
Kernel R10

Chapter 34.
Classes Pa thru Pz
Topic: Ignore

par_int_cur
Class: Construction Geometry, SAT Save and Restore

Purpose: Represents an exact spline curve in the parameter space of a surface.

Derivation: par_int_cur : int_cur : subtrans_object : subtype_object : ACIS_OBJECT
: –

SAT Identifier: “parcur”

Filename: kern/kernel/kerngeom/intcur/par_int.hxx

Description: This class represents a 3D spline curve as a 2D parameter curve on a
spline surface. The spline surface is used to map the 2D parameter curve
from (u,v) parameter space into (x,y,z) euclidean space. The approximate
parameter curve is everywhere within the fit tolerance of the exact
parameter curve.

Limitations: None

References: None

Data:
None

Constructor:
public: par_int_cur::par_int_cur (

bs3_curve, // spline curve
double, // fit tolerance
surface const&, // surface where

// curve lies
bs2_curve, // surface curve

// in parameter
// space

logical // surface
= TRUE,

const discontinuity_info& // discontinuity
= * (discontinuity_info*) NULL_REF

);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Constructs a general parameter curve, given an exact bs2_curve and an
approximate bs3_curve. If logical is TRUE, the surface is made the first
surface of the int_cur; if it is FALSE, the surface is made the second
surface of the int_cur.

public: par_int_cur::par_int_cur (
bs3_curve, // spline curve
double, // fit tolerance
surface const&, // 1st surface

// for curve
surface const&, // 2nd surface

// for curve
bs2_curve, // 1st curve on

// surface
bs2_curve, // 2nd curve on

// surface
logical // surface

// surface
= TRUE,

const discontinuity_info& // discontinuity
= * (discontinuity_info*) NULL_REF

);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Constructs a general parameter curve, with and additional surface and
parameter curve. If logical is TRUE, the surface is made the first surface
of the int_cur; if it is FALSE, the surface is made the second surface of the
int_cur.

Kernel R10

public: par_int_cur::par_int_cur (
spline const&, // surface where

// curve lies
par_int_cur_dir, // select u or v

// direction
double, // constant u or

// v parameter
logical // surface

= TRUE,
const discontinuity_info& // discontinuity

= * (discontinuity_info*) NULL_REF
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Constructs a constant parameter curve. If logical is TRUE, the surface is
made the first surface of the int_cur; if it is FALSE, the surface is made
the second surface of the int_cur.

public: par_int_cur::par_int_cur (
const par_int_cur& // par_int_curve
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Destructor:
None

Methods:
protected: virtual int par_int_cur::accurate_derivs (

SPAinterval const& // part of curve
= * (SPAinterval*)NULL_REF // to evaluate

) const;

Returns the number of derivatives which evaluate() can find “accurately”
(and fairly directly), rather than by finite differencing, over the given
portion of the curve. If there is no limit to the number of accurate
derivatives, returns the value ALL_CURVE_DERIVATIVES.

public: virtual void
par_int_cur::calculate_disc_info ();

Kernel R10

Calculates the discontinuity information if it was never stored. This
function is intended to support restore of old versions of int_curs.

protected: virtual check_status_list*
par_int_cur::check (
const check_fix& input // flags for

= * (const check_fix*) // the allowed
 NULL_REF, // fixes

check_fix& result // fixes applied
= * (check_fix*) NULL_REF,

const check_status_list* // checks to be
 = (const check_status_list*)// made. Default

NULL_REF // is none
);

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

protected: virtual void par_int_cur::debug (
char const*, // title line
logical, // brief: sets amount

// of debug returned
FILE* // debug file
) const;

Outputs a title line and the details of the class for inspection to standard
output or to the specified file.

protected: void par_int_cur::debug_data (
char const*, // title line
logical, // brief: sets amount

// of debug returned
FILE* // debug file
) const;

Kernel R10

Debug printout. As for save and restore we split the operation into two
parts; the virtual function “debug” prints a class–specific identifying line,
then calls the ordinary function “debug_data” to put out the details. It is
done this way so that a derived class’ debug_data can call its parent’s
version first, to put out the common data. Indeed, if the derived class has
no additional data it need not define its own version of debug_data and
use its parent’s instead. A string argument provides the introduction to
each displayed line after the first, and a logical sets “brief” output
(normally removing detailed subsidiary curve and surface definitions).

public: virtual int_cur* par_int_cur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

protected: virtual void par_int_cur::eval (
double, // parameter
SPAposition&, // position
SPAvector&, // 1st derivative
SPAvector&, // 2nd derivative
logical // needs precise eval?
) const;

Finds the position and first and second derivative on a curve at the given
parameter value.

protected: virtual int par_int_cur::evaluate (
double, // parameter
SPAposition&, // point on curve at

// given parameter
SPAvector** // array of pointers

= NULL, // to vectors
int // no. of derivatives

= 0, // required
evaluate_curve_side // eval. location:

= evaluate_curve_unknown // above, below or
// don’t care

) const;

Kernel R10

This function calculates derivatives, of any order up to the number
requested, and stores them in vectors provided by the user. It returns the
number it was able to calculate. This will be equal to the number
requested in all but the most exceptional circumstances. A certain number
will be evaluated directly and (more or less) accurately; higher derivatives
will be automatically calculated by finite differencing; the accuracy of
these decreases with the order of the derivative, as the cost increases.

Any of the pointers in the array of pointers to vectors may be null, in
which case the corresponding derivative will not be returned.

public: virtual int par_int_cur::evaluate_surfs (
double, // parameter
SPAposition&, // point on curve

// at given
// parameter

SPAvector*, // derivatives of
// off_int_cur

int& nd_cu, // no. of curve
// derivatives
// required/calc.

int& nd_sf, // no. of surface
// derivatives
// required/calc.

evaluate_curve_side // the evaluation
= evaluate_curve_unknown, // location

// above, below
// or don’t care

SPAposition& // point on
= * (SPAposition*) NULL_REF,// support

// surface 1
SPAvector* // derivatives of

= NULL, // 1st support
// surface

SPAposition& // point on
= * (SPAposition*) NULL_REF,// support

// surface 2
SPAvector* // derivatives of

= NULL, // 2nd support
// surface

SPApar_pos& // Parameters on
= * (SPApar_pos*) NULL_REF, // surface 1

SPApar_vec* // derivatives of

Kernel R10

= NULL, // parameters on
// surface 1

SPApar_pos& // Parameters on
= * (SPApar_pos*) NULL_REF, // surface 2

SPApar_vec* // derivatives of
= NULL, // parameters on

// surface 2
SPApar_pos const& // optional guess

= * (SPApar_pos*)NULL_REF, // value for 1st
// par_pos

SPApar_pos const& // optional guess
= * (SPApar_pos*)NULL_REF // value for 2nd

// par_pos
) const;

An evaluator that takes surface arguments in addition to the usual
arguments. As well as returning curve position and derivatives, it returns
the derivatives of the surface wrt t (these will often but not always be
equal to the curve derivs) and also the derivatives of the surface
parameters wrt t. The array of vectors to return the curve derivatives must
be of length at least nd_cu, and the various arrays of vectors to return the
surface data can either be null, indicating that this particular derivative is
not required, or be of length at least nd_sf.

Unlike the other evaluators, this function OVERWRITES the integer
arguments specifying the numbers of derivatives required, with the
number actually obtained. The function itself returns information about the
surface data that was calculated:

0 => no surface data (e.g. exact_int_cur)
1 => data for first surface only
2 => data for second surface only
3 => data for both surfaces

public: static int par_int_cur::id ();

Returns the ID for the par_int_cur list.

protected: virtual void par_int_cur::make_approx (
double fit, // fit
const intcurve& ic // intcurve

= * (intcurve*) NULL_REF
) const;

Kernel R10

Make or remake the approximating curve. The intcurve argument ’ic’ may
be null but if it is supplied the function may be a little faster. The function
returns the approximating curve but does not store it, so that it can be a
const function.

protected: virtual curve_evaldata*
par_int_cur::make_evaldata () const;

 Constructs a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

protected: virtual double par_int_cur::param (
SPAposition const&, // position
SPAparameter const& // parameter
) const;

Parameter value for a given point on a curve.

private: void par_int_cur::restore_data ();

Restores the information for the par_int_cur from the save file. This
method is never called directly. It is called by a higher hierarchical
function if an item in the SAT file is determined to be of this class type.
An instance of this class will already have been created through the
allocation constructor. This method then populates the class instance with
the appropriate data from the SAT file.

int_cur::restore_common_data Restore the underlying interpolated
curve

if (restore_version_number >= PARCUR_VERSION)
read_logical Either “surf2” or “surf1”

public: virtual void par_int_cur::save_data () const;

Saves the information for the par_int_cur to the save file. Stores the
information from this class to the save file. This method is never called
directly. It is called by a higher hierarchical function if an item in the SAT
file is determined to be of this class type.

Kernel R10

protected: virtual void par_int_cur::split (
double, // parameter value
SPAposition const&, // position of split
int_cur* [2] // 2 pieces after split
);

Divides an intersection curve into two pieces at a given parameter value,
possibly adjusting the spline approximations to an exact value at the split
point.

public: virtual int par_int_cur::type () const;

Returns the type of par_int_cur.

public: virtual char const*
par_int_cur::type_name () const;

Returns the string “parcur”.

Internal Use: evaluate_iter, full_size

Related Fncs:
restore_par_int_cur

par_int_interp
Class: Construction Geometry

Purpose: Fits a 3D curve to the parameter curve.

Derivation: par_int_interp : curve_interp : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/intcur/par_int.hxx

Description: This class fits a 3D curve to the parameter curve in a surface given a
parameter interval on the defining curve and the number of
(equally-spaced) points int he interval to be fitted.

Limitations: None

References: KERN pcurve

Kernel R10

Data:
None

Constructor:
public: par_int_interp::par_int_interp (

pcurve const&, // parameter-space curve
int, // number of points
SPAinterval const&, // curve parameter range
double, // fit tolerance
logical // projected surface

= TRUE
);

C++ constructor, creating a par_int_interp using the specified parameters.

Constructs an interpolated curve, given all the necessary information. If
logical is TRUE then the first surface is projected; if it is FALSE, then the
second surface is projected.

Destructor:
public: par_int_interp::~par_int_interp ();

C++ destructor, deleting a part_int_interp.

Methods:
public: int_cur* par_int_interp::make_int_cur ();

Constructs the appropriate int_cur subclass object (in this case, a
par_int_cur) from the data in this object after curve interpolation.

public: void par_int_interp::true_point (
double, // tolerance
point_data& // point data
) const;

Finds the true-point in 3D for a given parameter value. The input position,
direction, and parameter values are approximate; the exact values are
provided as output.

Related Fncs:
None

Kernel R10

pattern
Class: Patterns, SAT Save and Restore

Purpose: Provides all information necessary to generate a regular or irregular
pattern of entities from a single, “seed” entity.

Derivation: pattern : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/law/pattern.hxx

Description: Refer to Purpose.

Limitations: None

References: KERN APATTERN, pattern_datum
by KERN APATTERN, pattern_datum, pattern_holder
BASE SPAinterval, SPAtransf
LAW law

Data:
None

Constructor:
public: pattern::pattern (

const pattern& in_pattern // pattern to copy
);

C++ copy constructor.

public: pattern::pattern (
const SPAposition* in_positions// array of

= NULL, // pattern positions
int in_list_size // number of pattern

= 0 // transforms
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. The pattern transforms are relative to
pattern coordinates.

public: pattern::pattern (
const SPAtransf* in_transfs,// array of pattern

// transforms
int in_list_size // number of pattern

// transforms
);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: pattern::pattern (
law* in_trans_vec, // translation law
law* in_x_vec // x–axis orientation

= NULL, // law
law* in_y_vec // y–axis orientation

= NULL, // law
law* in_scale // scaling law

= NULL,
law* in_z_vec // z–axis orientation

= NULL, // law
law* in_keep // keep filter law

= NULL,
const SPAtransf& in_root_transf// root

= * (SPAtransf*)NULL_REF// transformation
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
protected: pattern::~pattern ();

C++ destructor, deleting a pattern.

Methods:
public: void pattern::add () const;

This is not usually called by an application directly. In order to preserve a
copy of this pattern, an application calls this method. It is also called by
the pattern constructors for the pattern being constructed, as well as for all
of its sublaws. It increments the use_count.

public: logical pattern::add_element (
int index // index
);

Adds the element indexed by index to the pattern. If this element was not
formerly suppressed (via a keep law or list entry), this method has no
effect. Unlike the restore_element methods, this method adds the element
whether or not it already has an entry in the pattern list.

Kernel R10

public: void pattern::compose (
const pattern& in_pat // pattern to be composed

// with this pattern
);

Composes the pattern with the pattern referenced by in_pat.

public: void pattern::concatenate (
const pattern& cat_pat, // pattern to be

// concatenated with
// this pattern

const SPAtransf& cat_trans// transformation to be
= * (SPAtransf*)NULL_REF //applied to cat_pat

);

Concatenates the pattern with the pattern referenced by cat_pat. If
cat_trans is given, it is applied to cat_pat prior to concatenation.

public: pattern* pattern::deep_copy (
pointer_map* pm // list of items

= NULL // already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In a deep copy, all the information about the copied item is self–contained
in a new memory block. By comparison, a shallow copy stores only the
first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For example, a deep copy of a complex model
results in self–contained data, but identical sub–parts within the model are
allowed to share a single set of data.

public: int pattern::domain_size (
int index // index
) const;

Kernel R10

Returns the size of the pattern domain in the dimension specified by the
zero–based index.

public: int
pattern::first_included_element () const;

Returns the internal index of the first element included in the pattern (i.e.,
the first element not suppressed by a keep law or list entry).

public: APATTERN* pattern::get_APATTERN ();

Returns the pattern as an entity.

public: void pattern::get_coords (
int index, // index
double*& out_coords // coordinates
) const;

Returns the pattern coordinates of an element, given its index.

public: int pattern::get_index (
const double* in_coords // coordinates
) const;

Returns the index of the pattern element, given its coordinates.

public: law* pattern::get_keep ();

Returns a pointer to the pattern keep law.

public: const pattern_datum* const*
pattern::get_list () const;

Returns a pointer to the list of pattern_datum pointers.

public: int pattern::get_list_size () const;

Returns the size of the list of pattern_datum pointers.

public: const SPAtransf*
pattern::get_root_transf () const;

Kernel R10

Returns a pointer to the root transformation of the pattern.

public: law* pattern::get_scale ();

Returns a pointer to the scale law of the pattern.

public: law* pattern::get_trans ();

Returns a pointer to the translation law of the pattern.

public: logical pattern::get_transf (
int from, // index of the existing

// element
int to, // index of new element
SPAtransf& out_trans, // associated relative

// transform (output)
logical use_map // index flag

= TRUE
) const;

Returns the relative transformation used to generate the pattern element
indexed by from from the element indexed by to. The argument use_map
is a flag to map the indices to skip over any suppressed elements. The
function returns FALSE if either from or to are invalid indices.

public: logical pattern::get_transf (
int index, // index
SPAtransf& out_trans, // transform
logical use_map // use map

= TRUE
) const;

Returns the transformation used to generate the pattern element indexed
by index. The argument use_map is a flag to map index to skip over any
suppressed elements. The function returns FALSE if index is invalid.

public: void pattern::get_visible_coords (
int index, // index
double*& out_coords // coordinates
) const;

Behaves as does get_coords, except that suppressed pattern elements are
ignored.

Kernel R10

public: int pattern::get_visible_index (
const double* in_coords // coordinates
) const;

Behaves as does get_index, except that suppressed pattern elements are
ignored.

public: law* pattern::get_x ();

Returns a pointer to the x–axis law of the pattern.

public: law* pattern::get_y ();

Returns a pointer to the y–axis law of the pattern.

public: law* pattern::get_z ();

Returns a pointer to the z–axis law of the pattern.

public: logical pattern::has_z_vec () const;

Returns TRUE if the pattern has a non–NULL z_vec member.

public: logical pattern::is_circular (
SPAposition root, // circle’s center
SPAvector axis // direction of

// circle’s axis
) const;

Returns TRUE if the pattern exhibits circular symmetry with respect to the
specified circle.

public: logical pattern::is_cylindrical (
FACE* in_face // cylindrical face
) const;

Returns TRUE if the pattern exhibits cylindrical symmetry with respect to
the specified cylinder.

public: logical pattern::is_cylindrical (
SPAposition root, // position on axis
SPAvector axis // direction of axis
) const;

Kernel R10

Returns TRUE if the pattern exhibits cylindrical symmetry with respect to
the specified cylinder.

public: logical pattern::is_included_element (
int index // index
) const;

Returns TRUE if the element referred to by the internal value index is not
suppressed by the pattern keep law or a list entry.

public: logical pattern::is_planar (
SPAposition root, // position on plane
SPAvector normal // normal to plane
) const;

Returns TRUE if the pattern exhibits planar symmetry with respect to the
specified plane.

public: logical pattern::is_planar (
FACE *in_face // planar face
) const;

Returns TRUE if the pattern exhibits planar symmetry with respect to the
specified plane.

public: logical pattern::is_spherical (
FACE* in_face // spherical face
) const;

Returns TRUE if the pattern exhibits spherical symmetry with respect to
the specified sphere.

public: logical pattern::is_spherical (
SPAposition root // center of sphere
) const;

Returns TRUE if the pattern exhibits spherical symmetry with respect to
the specified sphere.

public: int pattern::make_element_index_law (
law*& index_law // law
) const;

Kernel R10

Creates a scalar index law of the same size as the pattern.

public: void pattern::mirror (
const SPAposition& root, // a point on the

// reflecting plane
const SPAvector& normal // vector normal to the

// reflecting plane
);

Replaces this pattern by its concatenation with its reflection, using root
and normal to define the reflecting plane.

public: logical pattern::move_element (
const double* in_coords, // coordinates of the

// affected element
const SPAtransf& move // applied transform
);

Transforms the element referenced by the coordinates in_coords according
to the transform move.

public: logical pattern::move_element (
int index, // index of the affected

// element
const SPAtransf& move // applied transform
);

Transforms the element referenced by index according to the transform
move.

public: int pattern::num_elements () const;

Returns the number of elements in the pattern.

public: logical pattern::operator!= (
const pattern& pat // pattern to compare
);

Returns TRUE if pat is not identical to this pattern.

Kernel R10

public: const pattern& pattern::operator*= (
const pattern& in_pat // pattern to compose

// with this pattern
);

Replaces this pattern with its composition with in_pat.

public: const pattern& pattern::operator+= (
const pattern& in_pat // pattern to concatenate

// with this pattern
);

Replaces this pattern with its concatenation with in_pat.

public: logical pattern::operator== (
const pattern& pat // pattern to compare

// with this pattern
);

Returns TRUE if pat is identical to this pattern.

public: void pattern::orient_vec (
const SPAvector& in_vec, // vector to be oriented
SPAvector& out_vec // resulting vector

// (output)
) const;

Orients in_vec according to the axes defined for the first element of this
pattern and returns the result as out_vec.

public: void pattern::reflect (
const SPAposition& root, // a point on the

// reflecting plane
const SPAvector& normal // a vector normal to the

// reflecting plane
);

Replaces this pattern by its reflection, using root and normal to define the
reflecting plane.

public: void pattern::remove ();

Kernel R10

Applications should call remove instead of the tilde (~) destructor to get
rid of a pattern. Decrements the use_count. This is called by the pattern
destructors for the pattern being destructed, as well as for all of its
sublaws. The remove method calls the destructor if use_count falls to
zero. Used for memory management.

public: logical pattern::remove_element (
const double* in_coords // coordinates of the

// affected element
);

Suppresses the element referenced by the coordinates in_coords, returning
FALSE if the element has already been removed. The element may be
restored using the restore_element method.

public: logical pattern::remove_element (
int index // index of the affected

// element
);

Suppresses the element referenced by index, returning FALSE if the
element has already been removed. The element may be restored using the
restore_element method.

public: logical pattern::restore_element (
const double* in_coords // coordinates of the

// affected element
);

Restores to the pattern the element referenced by the coordinates
in_coords, returning FALSE if the element is already present in the
pattern. Unlike the add_element method, this method does nothing unless
there is already an entry for the element in the pattern list.

no data This method does not store any
data.

public: logical pattern::restore_element (
int index // index of the

// affected element
);

Kernel R10

Restores to the pattern the element referenced by index, returning FALSE
if the element is already present in the pattern. Unlike the add_element
method, this method does nothing unless there is already an entry for the
element in the pattern list.

no data This method does not store any
data.

public: void pattern::rotate (
law* rx_law, // x rotation
law* ry_law, // y rotation
law* rz_law, // z rotation
logical merge // merge flag

= TRUE
);

Rotates the orientation laws of the pattern by applying the rotation laws
rx_law, ry_law, and rz_law when merge is TRUE; otherwise, these three
laws replace the existing orientation laws.

public: void pattern::save () const;

Saves the pattern to a SAT file.

public: logical pattern::scale_element (
const double* in_coords, // coordinates
double in_scale, // scale factor
const SPAposition& root, // point about which

// scaling is applied
logical merge // flag for

= TRUE // merge/replace
);

Uniformly scales the element referenced by in_coords by a factor equal to
in_scale, about the position root. The existing scaling is either factored in
or replaced, depending upon the setting of the flag merge. A value of
FALSE is returned if in_scale is unity.

Kernel R10

public: logical pattern::scale_element (
int index, // index
double in_scale, // scale factor
const SPAposition& root, // point about which

// scaling is applied
logical merge // flag for

= TRUE // merge/replace
);

Uniformly scales the element referenced by index by a factor equal to
in_scale, about the position root. The existing scaling is either factored in
or replaced, depending upon the setting of the flag merge. A value of
FALSE is returned if in_scale is unity.

public: logical pattern::scale_element (
const double* in_coords, // coordinates of the

// affected element
const SPAvector& in_scale, // vector of scale

// factors
const SPAposition& root, // root position for

// scaling
logical merge // flag for

= TRUE // merge/replace
);

Scales the element referenced by the coordinates in_coords by the factors
taken from in_scale, about the position root. The existing scaling is either
factored in or replaced, depending upon the setting of the flag merge. A
value of FALSE is returned if all in_scale components are unity.

public: logical pattern::scale_element (
int index, // index of the

// affected element
const SPAvector& in_scale, // vector of scale

// factors
const SPAposition& root, // root position for

// scaling
logical merge // flag for

= TRUE // merge/replace
);

Kernel R10

Scales the element referenced by index by the factors taken from in_scale,
about the position root. The existing scaling is either factored in or
replaced, depending upon the setting of the flag merge. A value of FALSE
is returned if all in_scale components are unity.

public: void pattern::set_keep (
law* keep_law, // new keep law
logical merge // flag for merge/replace

= TRUE
);

Sets the keep law, if absent, or modifies the existing one. In the latter case,
the merge flag determines whether or not keep_law is factored into the
existing one or completely replaces it.

public: void pattern::set_list (
pattern_datum** in_dl, // pointer list
int in_list_size // list size
);

Sets the list of pattern_datum pointers to in_dl, and updates the list size
stored with the pattern.

public: void pattern::set_root_transf (
const SPAtransf& in_transf// transform to be used

// as the root transform
);

Sets the root transform to that given by in_transf.

public: void pattern::set_scale (
law* scale_law, // new scale law
const SPAposition& root // point about which

= SPAposition(0,0,0),// scaling is applied
logical merge // flag for merge/replace

= TRUE
);

Sets the scale law, if absent, or modifies the existing one. In the latter case,
the merge flag determines whether or not scale_law is factored into the
existing one or completely replaces it. The position root specifies the point
about which the scaling is applied.

Kernel R10

public: int pattern::take_dim () const;

Returns the dimension of the pattern laws’ domain (input).

public: logical pattern::term_domain (
int which, // term to bound
SPAinterval& answer // bounds for term
) const;

Establishes the domain of a given term in the pattern laws.

public: void pattern::transform (
const SPAtransf& in_transf // transform used
);

Transforms this pattern using in_transf.

public: void pattern::translate (
law* disp_law // displacement law used
);

Translates the pattern by merging the displacement law disp_law with the
pattern.

public: logical pattern::undo_move_element (
const double* in_coords // coordinates of the

// affected element
);

Restores the pattern element referenced by the coordinates in_coords to
the location defined by the pattern laws, by removing the element from the
pattern list. This method returns FALSE if the element is not present in the
list.

public: logical pattern::undo_move_element (
int index // index of the affected

// element
);

Restores the pattern element referenced by index to the location defined
by the pattern laws, by removing the element from the pattern list. This
method returns FALSE if the element is not present in the list.

Kernel R10

friend: pattern* operator* (
const pattern& pat1, // first pattern
const pattern& pat2 // second pattern
);

Creates a pattern that is the composition of pat1 and pat2 and returns its
pointer.

MAC NT UNIX platforms only.

friend: pattern* operator+ (
const pattern& pat1, // first pattern
const pattern& pat2 // second pattern
);

Creates a pattern that is the concatenation of pat1 and pat2 and returns its
pointer.

MAC NT UNIX platforms only.

Internal Use: root_to_first_element

Related Fncs:
restore_law_data, restore_pattern, restore_pattern_datum

PCURVE
Class: Model Geometry, SAT Save and Restore

Purpose: Defines a 2D parameter-space approximation to a curve as an object in the
model.

Derivation: PCURVE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “pcurve”

Filename: kern/kernel/kerndata/geom/pcurve.hxx

Description: The purpose of a PCURVE is to provide a persistent, logable, savable
object to manage pcurve information associated with a COEDGE.

PCURVE is a model geometry class that provides a (lowercase) pcurve,
the corresponding construction geometry class. In general, a model
geometry class is derived from ENTITY and is used to define a permanent
model object. It provides model management functionality, in addition to
the geometry definition.

Kernel R10

A PCURVE provides a procedural 2D parameter-space representation of a
CURVE lying on a parameterized SURFACE. The representation may be
a private copy(i.e., contained within a lowercase pcurve associated with
the PCURVE), or it may refer to information contained within an intcurve.
In either case, it may be negated from the underlying parameter space
representation. Because there is only one such representation, this class
does not need to have derived classes for specific geometries.

Along with the usual ENTITY class methods, PCURVE has member
methods to provide access to specific implementations of the geometry.
For example, a pcurve can be transformed by a given transform operator.

A use count allows multiple references to a PCURVE. The construction of
a new PCURVE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Limitations: None

References: KERN CURVE, ENTITY, pcurve
by KERN COEDGE, pattern_holder
BASE SPApar_vec

Data:
None

Constructor:
public: PCURVE::PCURVE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: PCURVE::PCURVE (
CURVE*, // existing CURVE
int, // definition

// type index
logical // negated

= FALSE,
SPApar_vec const& // parameter

= * (SPApar_vec*) NULL_REF// space vector
);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Make a PCURVE to point to an existing PCURVE (via a CURVE). The
index is positive 1 or 2, representing the two surfaces in order. A logical
value of TRUE means the PCURVE referenced via the CURVE is
considered negated, and SPApar_vec offsets the spline surface in
parametric space.

public: PCURVE::PCURVE (
PCURVE* // existing PCURVE
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloaded new operator, because this
reserves the memory on the heap, a requirement to support roll back and
history management.

public: PCURVE::PCURVE (
pcurve const& // pcurve object
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Destructor:
public: virtual void PCURVE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual PCURVE::~PCURVE ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
PCURVE(...) then later x–>lose.)

Kernel R10

Methods:
public: virtual void PCURVE::add ();

Increments the value of the use count for the PCURVE. Before performing
a change it checks whether the data structure is posted on the bulletin
board. If not, the routine calls backup to put an entry on the bulletin
board.

public: void PCURVE::add_owner (
ENTITY* owner, // owner
logical increment_use_count // increment use

= TRUE // flag
);

Adds owner argument to list of owners.

protected: virtual logical
 PCURVE::bulletin_no_change_vf (
ENTITY const* other, // other pointer in

// change bulletin
logical identical_comparator// comparator
) const;

A virtual compare function. Compare this object with its change bulletin
partner to see if the two entities are really the same.

public: virtual void PCURVE::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: pcurve const& PCURVE::def_pcur () const;

Returns the definition pcurve, or NULL if the pcurve is not private.

public: virtual logical PCURVE::deletable () const;

Indicates whether this entity is normally destroyed by lose (TRUE), or
whether it is shared between multiple owners using a use count, and so
gets destroyed implicitly when every owner has been lost (FALSE). The
default for PCURVE is FALSE.

Kernel R10

public: pcurve PCURVE::equation () const;

Returns the CURVE equation, for reading only.

public: int PCURVE::get_owners (
ENTITY_LIST& list // list of owners
) const;

Copies the list of owners from this object to the list argument. It returns
the number of owners copied.

public: virtual int PCURVE::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier PCURVE_TYPE. If
level is specified, returns PCURVE_TYPE for that level of derivation
from ENTITY. The level of this class is defined as PCURVE_LEVEL.

public: int PCURVE::index () const;

Returns the definition type of the PCURVE. A 0 value indicates a private
pcurve. A positive 1 or 2 represents the first or second pcurve in an
intcurve definition while a negative 1 or 2 represents the reverse of the
corresponding pcurve.

public: virtual logical PCURVE::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: virtual logical PCURVE::is_use_counted (
) const;

Returns TRUE if the entity is use counted.

public: void PCURVE::negate ();

Negates the pcurve, either by reversing the pcurve or by reversing the
value of a nonzero def_type. Before performing a change it checks
whether the data structure is posted on the bulletin board. If not, the
routine calls backup to put an entry on the bulletin board.

Kernel R10

public: SPApar_vec PCURVE::offset () const;

Returns the SPApar_vec parameter space vector offset. Offset is the
displacement in parameter space between the “fit” definition and this
PCURVE. This allows the PCURVE to be positioned in the infinite
parameter space of a periodic surface, so continuous curve sequences in
object space are continuous in parameter space. The components of this
vector should always be integer multiples of the corresponding surface
parameter period, zero if it is not periodic in that direction.

public: void PCURVE::operator*= (
SPAtransf const& // transform
);

Transforms the PCURVE. If the definition is a CURVE reference, it
assumes that the curve will be transformed as well, so it does nothing.
Before performing a change it checks whether the data structure is posted
on the bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: CURVE* PCURVE::ref_curve () const;

Returns the reference CURVE.

public: virtual void PCURVE::remove (
logical lose_if_zero // flag for lose

= TRUE
);

Decrements the value of the use count for the PCURVE. If the use count
reaches 0, the record is deleted using lose. Before performing a change it
checks whether the data structure is posted on the bulletin board. If not,
the routine calls backup to put an entry on the bulletin board.

public: void PCURVE::remove_owner (
ENTITY*, // owner
logical // decrement use

= TRUE, // count flag
logical // lose if

= TRUE // zero flag
);

Kernel R10

Removes the owner argument from the list of owners.

public: void PCURVE::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

if (restore_version_number < PATTERN_VERSION
read_ptr APATTERN index

if (apat_idx != (APATTERN*)(–1)))
restore_cache();

read_int Type of pcurve.
if (def_type == 0)

pcurve::restore_data Save the data from the underlying
low-level geometry definition.

else
read_ptr Pointer to the CURVE definition.
if (restore_version_number < PCURVE_VERSION)

// Set off = SPApar_vec(0, 0)
else

read_real du
read_real dv
// Set off = SPApar_vec(du, dv)

if (!std_acis_save_flag)
read_int use count data

public: void PCURVE::set_def (
CURVE*, // CURVE
int, // nth pcurve
logical // negate

= FALSE,
SPApar_vec const& // parameter

= * (SPApar_vec*) NULL_REF// space vector
);

Kernel R10

Sets set_def to the nth pcurve of an existing CURVE, where n as a
positive integer. The logical negate is TRUE for a reversed pcurve.
Removes any previous reference in cur to a CURVE, and increments the
use-count for the given CURVE. Makes a NULL pcurve and sets it in def.
Before performing a change it checks whether the data structure is posted
on the bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: void PCURVE::set_def (
pcurve const& // pcurve
);

Checks that this PCURVE has been backed up, then zeros def_type,
removes any curve referred to by cur (which is set to NULL), sets def_type
to zero, and puts the given pcurve in def. Before performing a change it
checks whether the data structure is posted on the bulletin board. If not,
the routine calls backup to put an entry on the bulletin board.

public: virtual void PCURVE::set_use_count (
int val // use count
);

Sets the use count to the given value.

public: void PCURVE::shift (
SPApar_vec const& // parameter space vector
);

Shifts the PCURVE in parameter space by integral multiples of the period
on a periodic surface. Before performing a change it checks whether the
data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: pcurve* PCURVE::trans_pcurve (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // negate

= FALSE
) const;

Kernel R10

Construct a transformed pcurve. The logical is TRUE if the pcurve is
considered to be reversed. Before performing a change it checks whether
the data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: virtual const char*
PCURVE::type_name () const;

Returns the string “pcurve”.

public: virtual int PCURVE::use_count () const;

Returns the value of the use count.

Internal Use: full_size

Related Fncs:
is_PCURVE

pcurve
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines a 2D curve defined in the parameter space of a parametric surface.

Derivation: pcurve : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/pcurve/pcudef.hxx

Description: The pcurve class represents parameter-space curves that map an interval of
the real line into a 2D real vector space (parameter space). This mapping
is continuous, and one-to-one except possibly at the ends of the interval
whose images may coincide. It is differentiable twice, and the direction of
the first derivative with respect to the parameter is continuous. This
direction is the positive sense of the curve.

A parameter-space curve is always associated with a surface, that maps the
parameter-space image into 3D real space (object space); therefore, the
two mappings together can be considered to be a single mapping from a
real interval into object space. Most of the properties of a parameter-space
curve relate in fact to this combined mapping.

Kernel R10

If the two ends of the curve are different in object space, the curve is open.
If they are the same, it is closed. If the curve joins itself smoothly, the
curve is periodic, with its period being the length of the interval that it is
primarily defined. A periodic curve is defined for all parameter values, by
adding a multiple of the period to the parameter value so the result is
within the definition interval, and evaluating the curve at that resultant
parameter. The point at the ends of the primary interval is known as the
seam. If the surface is periodic, a closed or periodic parameter-space curve
cannot in fact be closed in parameter space, but its end values can differ
by the surface parameter period in one or both directions.

Also, a parameter-space curve is always associated with an object-space
curve lying in (or fitted to) the surface. This curve is used to assist in the
determining of the surface parameter values corresponding to object-space
points on the 3D curve, by using the parameter value on the 3D curve to
evaluate the 2D curve for an approximation to the surface parameter
values for iterative refinement. For this reason, a parameter-space curve
must always have the same parameter range as its associated object-space
curve, and its internal parameterization must be similar, though not
necessarily identical, to that of the object-space curve. A parameter-space
curve can have the same sense as its associated object-space curve, or be
opposite. In the latter case, the parameterization is negated one to the
other.

In general, it is not necessary to have u or v continuity between two
pcurves on a periodic face or on a singular face, because evaluation of a
parameter value outside the parameter range is mapped back into the
evaluation range by adding or subtracting the period from the parameter
value to be evaluated (periodic face), or by adding or subtracting the
parameter value changes while the actual 3-space location is coincident
(singular face).

In the case of a spline converted sphere, face 0 ranges from u = –pi/2 to
pi/2 and v = 0 to pi; face 1 ranges from u = –pi/2 to pi/2 and v = pi to 2*pi.
Coedges 0 and 2 belong to face 0, so their param ranges should match the
corresponding face param ranges. Coedge 0 has param values: u = –pi/2 to
pi/2 and v = 0. Coedge 2 has param values: u = pi/2 to –pi/2 and v = pi.

Kernel R10

The param values are correct, because Coedge 0 travels from top vertex to
bottom vertex, and Coedge 2 travels from bottom vertex to top vertex on
the sphere; as a result, u values are continuous (–pi/2 to pi/2 and pi/2 to
–pi/2) moving along Coedge 0, onto Coedge 2, and along Coedge 2. For
the V direction (since face 0 is singular in v), v ranges from 0 to pi along
both singular poles of the hemispherical face, so v value may be any value
between 0 and pi for the given u param values, and should still evaluate to
the same 3–space point; at u = –pi/2 or u = pi/2, all v values map to (0, 0,
20) and (0, 0, –20) respectively. Since the pcurves map to surface param
values, they could use any value at endpoints. However, since pcurve 0
must travel along entire edge of face 0, the v value must be pi along the
entire length of pcurve 0 (only valid value at u values not at singularity
points in v). Similarly, pcurve 2 must have v value of 0 along entire length
of pcurve 2. Transition from pcurve 0 to pcurve 2 is, then, continuous in u,
and discontinuous in v, but discontinuity in v matches singularity in v at
poles of hemispherical face 0; in addition, evaluation of any value of v (0
to pi) at poles gives correct 3–space position. Similar discussion results if
data for Coedge 1 and 3 is examined.

A pcurve consists of pointer to a par_cur that holds the data defining the
2D parameter space curve and a logical flag indicating reversal of the
pcurve from the underlying spline curve. In addition, a parameter space
vector is stored that represents the displacement of this pcurve in the
parameter space of the surface the pcurve lies in. By having a nonzero
vector for a periodic surface, a continuous sequence of object space curves
(3D curves) can have a continuous sequence of parameter space curves
(2D curves).

The par_cur in turn consists of a pointer to a bs2_curve (a 2D spline
curve), a fitting tolerance, and a pointer to the surface where the parameter
space curve lies.

Limitations: None

References: KERN par_cur
by KERN BDY_GEOM_CIRCLE, BDY_GEOM_PCURVE, PCURVE,

exp_par_cur, imp_par_cur, law_par_cur, par_cur,
par_int_interp, pcur_int_cur, pcurve_law_data,
skin_spl_sur, stripc, surf_surf_int

BASE SPApar_vec

Data:
None

Constructor:
public: pcurve::pcurve ();

Kernel R10

C++ allocation constructor requests memory for this object but does not
populate it.

public: pcurve::pcurve (
law*, // law
double, // start parameter
double, // end parameter
surface const&, // surface
double // fit tolerance

= SPAresabs,
bs2_curve // underlying curve

= NULL
);

C++ allocation constructor requests memory for this object but does not
populate it.

public: pcurve::pcurve (
bs2_curve, // underlying bs2 curve
double, // parameter
surface const&, // surface
int // knots on curve

= –1, // default is unknown
int // bs2_curve hull

= –1, // contains true curve
int // hull angles ok

= –1, // default is unknown
int // hull self intersects

= –1 // default is unknown
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a pcurve as a bs2_curve in the parameter-space of a surface and
having a specified fit tolerance.

public: pcurve::pcurve (
curve const&, // curve name
surface const&, // surface name
double // parameter
);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a pcurve fitting it to the given object-space curve lying on the
given surface.

public: pcurve::pcurve (
intcurve const&, // intcurve name
int // integer
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: pcurve::pcurve (
par_cur* // parameter curve
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a pcurve by promoting a par_cur to a full pcurve.

public: pcurve::pcurve (
pcurve const& // parameter curve
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: pcurve::pcurve (
logical, // u direction flag
double, // parameter
surface const&, // surface
curve const& // curve

= *(curve*) NULL_REF
);

C++ initialize constructor requests memory for this object and makes an
iso pcurve (uses the curve if supplied).

Destructor:
public: pcurve::~pcurve ();

Kernel R10

C++ destructor, deleting a PCURVE.

Methods:
public: int pcurve::accurate_knot_tangents () const;

Returns 1 if the bs2_curve tangents are within SPAresnor of the true curve
tangent vectors at all of the knots that lie within the checked_range, or 0 if
this is not satisfied. Returns –1 if this property has not yet been checked.

public: int pcurve::add_bs2_knot (
double new_knot_param, // knot to add
int mult, // multiplicity
SPApar_pos& new_knot_uv // knot uv

= * (SPApar_pos*) NULL_REF,
SPApar_vec& new_knot_deriv_below// derivative

= * (SPApar_vec*) NULL_REF,
SPApar_vec& new_knot_deriv_above// derivative

= * (SPApar_vec*) NULL_REF
);

Adds a knot to the bs2_curve with the supplied multiplicity. If the new
SPApar_pos and derivative vectors are supplied, set the new control
points so that the bs2_curve has the supplied position and derivatives at
the new knot. Return the multiplicity of the new knot. It is assumed that
the caller will take care of any changes in the underlying par_cur
properties, (self intersection, for example), that the addition of knots
generates.

public: void pcurve::add_knots_at_discontinuities (
const curve* cu, // curve
int num_knots // number of knots

= 0,
double* knots // knots

= NULL
);

Adds knots to the pcurve’s bs2_curve, at any of the corresponding curve
discontinuities. The pcurve knots can be supplied to this function in an
array, but if they are not, they will be extracted from the pcurve.

public: int pcurve::bezier_form ();

Returns 1 if the underlying bs2_curve is known to be Bezier form, and 0
if it is not in this form, and –1 if this property has not yet been checked.

Kernel R10

public: SPApar_box pcurve::bound (
double, // first parameter
double, // second parameter
const curve* true_cu // curve

= NULL
) const;

Returns a box around the curve.

public: SPApar_box pcurve::bound (
SPAinterval const&, // interval name
const curve* true_cu // curve

= NULL
) const;

Returns a box around the curve.

public: SPAinterval pcurve::checked_range () const;

Returns the range over which checking occurs.

public: logical pcurve::check_bezier_form ();

Checks if the underlying bs2_curve is in Bezier form.

public: logical pcurve::check_hull_curve_enclosure (
const curve* true_cu, // curve
BOUNDED_SURFACE* bsf // bounded surface

= NULL,
int deg // degree

= 0,
int num_knots // number of knots

= 0,
double* knots // knots

= NULL,
int num_ctrlpts // number of control

= 0, // points
SPApar_pos* ctrlpts // control points

= NULL
);

Kernel R10

Checks if the pcurve bs2_curve hull contains the bounded true curve, and
if not, to find the 2–space distance that the true curve moves outside the
hull by. The bounded surface, degree, knots, and control points can be
supplied to this function in an array, but if they are not, they will be
extracted from the underlying par_cur. The function returns TRUE if the
hull contains the true curve, or FALSE otherwise.

public: logical pcurve::check_hull_intersection (
int deg // degree

= 0,
int num_knots // number of knots

= 0,
double* knots // knots

= NULL,
int num_ctrlpts // number of control

= 0, // points
SPApar_pos* ctrlpts // control points

= NULL
);

Checks if the convex hull of a pcurve self–intersects. The degree and
control points can be supplied to this function in an array, but if they are
not, they will be extracted from the underlying par_cur. The function
returns TRUE if the hull self–intersects, or FALSE otherwise.

public: logical pcurve::check_hull_turning_angle (
const curve* true_cu, // curve
BOUNDED_SURFACE* bsf, // bounded surface
int deg, // degree
int& num_knots, // number of knots
double*& knots, // knots
int& num_ctrlpts, // number of control

// points
SPApar_pos*& ctrlpts // control points
);

Kernel R10

Checks that the pcurve bs2_curve hull does not turn by more than the
minimum turning angle. If it does, then the hull points are projected onto a
parameter line and the order of the points is checked, to test if the pcurve
has kinked. The bounded surface and the knots and control points can be
supplied to this function, or if they are NULL, they will be extracted from
the underlying par_cur. If the number of knots and control points, and the
knot and control point arrays are supplied, these are supplied as references,
as more knots and control points may be added to correct the hull. If the
true curve is supplied, this is used to find the positions for any new knots
that are added to the bs2_curve. The function returns TRUE if the hull
does not turn by more than the defined minimum angle, or FALSE
otherwise.

public: logical pcurve::check_knots_on_true_curve (
const curve* true_cu, // curve
BOUNDED_SURFACE* bsf, // bounded surface
int deg, // degree
int& num_knots, // number of knots
double*& knots // knots
);

Checks that all the knots of the pcurve bs2_curve lie on the supplied true
curve. The bounded surface and the knots can be supplied to this function,
but if they are not, they will be extracted from the underlying par_cur. If
the number of knots and the knot array is supplied, these are supplied as
references, as more knots may be added to correct the hull. The function
returns TRUE if all of the knot points lie on the true curve, or FALSE
otherwise.

public: logical pcurve::check_knot_tangents (
const curve* true_cu, // curve
BOUNDED_SURFACE* bsf // bounded surface

= NULL,
int num_knots // number of knots

= 0,
double* knots // knots

= NULL
);

Kernel R10

Checks that the pcurve bs2_curve tangent directions agree with the true
curve tangent directions at each of the knots. The bounded surface and the
knots can be supplied to this function, but if they are not, they will be
extracted from the underlying par_cur. The function returns TRUE if the
tangent directions agree at all of the knot points, or FALSE otherwise.

public: bs2_curve pcurve::cur () const;

Returns the underlying 2D NURBS defining the parameter curve.

public: void pcurve::debug (
char const*, // title
FILE* // file name

= debug_file_ptr
) const;

Outputs details of a pcurve.

public: virtual pcurve* pcurve::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In a deep copy, all the information about the copied item is self-contained
in a new memory block. By comparison, a shallow copy stores only the
first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For example, a deep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

Kernel R10

public: void pcurve::eval (
double, // parameter
SPApar_pos&, // param position
SPApar_vec& // 1st derivative

= * (SPApar_vec*) NULL_REF,
SPApar_vec& // 2nd derivative

= * (SPApar_vec*) NULL_REF
) const;

Evaluates a pcurve at a parameter value, giving position and optionally
first and second derivatives.

public: SPApar_vec pcurve::eval_deriv (
double // parameter
) const;

Evaluates a pcurve at a parameter value, to give the derivative with
respect to its parameter.

public: SPApar_pos pcurve::eval_position (
double // parameter
) const;

Evaluates a pcurve at a parameter value.

public: SPApar_pos pcurve::eval_position (
SPAposition const&, // position name
double, // parameter
logical point_perp // use point_perp if

// true, param if false
= FALSE

) const;

Evaluates a pcurve at a parameter value.

public: double pcurve::fitol () const;

Returns the fit tolerance of the parameter curve.

public: double pcurve::hull_distance () const;

Kernel R10

Returns the distance from the true curve to the underlying bs2_curve
convex hull, if the true curve comes outside of the hull. Set to 0 if the true
curve is known to lie completely within the hull or –1 if this property has
not been checked yet.

public: int pcurve::hull_self_intersects () const;

Returns 1 if the bs2_curve hull self–intersects, within the checked_range,
or to zero if it does not self–intersect within this range. Returns –1 if this
property has not yet been checked.

public: int pcurve::hull_turning_angles_ok () const;

Returns the value for hull turning angle checking. Set to 1 if the bs2_curve
hull does not turn too sharply at any point within the checked_range, or set
to 0 if the hull does turn too sharply at a point. Set to –1 if this property
has not yet been checked.

public: int pcurve::knots_on_true_curve () const;

Returns 1 if all of the bs2_curve knots that are within the checked_range
lie on the associated true curve (to within SPAresabs), or to 0 if this is not
the case. Returns –1 if this property has not yet been checked.

public: logical pcurve::make_bezier_form ();

Makes the underlying bs2_curve have Bezier form by adding knots as
necessary.

public: BOUNDED_SURFACE* pcurve::
make_bounded_surface () const;

Makes up a bounded surface from the underlying surface. This does not
have to accurately bound the pcurve, but is just used to make up SVECs
for the other member functions.

public: pcurve& pcurve::negate ();

Negates a pcurve in place.

public: SPApar_vec pcurve::offset () const;

Kernel R10

Returns the offset.

public: pcurve& pcurve::operator*= (
SPAtransf const& // transformation
);

Transforms a pcurve in object space.

public: pcurve pcurve::operator+ (
SPApar_vec const& // parameter vector
) const;

Displaces the curve in surface parameter space.

public: pcurve const& pcurve::operator+= (
SPApar_vec const& pv // parameter vector
);

Add a SPApar_vec to a pcurve’s offset.

public: pcurve pcurve::operator– () const;

Makes a negated curve.

public: pcurve pcurve::operator– (
SPApar_vec const& // parameter vector
) const;

Makes a negated curve given a SPApar_vec.

public: pcurve const& pcurve::operator–= (
SPApar_vec const& pv // parameter vector
);

Subtract a SPApar_vec to a pcurve’s offset.

public: pcurve& pcurve::operator= (
pcurve const& // pcurve to be assigned
);

An assignment operator that copies the pcurve record, and adjusts the use
counts of the underlying information.

Kernel R10

public: double pcurve::param (
const SPApar_pos& uv // parameter position
);

Returns the parameter of the pcurve at the given SPApar_pos.

public: double pcurve::param_period () const;

Returns the parameter period - the length of the parameter range if
periodic, 0 otherwise.

public: SPAinterval pcurve::param_range () const;

Returns the principal parameter range of a pcurve.

public: void pcurve::reparam (
double, // first parameter
double // second parameter
);

Performs a linear transformation on the curve parameterization, so that it
starts and ends at the given values (that must be in increasing order).

public: void pcurve::restore_data ();

Restore the data for a pcurve from a save file.

read_logical Sense of the pcurve: either
“forward” or “reversed”.

if (restore_version_number < PCURVE_VERSION)
// Restore as an explicit pcurve.
par_cur* restore_exp_par_cur Restore the appropriate pcurve

else
// Switch to the right restore routine, using the standard
// system mechanism.
(par_cur *)dispatch_restore_subtype
read_real du; u offset
read_real dv; v offset

public: logical pcurve::reversed () const;

Kernel R10

Inquires whether the parameter space curve is in the same or opposite
direction of the underlying 2D NURBS curve.

public: void pcurve::save () const;

Saves the id the calls save_data.

public: void pcurve::save_data () const;

Saves the information for a pcurve to the save file. Function to save a
pcurve of a known type, where the context determines the pcurve type, so
no type code is necessary.

public: void pcurve::save_pcurve () const;

Function to be called to save a pcurve of unknown type, or NULL. Just
checks for null, then calls save. This separation is not really necessary for
pcurves at present, as there are no subtypes, but we retain it for
consistency with curve and surface.

public: void pcurve::set_accurate_knot_tangents (
int acc_tangents // value
);

Set to 1 if the bs2_curve tangents are within SPAresnor of the true curve
tangent vectors at all of the knots that lie within the checked_range, or to 0
if this is not satisfied. Set to –1 if this property has not yet been checked.

public: void pcurve::set_checked_range (
const SPAinterval& new_range, // interval
int num_knots // number of

= 0, // knots
double* knots // knots

= NULL
);

Sets the checked range of the pcurve.

public: void pcurve::set_hull_distance (
double dist // value
);

Kernel R10

Sets the distance from the true curve to the underlying bs2_curve convex
hull, if the true curve comes outside of the hull. Set to 0 if the true curve is
known to lie completely within the hull or –1 if this property has not been
checked yet.

public: void pcurve::set_hull_self_intersects (
int self_ints // value
);

Set to 1 if the bs2_curve hull self–intersects, within the checked_range, or
to zero if it does not self–intersect within this range. Set to –1 if this
property has not yet been checked.

public: void pcurve::set_hull_turning_angles_ok (
int angles_ok // value
);

Sets the value for hull turning angle checking. Set to 1 if the bs2_curve
hull does not turn too sharply at any point within the checked_range, or set
to 0 if the hull does turn too sharply at a point. Set to –1 if this property
has not yet been checked.

public: void pcurve::set_knots_on_true_curve (
int knots_on_cu // value
);

Set to 1 if all of the bs2_curve knots that are within the checked_range lie
on the associated true curve (to within SPAresabs), or to 0 if this is not
the case. Set to –1 if this property has not yet been checked.

public: void pcurve::set_surface(
surface const& // surface to set
);

Used to set the surface of a pcurve after a space warp.

public: pcurve* pcurve::split (
double, // parameter
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF,
SPApar_vec const& // parameter position

= * (SPApar_vec*) NULL_REF
);

Kernel R10

Divides a pcurve into two pieces at a parameter value. This function
creates a new pcurve on the heap, but either one of the pcurves may have a
NULL actual curve. The supplied curve is modified to be the latter section,
and the initial section is returned as value.

public: surface const& pcurve::surf () const;

Returns the surface that the parameter space curve is defined.

public: SPAinterval pcurve::trim (
const SPAinterval& new_range, // trim to range
const SPApar_pos& start_uv // start param

= * (SPApar_pos*) NULL_REF,
const SPApar_vec& start_duv // slope

= * (SPApar_vec*) NULL_REF,
const SPApar_pos& end_uv // end param

= * (SPApar_pos*) NULL_REF,
const SPApar_vec& end_duv // slope

= * (SPApar_vec*) NULL_REF
);

Trims the pcurve to the supplied range, using the supplied end par_pos’s,
if any. The new pcurve range is returned.

public: SPAinterval pcurve::trim_to_curve_range (
const curve* cu // trimming curve
);

Trims the pcurve to the range of the supplied curve. The new pcurve range
is returned.

public: char const* pcurve::type_name () const;

Returns a string identifying the pcurve type. For exp_par_cur and its
derived types, this method returns “exppc”. For imp_par_cur and its
derived types, this method returns “impcc”.

Kernel R10

public: void pcurve::validity_checks (
const curve* cu, // curve
const SPAinterval& chkd_range, // interval
logical& knots_on_true_cur, // knots of true

// curve
logical& knot_tangents_ok, // knot tangents

// ok
logical& hull_turn_angles_ok, // hull turning

// angles ok
logical& hull_intersects, // hull self

// intersections
logical& hull_contains_true_cu // hull contains

// true curve
);

Carries out all the validity checks for a pcurve, over the supplied interval.
If a logical is supplied as a NULL reference, the corresponding test is not
carried out. This function extracts the knots and control points from the
pcurve and supplies them to the validity checking functions, so that they
only have to be extracted once.

Internal Use: full_size, get_par_cur

Related Fncs:
restore_pcurve

friend: pcurve operator* (
pcurve const&, // pcurve
SPAtransf const& // transformation
);

Transforms a pcurve in object space.

friend: pcurve operator+ (
SPApar_vec const& pv, // parameter vec
pcurve const& pc // pcurve
);

Adds a SPApar_vec to a pcurve’s offset.

pcurve_law_data
Class: Laws, Spline Interface, Construction Geometry, SAT Save and Restore

Purpose: Creates a wrapper for pcurve classes for passing as arguments to laws.

Kernel R10

Derivation: pcurve_law_data : base_pcurve_law_data : path_law_data : law_data :
ACIS_OBJECT : –

SAT Identifier: PCURVE

Filename: kern/kernel/kernutil/law/law.hxx

Description: This is a wrapper to handle specific ACIS pcurve classes. These wrapper
classes are used by api_str_to_law. These are returned by the law method
string_and_data.

Limitations: None

References: KERN pcurve
BASE SPAposition, SPAvector

Data:
protected double *tvalue;
Holds the parameter values.

protected int *which_cached;
Holds the time tags.

protected int derivative_level;
Holds how many derivatives are cached.

protected int point_level;
Size of tvalue.

protected pcurve *acis_pcurve;
The actual ACIS pcurve.

protected SPAposition *cached_f;
Holds the positions.

protected SPAvector *cached_ddf;
Holds the second derivatives at the position.

protected SPAvector *cached_df;
Holds the first derivatives at the position.

Constructor:
public: pcurve_law_data::pcurve_law_data (

pcurve const& in_acis_pcurve, // pointer to
// ACIS pcurve

double in_start // starting
= 0, // parameter

double in_end // ending
= 0 // parameter

);

Kernel R10

C++ initialize constructor requests memory for an instance of
pcurve_law_data and populates it with the data supplied as arguments.
This sets the use_count to 1 and increments the how_many_laws. It sets
dlaw, slaw, and lawdomain to NULL.

Destructor:
public: pcurve_law_data::~pcurve_law_data ();

C++ destructor, deleting a pcurve_law_data.

Methods:
public: double pcurve_law_data::curvature (

double para // parameter for calc
);

This calculates the curvature at the given parameter value on the pcurve.

public: virtual law_data*
pcurve_law_data::deep_copy (
base_pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: SPAvector pcurve_law_data::eval (
double para, // parameter for eval
int deriv, // which derivative
int side // which side

= 0 //
);

Evaluates the pcurve at the given input parameter value and takes the
respective derivative.

public: pcurve* pcurve_law_data::pcurve_data ();

Returns a pointer to the actual ACIS pcurve.

public: virtual void pcurve_law_data::save ();

Kernel R10

Saves the law to the SAT file.

public: void pcurve_law_data::set_levels (
int in_point_level // input point level

= 4,
int in_derivative_level // number of derivatives

= 2
);

Changes the number of points and derivative levels to cache.

public: int pcurve_law_data::singularities (
double** where, // where singularity is
int** type, // type of singularity
double start, // start value
double end // end value
);

This specifies where in the given law there might be singularities.

public: char const* pcurve_law_data::symbol (
law_symbol_type type // type of law
);

This method is a pure virtual method for all classes derived from this one.
The definition of this virtual method forces derived classes to have this
method defined. This method is called from the derived class and not from
this abstract class.

Related Fncs:
restore_law, restore_law_data, save_law

pcur_int_cur
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines an interpolated curve subtype that is the 3D extension of the
parameter curve representing a curve on a surface.

Derivation: pcur_int_cur : int_cur : subtrans_object : subtype_object :
ACIS_OBJECT : –

SAT Identifier: “pcurcur”

Kernel R10

Filename: kern/kernel/kerngeom/intcur/pcur_int.hxx

Description: This class defines an interpolated curve subtype that is the 3D extension of
the parameter curve representing a curve on a surface. This is used
internally by ACIS during point-in-face testing on a parametric surface,
and certain member functions that are not required by ACIS are disabled,
to simplify the implementation. It should not be used by an application.

Limitations: None

References: KERN curve, pcurve

Data:
None

Constructor:
public: pcur_int_cur::pcur_int_cur (

const pcur_int_cur& // pcur_int_curve
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: pcur_int_cur::pcur_int_cur (
curve const&, // 2D curve
pcurve const& // 3D pcurve
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
None

Methods:
public: virtual int_cur* pcur_int_cur::deep_copy (

pointer_map* pm // list of items within
= NULL // the entity that are

// already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: static int pcur_int_cur::id ();

Kernel R10

Returns the ID for the pcur_int_cur list.

public: virtual void
pcur_int_cur::save_data () const;

Saves the information for a pcur_int_cur to the save file.

public: virtual int pcur_int_cur::type () const;

Returns the type of pcur_int_cur.

public: virtual char const*
pcur_int_cur::type_name () const;

Returns the string “pcurcur”.

Internal Use: full_size

Related Fncs:
None

pick_ray
Class: Picking

Purpose: Maps a 2D graphic pick on an entity position defined in model space.

Derivation: pick_ray : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/geomhusk/pick_ray.hxx

Description: A pick_ray is a combination of a position and a direction. It typically
allows mapping a 2D graphic pick on an ENTITY position, such as an
EDGE, that is defined in model space. In this context, the position is the
2D pick location mapped into 3D space, and the direction is the direction
the user looks at (on the model and in the view) when the pick is executed.

Limitations: None

References: by KERN entity_with_ray
BASE SPAposition, SPAunit_vector

Data:
None

Kernel R10

Constructor:
public: pick_ray::pick_ray ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: pick_ray::pick_ray (
const pick_ray& // pick ray
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: pick_ray::pick_ray (
const SPAposition&, // position
const SPAunit_vector& // unit vector
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: pick_ray::pick_ray (
const SPAposition&, // position
const SPAvector& // vector
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
None

Methods:
public: SPAunit_vector pick_ray::direction () const;

Gets the direction (SPAunit_vector) from the pick_ray.

public: double pick_ray::distance_to (
const SPAposition& pt // position
) const;

Computes the distance from the pick_ray to a position.

Kernel R10

public: pick_ray pick_ray::operator* (
const SPAtransf& // transformation
) const;

Returns a new pick_ray that is the result of applying a transformation to
this pick_ray.

public: pick_ray& pick_ray::operator*= (
const SPAtransf& // transformation
);

Applies a transformation to the pick_ray.

public: SPAposition pick_ray::point () const;

Gets the position from the pick_ray.

public: void pick_ray::set_direction (
const SPAunit_vector& // unit vector
);

Sets the direction with a SPAunit_vector.

public: void pick_ray::set_direction (
const SPAvector& // vector
);

Sets the direction with a vector.

public: void pick_ray::set_point (
const SPAposition& // position
);

Sets the position.

Related Fncs:
None

PLANE
Class: Model Geometry, SAT Save and Restore

Purpose: Defines a plane as an object in the model.

Kernel R10

Derivation: PLANE : SURFACE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “plane”

Filename: kern/kernel/kerndata/geom/plane.hxx

Description: PLANE is a model geometry class that contains a pointer to a (lowercase)
plane, the corresponding construction geometry class. In general, a model
geometry class is derived from ENTITY and is used to define a permanent
model object. It provides model management functionality, in addition to
the geometry definition.

PLANE is one of several classes derived from SURFACE to define a
specific type of surface. The plane class defines a plane by a point on the
plane and its unit normal.

Along with the usual SURFACE and ENTITY class methods, PLANE has
member methods to provide access to specific implementations of the
geometry. For example, methods are available to set and retrieve the root
point and normal of a plane.

A use count allows multiple references to a PLANE. The construction of a
new PLANE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Limitations: None

References: KERN plane

Data:
None

Constructor:
public: PLANE::PLANE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: PLANE::PLANE (
plane const& // plane object
);

Kernel R10

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloaded new operator, because this
reserves the memory on the heap, a requirement to support roll back and
history management.

public: PLANE::PLANE (
SPAposition const&, // position
SPAunit_vector const& // unit vector
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Makes a plane that passes through the given SPAposition with the given
SPAunit_vector normal.

Destructor:
public: virtual void PLANE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual PLANE::~PLANE ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
PLANE(...) then later x–>lose.)

Methods:
protected: virtual logical

 PLANE::bulletin_no_change_vf (
ENTITY const* other, // other pointer

// in change bulletin
logical identical_comparator// comparator
) const;

Compare this object with its change bulletin partner to see if the two
entities are really the same.

Kernel R10

public: virtual void PLANE::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: surface const& PLANE::equation () const;

Returns the surface equation of the PLANE.

public: surface& PLANE::equation_for_update ();

Returns a pointer to surface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: virtual int PLANE::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier PLANE_TYPE . If
level is specified, returns PLANE_TYPE for that level of derivation from
ENTITY. The level of this class is defined as PLANE_LEVEL .

public: virtual logical PLANE::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: SPAunit_vector const& PLANE::normal () const;

Returns the normal defining the PLANE.

public: void PLANE::operator*= (
SPAtransf const& // transform
);

Kernel R10

Transforms the PLANE. Before performing a change it checks whether the
data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: void PLANE::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

plane::restore_data low-level plane geometry
definition.

public: SPAposition const& PLANE::root_point ()
const;

Returns the point defining the PLANE.

public: void PLANE::set_normal (
SPAunit_vector const& // normal
);

Sets the PLANE’s normal to the given SPAunit_vector. Before performing
a change it checks whether the data structure is posted on the bulletin
board. If not, the routine calls backup to put an entry on the bulletin
board.

public: void PLANE::set_root_point (
SPAposition const& // root point
);

Sets the PLANE’s root point to the given SPAposition. Before performing
a change it checks whether the data structure is posted on the bulletin
board. If not, the routine calls backup to put an entry on the bulletin
board.

Kernel R10

public: surface* PLANE::trans_surface (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // reversed

= FALSE
) const;

Returns the transformed surface equation of the PLANE. If the logical is
TRUE, the surface is reversed.

public: virtual const char*
PLANE::type_name () const;

Returns the string “plane”.

Internal Use: full_size

Related Fncs:
is_PLANE

plane
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines a planar surface.

Derivation: plane : surface : ACIS_OBJECT : –

SAT Identifier: “plane”

Filename: kern/kernel/kerngeom/surface/pladef.hxx

Description: A plane class defines a plane with a point and a unit vector normal to the
plane. Usually, the point chosen to define the plane is near the center of
interest. The normal represents the outside of the surface. This is
important when a plane is used to define a FACE of a shell or solid.

Four data members describe the parameterization of the plane. For more
information about data members, see “Data.”

To find the object-space point corresponding to a given (u, v) pair, first
find the cross product of the plane normal with u_deriv, negate it if
reverse_v is TRUE, and call it v_deriv. Then the evaluated position is:

pos = root_point + u* u_deriv + v* v_deriv

Kernel R10

When the plane is transformed, u_deriv is transformed in the usual way,
along with the root point and normal, and reverse_v is inverted if the
transform includes a reflection. When the plane is negated, the direction of
the normal is reversed, and reverse_v is inverted.

When a plane is constructed, u_deriv is automatically generated to be a
fairly arbitrary unit vector perpendicular to the normal, and reverse_v is
set FALSE. If the normal is of zero length, or if the plane is constructed
using the raw constructor with no normal, u_deriv is set to be a zero
vector, and the arbitrary direction is generated whenever a
parameter-based function is called. Whenever an application changes the
normal directly, it should also ensure that u_deriv is perpendicular to it.

In summary, planes are:

– Not true parametric surfaces.
– Open in u and v.
– Not periodic in either u or v.
– Not singular at any u or v.

Limitations: None

References: by KERN PLANE
BASE SPAposition, SPAunit_vector, SPAvector

Data:
public logical reverse_v;
By default the v-direction is the cross product of normal with u_dir. If this
is TRUE, the v-direction must be negated. This is set to TRUE if the
parameterization is left-handed with respect to the surface normal, or
FALSE if it is right-handed. A right-handed parameterization is such as
make the surface normal the direction of the cross product of the u and
v-directions, respectively.

public SPAposition root_point;
A point though which the plane passes.

public SPAunit_vector normal;
The normal to the plane. Conventionally set to a NULL unit vector to
indicate that the plane is undefined.

public SPAvector u_deriv;
The direction in the plane of constant v-parameter lines, with a magnitude
to convert dimensionless parameter values into distances. This vector
gives the direction and scaling of u-parameter lines.

Constructor:
public: plane::plane ();

Kernel R10

C++ allocation constructor requests memory for this object but does not
populate it.

public: plane::plane (
plane const& // plane name
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: plane::plane (
SPAposition const&, // position name
SPAunit_vector const& // unit vector name
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
public: plane::~plane ();

C++ destructor, deleting a plane.

Methods:
public: virtual int plane::accurate_derivs (

SPApar_box const& // parameter
= * (SPApar_box*) NULL_REF

) const;

Returns the number of derivatives that evaluate can find accurately (and
directly), rather than by finite differencing, over the given portion of the
surface. For a plane, all surface derivatives can be obtained accurately.

public: virtual SPAbox plane::bound (
SPAbox const&, // box name
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box around the surface.

Kernel R10

public: virtual SPAbox plane::bound (
SPApar_box const& // parameter

// space box
= * (SPApar_box*) NULL_REF,

SPAtransf const& // transformation
= * (SPAtransf*) NULL_REF

) const;

Returns a box around the surface.

public: virtual logical plane::closed_u () const;

Reports if the surface is closed, smoothly or not, in the u-parameter
direction. A plane is open in both directions.

public: virtual logical plane::closed_v () const;

Reports if the surface is closed, smoothly or not, in the v-parameter
direction. A plane is open in both directions.

public: virtual void plane::debug (
char const*, // debug leader string
FILE* // file pointer

= debug_file_ptr
) const;

Prints out details of plane.

public: virtual surface* plane::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

Kernel R10

public: virtual void plane::eval (
SPApar_pos const&, // parameter position
SPAposition&, // position
SPAvector* // first derivatives –

= NULL, // array of length 2,
// in order xu, xv

SPAvector* // second derivatives –
= NULL // array of length 3,

// in order xuu, xuv, xvv
) const;

Finds the point on the plane corresponding to the given parameter values.
It may also return the first and second derivatives at this point.

public: virtual int plane::evaluate (
SPApar_pos const&, // param position
SPAposition&, // position
SPAvector** // array of ptrs

= NULL,
int // number of

= 0, // derivatives
// required (nd)

evaluate_surface_quadrant // the evaluation
= evaluate_surface_unknown // location,

// which
// is not used

) const;

Finds the principal axes of curvature of the surface at a point with given
parameter values. The function also determines curvatures in those
directions. Any of the pointers may be NULL, in which case the
corresponding derivatives will not be returned. Otherwise they must point
to arrays long enough for all the derivatives of that order - i.e. 2 for the
first derivatives, 3 for the second, etc.

public: virtual double plane::eval_cross (
SPApar_pos const&, // parameter position
SPAunit_vector const& // direction
) const;

Kernel R10

Finds the curvature of a cross-section curve of the plane at the point with
given parameter values. The cross-section curve is given by the
intersection of the surface with a plane passing through the point and with
given normal direction.

public: virtual SPAunit_vector plane::eval_normal (
SPApar_pos const& // parameter position
) const;

Returns the surface normal at a given point on the surface.

public: surf_princurv plane::eval_prin_curv (
SPApar_pos const& param // parameter position
) const;

Finds the principal axes of curvature of the surface at a point with given
parameter values. The function also determines curvatures in those
directions.

public: virtual void plane::eval_prin_curv (
SPApar_pos const&, // parameter position
SPAunit_vector&, // first axis direction
double&, // curvature in first

// direction
SPAunit_vector&, // second axis direction
double& // curvature in second

// direction
) const;

Finds the principal axes of curvature of the surface at a point with given
parameter values. The function also determines curvatures in those
directions.

public: virtual curve* plane::get_path () const;

Gets the curve used as a sweeping path. This is NULL for a plane, but the
method is included for compatibility with other geometry classes.

public: virtual sweep_path_type
plane::get_path_type () const;

Gets the type of sweeping path used for sweeping a plane.

Kernel R10

public: virtual law* plane::get_rail () const;

Returns the sweeping rail for the plane. This is normal to the plane.

public: virtual logical
plane::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is right
or left-handed. With a right-handed system, at any point the outward
normal is given by the cross product of the increasing u-direction with the
increasing v-direction, in that order. With a left-handed system the
outward normal is in the opposite direction from this cross product.

public: virtual surface* plane::make_copy () const;

Returns a copy of the plane.

public: virtual surface& plane::negate ();

Negates this plane; i.e. reverses the surface normal.

public: virtual surf_normcone plane::normal_cone (
SPApar_box const&, // parameter bounds
logical // approximate

= FALSE, // results OK?
SPAtransf const& // plane transform

= * (SPAtransf*) NULL_REF
) const;

Returns a cone bounding the normal direction of the surface. The cone is
deemed to have its apex at the origin, and has a given axis direction and
(positive) half-angle. If the logical argument is TRUE, then a quick
approximation may be found. The approximate result may lie completely
inside or outside the guaranteed bound (obtained with a FALSE argument),
but may not cross from inside to outside. Flags in the returned object
indicate whether the cone is in fact the best available, and if not whether
this result is inside or outside the best cone.

public: virtual surface& plane::operator*= (
SPAtransf const& // transformation
);

Kernel R10

Transforms this plane by the given transform.

public: plane plane::operator– () const;

Returns a plane being (a copy of) this plane negated; i.e., with opposite
normal.

public: virtual logical plane::operator== (
surface const& // surface
) const;

Tests two surfaces for equality. This is not guaranteed to state equal for
effectively equal surfaces, but is guaranteed to state not equal if the
surfaces are not equal. The result can be used for optimization.

public: virtual SPApar_pos plane::param (
SPAposition const&, // position
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values corresponding to a point on a surface.

public: virtual logical plane::parametric () const;

Determines if a plane is parametric. A plane is not a parametric surface, as
surface characteristics are easy to calculate without and independent of
parameter values.

public: virtual double
plane::param_period_u () const;

Returns the period of a periodic parametric surface, or 0 if the surface is
not periodic in the u-parameter or not parametric. A plane is not periodic
in both directions.

public: virtual double
plane::param_period_v () const;

Returns the period of a periodic parametric surface, or 0 if the surface is
not periodic in the v-parameter or not parametric. A plane is not periodic
in both directions.

Kernel R10

public: virtual SPApar_box plane::param_range (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Returns the parameter range of a portion of the surface in the bounding
box. If a box is provided, the parameter range returned is restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided, and the
parameter range in some direction is unbounded, then conventionally an
empty interval is returned.

public: virtual SPAinterval plane::param_range_u (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Returns the principal parameter range of a surface in the u-parameter
direction.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided, and the
parameter range in some direction is unbounded, then conventionally an
empty interval is returned.

public: virtual SPAinterval plane::param_range_v (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Returns the principal parameter range of a surface in the v-parameter
direction.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided, and the
parameter range in some direction is unbounded, then conventionally an
empty interval is returned.

Kernel R10

public: virtual SPApar_vec plane::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& // parameter position
) const;

Finds the rate of change in surface parameter corresponding to a unit
velocity in a given object-space direction at a given position in parameter
space.

public: virtual logical plane::periodic_u () const;

Reports whether the surface is periodic in the u-parameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A plane is not periodic
in the u-direction.

public: virtual logical plane::periodic_v () const;

Reports whether the surface is periodic in the v-parameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A plane is not periodic
in the v-direction.

public: virtual logical plane::planar (
SPAposition&, // Point through which

// the plane passes
SPAunit_vector& // axis direction
) const;

Reports on whether the plane is planar.

public: virtual double plane::point_cross (
SPAposition const&, // position name
SPAunit_vector const&, // direction
SPApar_pos const& // parameter

= * (SPApar_pos*) NULL_REF
) const;

Returns the curvature of a curve in the surface through a given point
normal to a given direction in the surface. The curvature of any curve on a
plane is always zero.

Kernel R10

public: virtual SPAunit_vector plane::point_normal (
SPAposition const&, // position
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Returns the surface normal at a given point on the surface.

public: virtual void plane::point_perp (
SPAposition const&, // given position
SPAposition&, // position on

// plane
SPAunit_vector&, // normal

// direction at
// point on plane

surf_princurv&, // surface principle
// curve

SPApar_pos const& // param position
= * (SPApar_pos*) NULL_REF,

SPApar_pos& // actual position
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. It may optionally
return the normal to and principal curvatures of the surface at that point.
Also returns the parameter values at the found point, if desired.

public: void plane::point_perp (
SPAposition const& pos, // given position
SPAposition& foot, // position on plane
SPApar_pos const& param_guess // param position

= * (SPApar_pos*) NULL_REF,
SPApar_pos& param_actual // actual position

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the given point. It may optionally
return the parameter value at that point.

Kernel R10

public: void plane::point_perp (
SPAposition const& pos, // given position
SPAposition& foot, // position on plane
SPAunit_vector& norm, // normal direction at

// point on plane
SPApar_pos const& // param position

param_guess // possible position
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual // actual position
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. It may optionally
return the parameter value at that point.

public: surf_princurv plane::point_prin_curv (
SPAposition const& pos, // position
SPApar_pos const& // parameter position

param_guess //possible parameter
= * (SPApar_pos*) NULL_REF

) const;

Returns the principal directions and magnitudes of curvature at a given
point on the surface. The curvature is zero everywhere on a plane, so the
principal directions are rather arbitrary in this case.

public: virtual void plane::point_prin_curv (
SPAposition const&, // position
SPAunit_vector&, // direction
double&, // parameter
SPAunit_vector&, // direction
double&, // parameter
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Returns the principal directions and magnitudes of curvature at a given
point on the surface. The curvature is zero everywhere on a plane, so the
principal directions are rather arbitrary in this case.

Kernel R10

public: void plane::restore_data ();

Restore the data for a plane from a save file. The restore_data function
for each class is called in circumstances when the type of surface is known
and there is one available to be filled in.

read_position Root point
read_unit_vector Normal vector to plane
if (restore_version_number < SURFACE_VERSION)

// Old style
else

read_vector u derivative vector
read_logical reverse v measured with respect to

right hand rule: either “forward_v”
or ”reversed_v”

surface::restore_data Generic surface data

public: virtual void plane::save () const;

Saves the id then calls save_data.

public: void plane::save_data () const;

Saves the information for a plane to the save file.

public: virtual logical plane::singular_u (
double // constant u parameter
) const;

Reports whether the surface parameterization is singular at the specified
u-parameter value. The only singularity recognized is where every value
of the non-constant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is non-singular in both directions.

public: virtual logical plane::singular_v (
double // constant v parameter
) const;

Reports whether the surface parameterization is singular at the specified
v-parameter value. The only singularity recognized is where every value
of the non-constant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is non-singular in both directions.

Kernel R10

public: virtual logical plane::test_point_tol (
SPAposition const&, // position
double // tolerance

= 0, // value
SPApar_pos const& // param position

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // param position

= * (SPApar_pos*) NULL_REF
) const;

Tests whether a point lies on the surface, to user-supplied precision. The
function may optionally return the parametric position of the nearest point.

public: virtual int plane::type () const;

Returns the type of plane.

public: virtual char const*
plane::type_name () const;

Returns string “plane”.

public: virtual logical plane::undef () const;

Classification of a plane.

public: SPAvector plane::u_axis () const;

Gets the u-parameter direction.

public: virtual curve* plane::u_param_line (
double // parameter value
) const;

Constructs a parameter line on the surface.

A u-parameter line runs in the direction of increasing u-parameter, at
constant v. The parameterization in the non-constant direction matches
that of the surface, and has the range obtained by use of param_range_u
or param_range_v appropriately. If the supplied constant parameter value
is outside the valid range for the surface, or singularity, a NULL is
returned.

Kernel R10

Because the new curve is constructed in free store, it is the responsibility
of the caller to ensure that it is correctly deleted.

public: virtual curve* plane::v_param_line (
double // parameter value
) const;

Constructs a parameter line on the surface.

A v-parameter line runs in the direction of increasing v, at constant u. The
parameterization in the non-constant direction matches that of the surface,
and has the range obtained by use of param_range_u or param_range_v
appropriately. If the supplied constant parameter value is outside the valid
range for the surface, or singularity, a NULL is returned.

Because the new curve is constructed in free store, it is the responsibility
of the caller to ensure that it is correctly deleted.

Internal Use: full_size

Related Fncs:
restore_cone

friend: plane operator* (
plane const&, // given plane
SPAtransf const& // transform
);

Returns a plane that is (a copy of) the given plane transformed by the
given transform.

position_array
Class: Mathematics

Purpose: Creates dynamic arrays of positions.

Derivation: position_array : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/geomhusk/posarray.hxx

Description: This class creates dynamic arrays of positions. There is an operator to cast
a position_array to a SPAposition* so it can be used when a SPAposition*
is needed, but it automatically grows as positions are added to it.

Kernel R10

Limitations: None

References: BASE SPAposition

Data:
protected int m_nArraySize;
The initial size of the array.

protected int m_nNumPositions;
The number of positions in the initial size of the array.

protected SPAposition* m_pPositions;
The new position in the initial size of the array.

Constructor:
public: position_array::position_array ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: position_array::position_array (
const position_array& // position_array
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: position_array::position_array (
int initialSize // initial size
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
public: virtual position_array::~position_array ();

C++ destructor, deleting a position_array.

Methods:
public: int position_array::Add (

const SPAposition& pos // position
);

Adds a SPAposition as the last position in the array, which expands the
array as needed. Use the Add and RemoveLast methods for convenience
to add positions to the array without keeping track of the current index.

Kernel R10

public: SPAposition*
position_array::CopyBuffer () const;

Copies the position_array. The user must delete the returned buffer when
it is no longer needed.

public: SPAposition& position_array::ElementAt (
int nIndex // index value
);

Gets the element at a given index in the array, which expands the size of
the array if needed. The element returns as a reference so that it can be
used on the left side of an assignment.

public: void position_array::Empty ();

Empties the array. This sets the number of positions in the array to 0, but it
does not free up allocated storage.

public: SPAposition* position_array::GetBuffer ()
const;

Casts a position_array to a SPAposition* so that it can be used as an
argument in procedures that require a SPAposition*. The returned pointer
is only valid as long as the size of the array is not changed.

public: SPAposition position_array::GetLast () const;

Gets the last position in the array that is set.

public: int position_array::GetSize () const;

Returns the size of the position_array.

public: SPAposition& position_array::operator[] (
int nIndex // index value
);

Makes the operator look like an array. Because this method returns a
position, it can be used on the left side of an assignment. The array is
expanded, if needed, if the index is too large.

Kernel R10

public: operator position_array::SPAposition* ()
const;

Returns a copy of the position. The user must must delete the returned
buffer when it is no longer needed.

public: SPAposition position_array::PositionAt (
int nIndex // index value
) const;

Provides a copy of the position at a given index. This method also
provides access to a constant position_array. The index must be within the
range.

public: int position_array::RemoveLast ();

Removes the last position in the array. Use this with the Add method.

protected: void position_array::SetMinSize (
int size // initial size
);

Sets the size of the array so that it contains at least size positions. If the
array is already the right size, the size does not change.

public: void position_array::SetSize (
int size // size
);

Sets the size of the array., which expands the array, if needed. If size is
smaller than the current size, this sets the number of positions, but it does
not change the amount of allocated memory.

public: void position_array::Shrink ();

Truncates the size of the internal position buffer so that it is exactly big
enough to hold the specified number of positions.

Related Fncs:
None

