out a class-specific identifying line to standard output or to the
specified file.

protected: void int_cur::debug_data (

char const*, /I class—identifying line

logical, // option to suppress too
/I much detall

FILE* /I file name

) const;

Kernel R10

Kernel R10

Prints out the details. Thiebug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own versionaifug_data, and it

may use its parent’s instead. A string argument provides the introduction
to each displayed line after the first, and a logical sets brief output
(normally removing detailed subsidiary curve and surface definitions).

public: virtual int_cur* int_cur::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const = 0;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In adeepcopy, all the information about the copied item is self-contained
in a new memory block. By comparisonstaallow copy stores only the

first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For exampléeep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

protected: void int_cur::delete_summary_data ();

Allows derived classes to delete summary_data when it goes out of date.

protected: void int_cur::disc_from_surfs ();

This function sets discontinuity information in the curve corresponding to
discontinuities in the underlying surfaces.

protected: virtual curve_boundcyl
int_cur::enclosing_cylinder (
const SPAinterval& // bounding interval
= * (SPAinterval*) NULL_REF
) const;

Returns a cylinder which encloses the portion of the curve bounded by the
interval.

protected: save_approx_level
int_cur::enquire_save_approx_level () const;

Gets the default level at which the approximating surface should be be
stored.

protected: virtual void int_cur::eval (

double, /I given parameter

SPAposition&, /I position returned

SPAvector& /I 1st derivative
= * (SPAvector*) NULL_REF,

SPAvector& /I 2nd derivative
= * (SPAvector*) NULL_REF,

logical /I approx. results?
= FALSE

) const;

Finds the position and the first and second derivative on a curve at a given
parameter value. Eitheval or evaluate should be implemented for every
derived curve class. If any return valueNidLL, that value is not

computed. Iflogical is TRUE, approximate results are returned.

protected: virtual int int_cur::evaluate (

double, /I parameter
SPAposition&, /I point on curve at
/I parameter
SPAvector** /I array of vectors
= NULL,
int /I # derivatives
= O’
evaluate_curve_side /I eval. location
= evaluate_curve_unknown
) const;

Calculate derivatives. Once calculated the derivatives are stored in vectors
provided by the user. This method returns the number it was able to
calculate; this equals the number requested in all but the most exceptional
circumstances. A certain number are evaluated directly and accurately;
higher derivatives are automatically calculated by finite differencing; the
accuracy of these decreases with the order of the derivative, as the cost
increases.

Kernel R10

protected: virtual int int_cur::evaluate_iter (
double, /I parameter
curve_evaldata*, /I data supplying
/I initial values,
/I and set to reflect
I the results of
/I this evaluation

SPAposition&, /I point on curve at
/I given parameter
SPAvector** /I array of pointers
= NULL, /I to vectors, of

/I size nd. Any of
/I the pointers may
/I be null, in which
/I case the

/I corresponding

/I derivative will

/I not be returned

int /I number of
=0, /I derivatives
/I required (nd)
evaluate_curve_side /I evaluation

/I location — above,
/I below or don't
= evaluate_curve_unknown // care
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation, for use as
initial values for any iteration involved.

Kernel R10

protected: int int_cur::evaluate_iter_with_cache (

double,
curve_evaldata*,

SPAposition&,

SPAvector**
= NULL,

int
= O,

evaluate_curve_side

/I parameter
/I data supplying
/I initial values,
/I and set to reflect
/I the results of
/I this evaluation
/I point on curve at

/I given parameter

/I array of pointers

/I to vectors, of
/I size nd. Any of
/I the pointers may
/I be null, in which
/I case the
/I corresponding
/I derivative will
/I not be returned

/I number of

/I derivatives
/I required (nd)

/I evaluation

/I location — above,
/I below,don’t care

= evaluate_curve_unknown,

logical
= FALSE
) const;

This non-virtual function looks in the cache for position and nd derivatives

/I approximations ok

at the given parameter value. If found it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_with_cache method instead advaluate, should be called by
classes derived fromnt_cur in order to get the benefit of caching.

Kernel R10

Kernel R10

public: virtual int int_cur::evaluate_surfs(

double, /I Parameter

SPAposition&, /I Point on curve at
/I parameter

SPAvector*, /I Derivatives

int& nd_cu, /I Number of curve

/I derivs required or
/I calculated

int& nd_sf, /I Number of surface
/I derivs required or
/I calculated

evaluate_curve_side /I eval location

= evaluate_curve_unknown,
SPAposition & // Point on support

= *(SPAposition*) NULL_REF,// surface 1
SPAvector* /I Derivs of first

= NULL, /I support surface
SPAposition& /I Point on support

= *(SPAposition*) NULL_REF,// surface 2
SPAvector* /I Derivs of second

= NULL, /I support surface
SPApar_pos& /I Params on

= * (SPApar_pos*) NULL_REF,// surface 1
SPApar_vec* /I Derivs of params

= NULL, /I on surface 1
SPApar_pos& /l Params on

= * (SPApar_pos*) NULL_REF,// surface 2
SPApar_vec* /I Derivs of params

= NULL, /I on surface 2
SPApar_pos const& /I opt. guess value

= * (SPApar_pos*)NULL_REF,// for 1st par_pos
SPApar_pos const& /I opt. guess value

= * (SPApar_pos*)NULL_REF// for 2nd par_pos
) const;

An evaluator that takes surface arguments in addition to curve arguments.
As well as returning curve position and derivatives, it returns the
derivatives of the surface wrt t (these will often but not always be equal to
the curve derivs) and also the derivatives of the surface parameters with
respect to t. The array of vectors to return the curve derivatives must be of
length at least nd_cu, and the various arrays of vectors to return the
surface data can either be null, indicating that this particular derivative is
not required, or be of length at least nd_sf.

The caller must supply an array of length nd_cu or NULL to indicate that
derivatives are not required for vector.

Unlike the other evaluators, this function OVERWRITES the integer
arguments specifying the numbers of derivatives required, with the
number actually obtained. The function itself returns information about the
surface data that was calculated:

0 => no surface data (e.g. exact_int_cur)
1 => data for first surface only

2 => data for second surface only

3 => data for both surfaces

This is the default implementation of the function, and is inefficient. It
should be implemented for each int_cur type.

protected: int int_cur::evaluate_with_cache (

double, /I parameter
SPAposition&, /I point on curve at
/I parameter
SPAvector** /I array of vectors
= NULL,
int /I # derivatives
= O’
evaluate_curve_side /I eval. location
= evaluate_curve_unknown,
logical /I approximations OK
= FALSE
) const;

This non-virtual function looks in the cache for position and nd derivatives
at the given parameter value. If found, it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_with_cache, instead okvaluate, should be called by classes
derived fromint_cur in order to get the benefit of caching.

protected: virtual SPAvector int_cur::eval_curvature

(
double, /I parameter value
logical /I approx. results ?
= FALSE
) const;

Find the curvature on a curve at a given poinibdfcal is TRUE,
approximate results are returned.

Kernel R10

protected: virtual SPAvector int_cur::eval_deriv (

double, /I parameter value

logical /I approx. results ?
= FALSE

) const;

Finds the parametric derivative, magnitude, and direction on a given curve
at the given parameter valueldfjical is TRUE, approximate results are
returned.

protected: virtual SPAunit_vector
int_cur::eval_direction (

double, /I given direction

logical /I approx. results ?
= FALSE

) const;

Find the tangent direction at the given parameter value on the curve.
Default use®val_deriv.

protected: virtual SPAposition int_cur::eval_position

(
double, /I given parameter
logical /I approx. results ?
= FALSE
) const;

Finds the position on the curve at a given parameter vallggidél is
TRUE, approximate results are returned.

protected: void int_cur::eval_with_cache (

double, /I given parameter

SPAposition&, /I point found

SPAvector& /I first derivative
= * (SPAvector*) NULL_REF,

SPAvector& /I second derivative
= * (SPAvector*) NULL_REF,

logical /I approximations ok
= FALSE

) const;

Kernel R10

This non-virtual function looks in the cache for position and first and
second derivatives at the given parameter value. If found it returns them,
otherwise it computes them, puts them in the cache, and returns them.
The eval_with_cache method, rather thaeval, should be called by

classes derived fromnt_cur, so as to get the benefit of caching.

protected: virtual curve_extremum*

int_cur::find_extrema (

SPAunit_vector const& /I unit direction vector

) const;
Finds the extrema of an intersection curve in a given direction. This
method ignores its ends unless it is closed. The default version uses the
corresponding function for the approximating spline.

protected: double int_cur::fitol () const;

Returns fit tolerance data about the curve.

protected: int int_cur::hulll_enclosure () const;

Returns 1 if thévs1_curve hull is known to enclose the curve, 0 if it does
not, and —1 if unknown.

protected: int int_cur::hull2_enclosure () const;

Returns 1 if thévs2_curve hull is known to enclose the curve, 0 if it does
not, and —1 if unknown.

public: virtual law* int_cur::law_form ();

Returns the law form of ant_cur.

protected: virtual double int_cur::length (

double, /I start parameter
double /I end parameter
) const;

Kernel R10

Kernel R10

Returns the algebraic distance along the curve between the given
parameters. If the sign is positive, the parameter values are given in
increasing order; if the sign is negative,they are given in decreasing order.
The result is undefined if either parameter value is outside the parameter
range of a bounded curve. For a periodic curve, the parameters are not
reduced to the principal range, and so the portion of the curve evaluated
may include several complete circuits. This function is always a
monotonically increasing function of its second argument if the first is

held constant, and a decreasing function of its first argument if the second
is held constant. The default version uses the corresponding function for
the approximating spline.

protected: virtual double int_cur::length_param (

double, /I datum parameter
double /Il arc length
) const;

Returns the parameter value of the point on the curve at the given
algebraic arc length from that defined by the datum parameter, which is
the inverse of the length function. The result is not defined for a bounded
nonperiodic curve if the datum parameter is outside the parameter range,
or if the length is outside the range bounded by the values for the ends of
the parameter range. The default version uses the corresponding function
for the approximating spline.

protected: SPAparameter int_cur::limit_param (
SPAparameter const& param /I parameter value
) const;

Shifts the supplied parameter to be within the principle period of a
periodic curve. This is used to ensure th&_curves are evaluated within
their defined ranges.

protected: virtual void int_cur::make_approx (

double fit, /1 fit

const intcurve& ic /I intcurve
= * (intcurve*) NULL_REF

) const;

Make or remake the approximating curve. The intcurve argument 'ic’ may
beNULL but if it is supplied the function may be a little faster. The
function stores the approximating curve and the actual fit error that was
achieved in thént_cur, overriding the declared const of the method to do
this.

protected: virtual curve_evaldata*
int_cur::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

protected: virtual void int_cur::operator*= (
SPAtransf const& /I transformation matrix

);

Transforms thés3_curve and the tolerance. The default transforms the
spline approximation and the surfaces, and scales the fit tolerance.

public: virtual int_cur& int_cur::operator= (
int_cur const& // address for int_cur

);

Copies all the underlying information.

protected: virtual logical int_cur::operator==
subtype_object const& /I object subtype
) const;

Tests for equality. This is sufficient for many derived classes, and can be
used by most others to check the basic representation. It does not
guarantee that all effectively equal surfaces are determined to be equal,
but it does guarantee that different surfaces are correctly identified as
such. The default version checks the splines and surfaces, and checks that
the derived types are the same. This may be sufficient for simple derived
types;others may find it useful to call this as part of the operation.

Kernel R10

Kernel R10

protected: virtual double int_cur::param (

SPAposition const&, /I given point
SPAparameter const& // initial

= * (SPAparameter*) NULL_REF// param guess
) const;

Returns the parameter values for a given point on the curve. Drops a
perpendicular to the spline approximation and returns the parameter value
of the foot.

public: double int_cur::param_period () const;

Finds the parametric period of the interpolated curve, returning exactly 0
if the curve is not periodic. The default version uses the corresponding
function for the approximating spline.

public: SPAinterval int_cur::param_range (
SPAbox const& /I ' bounding box
= * (SPAbox*)NULL_REF 1
) const;

Finds the parameter range of the interpolated curve as an interface. The
default version uses the corresponding function for the approximating
spline.

protected: double int_cur::param_with_cache (
SPAposition const&, /l point found
SPAparameter const& /I first derivative
= * (SPAparameter*) NULL_REF

);

This non-virtual function looks in the cache for a given position. If found
it returns it; otherwise it computes it, puts it in the cache, and returns it.

The param_with_cache method, rather thaparaml, should be called by
classes derived fromnt_cur, so as to get the benefit of caching.

protected: virtual pcurve* int_cur::pcur (
int /I index for surface
/I defining intcurve
) const;

Returns parametric curves with respect to the surfaces defining this
intcurve. The argument may be 1 or 2, representing the two surfaces in
order. The default usgeurl or pcur2, surfl or surf2, andfitol, and it is
suitable for most derived classes.

protected: virtual bs2_curve int_cur::pcurl (
logical force /I surface force return
= FALSE
) const;

Returns curve in parameter space of surface returned by surfl or surf2
respectively, if the surface is parametric. Returns NULL if the surface (as
returned by the functions above) is NULL or not parametric.

protected: virtual bs2_curve int_cur::pcur2 (
logical force /I surface force return
= FALSE
) const;

Returns curve in parameter space of surface returned by surfl or surf2
respectively, if the surface is parametric. Returns NULL if the surface (as
returned by the functions above) is NULL or not parametric.

public: virtual logical int_cur::pcur_present (
int /I parameter—space index
/I curve
) const;

ReturnsTRUE if the nth parameter-space curve is defined (peur

returns a noMULL pcurve pointer); otherwise, it returRALSE. The

default tests the result pturl or pcur2 as appropriate, and so it suffices

for most derived classes. The argument may be 1 or 2 representing the two
surfaces in order.

public: logical int_cur::periodic () const;
Indicates whether the curve is periodic, that is joins itself smoothly at the
ends of its principal parameter range, so that edges may span the seam.

The default version uses the corresponding function for the approximating
spline.

Kernel R10

Kernel R10

protected: virtual SPAvector int_cur::point_curvature

(
SPAposition const&, /I given point
SPAparameter const& // initial
= * (SPAparameter*) NULL_REF// param guess
) const;

Finds the curvature on a curve at a given point.

protected: virtual SPAunit_vector
int_cur::point_direction (

SPAposition const&, /I given point
SPAparameter const& // initial

= * (SPAparameter*) NULL_REF// param guess
) const;

Finds the tangent direction to a curve at a given point, which is assumed to

be on the curve.

protected: virtual void int_cur::point_perp (

SPAposition const&, /I given point
SPAposition&, // point on curve
SPAunit_vector&, /I tangent
/I returned
SPAvector&, /I curvature
/I returned
SPAparameter const& // initial
= * (SPAparameter*) NULL_REF,// param guess
SPAparameter& /I actual param
= * (SPAparameter*) NULL_REF,// returned
logical f_weak /I for future use
= FALSE
) const;

Finds the foot of the perpendicular from the given point to the curve,

tangent to the curve at that point, and its parameter value, and returns the
curvature. If an input parameter value is supplied (as the fifth argument),

the perpendicular found is the one nearest to the supplied parameter

position; otherwise, it is the one at which the curve is nearest to the given

point. Any of the return value arguments may B&LA L reference, in
which case they are ignored.

protected: void int_cur::point_perp_with_cache(

SPAposition const&, /I given point
SPAposition&, /I resulting foot
SPAunit_vector&, /I direction
SPAvector&, /I curvature
SPAparameter const& /| parameter guess
= * (SPAparameter*)NULL_REF,
SPAparameter & /| parameter returned
= * (SPAparameter*)NULL_REF,
logical f_weak /I for future use
= FALSE
) const;

This non—virtual function looks in the cache for a given position and
parameter guess if any. If found it returns the foot, direction, curvature and
parameter. Otherwise it uses point_perp to find the result, places them in
the cache, and returns them. Tdwént_perp_with_cache method, rather
thanpoint_perp, should be called by classes derived fiatncur, so as to

get the benefit of caching.

protected: virtual void int_cur::reparam (

double, /I start parameter
double /I end parameter
);

Performs a linear transformation on the parameterization, so that it starts
and ends at the given parameter values, which must be in increasing order.

protected: void int_cur::restore_common_data ();

Restores member function to do the actual work. This will normally be
invoked as the first action of the corresponding function for a derived
class, to read the common data, as well as doing all the work for the base
class.

Kernel R10

Kernel R10

if (restore_version_number >= APPROX_SUMMARY_VERSION)
read_enum Read the enumeration for
save_approx_level.
if (level == save_approx_full)

bs3_curve_restore Parameter space curve on first
surface
read_real fit tolerance
else if (level == save_approx_summary)
summary_bs3_curve::restore Parameter space curve
read_real fit tolerance
read_enum Read the enumeration for
closed_forms
else
read_interval Range for curve
read_enum Read the enumeration for
closed_forms
restore_surface First surface for curve definition
restore_surface Second surface for curve definition
bs2_curve_restore Parameter space curve on second
surface
bs2_curve_restore Parameter space curve on second
surface
if (restore_version_number >= SAFERANGE_VERSION)
read_interval Safe range for curve evaluation
else

\\ Set safe range for curve evaluation
if (restore_version_number >= DISCONTINUITY_VERSION)
discontinuity_info::restore Parameter values of discontinuities

protected: void int_cur::save_as_approx () const;

Permits thidnt_cur to be saved in a sharable format. It may be called for a
null object, in which case a recognizable ID is added.

protected: void int_cur::save_common_data (
save_approx_level I level at which int_cur
/I is to be stored
) const;

Save data common to afit_curs.

protected: virtual void int_cur::save_data () const;

Saves the data associated withititecur to the SAT file.

protected: void int_cur::set_bs_hull_angles_ok (
int pcu_no, /I enclosure
int hull_angles_ok /I value

);

Sets the property of the hull not turning too sharply. The first argument
should be 1 or 2 to indicate the curve which the enclosure is being set for,
and the second integer argument should be -1, 0 or 1, to indicate that the
property is unknowni-ALSE or TRUE.

protected: void
int_cur::set_bs_hull_self_intersects (
int pcu_no, /I enclosure
int hull_self_ints /I value

);

Sets the property of the hull self intersecting. The first argument should be
1 or 2 to indicate the curve which the enclosure is being set for, and the
second integer argument should be -1, 0 or 1, to indicate that the property
is unknown,FALSE or TRUE.

protected: void int_cur::set_bs_knots_on_curve (
int pcu_no, /I enclosure
int knots_on_cu /I value

);

Sets the property of whether the knots lie on the curve. The first argument
should be 1 or 2 to indicate the curve which the enclosure is being set for,
and the second integer argument should be -1, 0 or 1, to indicate that the
property is unknowni-ALSE or TRUE.

protected: void int_cur::set_cur (

bs3_curve, /I bs3 curve data

double tol /I tolerance
=-1.0

);

Replaces the underlyings3_curve with another.

Kernel R10

Kernel R10

protected: void int_cur::set_hull_enclosure (
int pcu_no, /I enclosure
int encl Il value

);

Sets the curve enclosure in tihe_cur. The first argument should be 1 or

2, to indicate thés2_curve which the enclosure is being set for, and the
second integer argument should be -1, 0 or 1, to give the value for the hull
enclosure.

protected: virtual void int_cur::set_safe_range ();

Sets thesafe_range, which is used by the base class when it is uncertain
how to process thiease_range. The default version sets it taN&JLL

interval. Other implementations of this method are not available to the
base class constructor, and they cannot be used when the curve is input
from a data stream. Derived classes are responsible for setting the
safe_range.

protected: virtual void int_cur::shift (
double /1 shift value

);

Shifts the parameter range of the spline curve by a given value. This is
used only to move portions of a periodic curve by integral multiples of the
period. The default just shifts the parameterization of the approximating
splines.

protected: virtual void int_cur::split (

double, /I parameter value
SPAposition const&, /I split point
int_cur*[2] /I two pieces of curve
)=0;

Divides a curve into two pieces at a given parameter value, adjusting the
spline approximations to an exact value at the split point if necessary. If
the parameter value is at the beginning, it sets the first pid¢glib and

places the original curve in the second slot. If the parameter value is at the
end, it places the original curve in the first slot and sets the second to
NULL. It is pure virtual to force derived classes to have their own, though
many will be able to ussplit_int_cur (the following method) to do much

of the hard work.

protected: logical int_cur::split_int_cur (

double, /I parameter value
SPAposition const&, /I split point

int_cur*, /l input curve
int_cur*[2] /I 2 piece of curve

);

Divides a curve into two pieces at a given parameter value, adjusting the
spline approximations to an exact value at the split point if necessary,
except that a newly-created, but empty,cur, is supplied.

The same specification as feplit, except that a newly-created, but empty,
int_cur (normally in fact a derived object) is supplied to be the second part
of the split, if necessary. The method retufrRJE if the secondnt_cur

was used; otherwise, it returRBLSE. This method assumes that the

pcurve on any surface is the locus of the foot of the perpendicular from the
curve to the surface. It is not called by amygurve member function, but

it is available for use by a derived clasglit, to split the spline curves.

protected: virtual int_cur* int_cur::subset (
SPAinterval const& /I parameter interval
) const;

Constructs a new curve that is a copy of the part of the given one within
the given parameter bounds. If this means the whole curve, the original
curve, or there is no overlap, this method retinb&L. It is always called
with a bounded, positive-length parameter range completely within the
curve’s defined parameter range.

protected: const double*
int_cur::summary_knots () const;

Provides access to tkemmary_data for derived classes (so that they
don't all have to be friends).
protected: int int_cur::summary_nknots () const;

Provides access to tiemmary_data for derived classes (so that they
don't all have to be friends).

Kernel R10

Kernel R10

protected: virtual surface const* int_cur::surfl (
logical force /I surface force return
= FALSE
) const;

Returns the corresponding surface pointer only if the true curve lies in that
surface.

protected: virtual surface const* int_cur::surf2 (
logical force /I surface force return
= FALSE
) const;

Returns the corresponding surface pointer only if the true curve lies in that
surface.

protected: virtual curve_tancone
int_cur::tangent_cone (

SPAinterval const&, /l bounding interval
logical /I inside or outside
) const;

Returns a cone bounding the tangent direction of the curve. The cone has
its apex at the origin, and has a given axis direction and (positive)
half-angle. If thdogical is TRUE, then a quick approximation may be

found. The approximate result may lie wholly within or wholly outside the
guaranteed bound (obtained witALSE), but it may not cross from inside

to outside. Flags in the returned object indicate whether the cone is in fact
the best available, and if not whether this result is inside or outside the
best cone. The default finds the cone for the spline approximation to the
curve, so will be suitable for most derived classes.

protected: virtual logical int_cur::test_point_tol (

SPAposition const&, /I point

double /I tolerance
= O’

SPAparameter const& /I param guess
= * (SPAparameter*) NULL_REF,

SPAparameter& /I actual param
= * (SPAparameter*) NULL_REF

) const;

Internal Use:

Related Fncs:

Tests if a point lies on the curve to a given precision. The default version
uses the corresponding function for the approximating spline, to a

tolerance expanded using the fit tolerance, and then tests the perpendicular
to the true curve. It is suitable for most derived classes.

protected: virtual char const*
int_cur::type_name () const = 0;

Returns the stringitit_cur”.

protected: void int_cur::update_data (
bs3_curve /I bs3_curve

)i
Update the range and closure information frobs2_curve.

deep_copy_elements, full_size

restore_int_int_cur

Kernel R10

