
Kernel R10

Chapter 35.
Classes Qa thru Rz
Topic: Ignore

rb_blend_spl_sur
Class: Blending, SAT Save and Restore

Purpose: Implements the constant radius rolling ball blend surface.

Derivation: rb_blend_spl_sur : blend_spl_sur : spl_sur : subtrans_object :
subtype_object : ACIS_OBJECT : –

SAT Identifier: “rbblnsur”

Filename: kern/kernel/kerngeom/splsur/rb_spl.hxx

Description: This is a straightforward derivation of blend_spl_sur. The ball rolls on
two support entities, which may be either curves, surfaces or points. The
point-point case is not included because this is always a sphere. The
surface-surface case is equivalent to the pipe surface.

Limitations: None

References: None

Data:
None

Constructor:
public: rb_blend_spl_sur::rb_blend_spl_sur (

const curve& left_crv, // left curve
const curve& right_crv, // right curve
bs2_curve left_bs2, // defining curve
bs2_curve right_bs2, // defining curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates an edge-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const curve& left_crv, // left curve
const curve& right_crv, // right curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v parameter range
double left_off, // left offset
double right_off, // right offset
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates an edge-edge blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const curve& left_crv, // left curve
const SPAposition& right_pt,// right point
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Kernel R10

Creates an edge-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const curve& left_crv, // left curve
const surface& right_srf, // right surface
bs2_curve left_bs2, // defining curve
bs2_curve right_bs2, // defining curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates an edge-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const curve& left_crv, // left curve
const surface& right_srf, // right surface
bs2_curve right_bs2, // right bs2
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Kernel R10

Creates an edge-face blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const curve& zero_crv, // zero curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double offset, // offset
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a vertex-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const SPAposition& left_pt,// left point
const curve& right_crv, // right curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a vertex-edge blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

Kernel R10

public: rb_blend_spl_sur::rb_blend_spl_sur (
const SPAposition& left_pt, // left point
const surface& right_srf, // right surface
bs2_curve right_bs2, // right bs2
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a vertex-face blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const surface& left_srf, // left surface
const curve& right_crv, // right curve
bs2_curve left_bs2, // defining curve
bs2_curve right_bs2, // defining curve
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates an edge-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

Kernel R10

public: rb_blend_spl_sur::rb_blend_spl_sur (
const surface& left_srf, // left surface
const curve& right_crv, // right curve
bs2_curve left_bs2, // left bs2
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a face-edge blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

public: rb_blend_spl_sur::rb_blend_spl_sur (
const surface& left_srf, // left surface
const SPAposition& right_pt,// right point
bs2_curve left_bs2, // left bs2
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a face-vertex blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

Kernel R10

public: rb_blend_spl_sur::rb_blend_spl_sur (
const surface& left_srf, // left surface
const surface& right_srf, // right surface
bs2_curve left_bs2, // left bs2
bs2_curve right_bs2, // right bs2
const curve& def_crv, // defining curve
SPAinterval v_range, // v range
double left_off, // left off
double right_off, // right off
closed_forms u_closure // u closure

= OPEN,
closed_forms v_closure // v closure

= CLOSURE_UNSET
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a face-face blend. The constructor doesn’t copy anything, but
assumes ownership of the data that is passed to it by pointer—namely the
blend_supports, radius functions and cross sections.

Destructor:
public: virtual

rb_blend_spl_sur::~rb_blend_spl_sur ();

C++ destructor, deleting a rb_blend_spl_sur.

Methods:
public: virtual int

rb_blend_spl_sur::accurate_derivs (
SPApar_box const& // parameter box

= * (SPApar_box*) NULL_REF
) const;

Return the number of derivatives which evaluate can find precisely (and
fairly directly), rather than by finite differencing, over the given portion of
the surface. If there is no limit to the number of accurate derivatives,
returns the value ALL_SURFACE_DERIVATIVES, which is large enough
to be more than anyone could reasonably want.

Kernel R10

public: double rb_blend_spl_sur::blend_angle (
SPAunit_vector& Tan, // tangent vector
SPAvector const& R0, // 1st radius vector
SPAvector const& R1, // 2nd radius vector
double& rr_sina // radius rule sin angle

= * (double*) NULL_REF,
double& rr_cosa // radius rule cos angle

= * (double*) NULL_REF
) const;

Find the angle between two radius vectors at def_cvec, according to the
rule:

1. 0 <= ang < two pi – SPAresnor
2. nb cvec provides tangent to complete coordinate system

public: double rb_blend_spl_sur::blend_total_angle (
SPAposition& P, // pipe position
SPAunit_vector& Tan, // tangent vector
SPAvector const& R0, // 1st radius vector
SPAvector const& R1, // 2nd radius vector
double& rr_sina // radius rule sin angle

= * (double*) NULL_REF,
double& rr_cosa // radius rule cos angle

= * (double*) NULL_REF
) const;

Find the angle between perpendiculars to supports at def_cvec, according
to the rules:

1. pipes return two pi
2. singularities return 0
3. 0 <= ang <= two pi
4. nb cvec provides tangent to complete coordinate system

public: virtual SPAbox rb_blend_spl_sur::bound (
SPApar_box const& // bounding box
);

Bounding box. Normally the default is OK. Occasionally we make these
surfaces without bs3_surfaces just to support offset SSIs, so we can do
something more sensible here.

Kernel R10

public: virtual void
rb_blend_spl_sur::calculate_disc_info ();

Calculates the discontinuity information for the rb_blend_spl_sur.

public: virtual void
rb_blend_spl_sur::compute_section (
double v, // v parameter
int spine_nder, // # required spine

// derivatives
int spring_nder, // number of required

// spring derivs
logical xcrv_norm, // whether to fill in

// xcurve normal
blend_section& section, // all output in here
int // evaluation location:

= 0 // 1 => above,
// –1 => below,
// 0 => don’t care

) const;

A form of evaluation specific to blend_spl_surs (certain numerical
algorithms used by blending need this function). Evaluates spine, defining
curve, contact points and their derivatives at the given v-parameter,
according to the blend_section class declaration as above. We may
specify exactly how may spine and spring curve derivatives we require. As
the two are typically connected you may get more than you asked for, but
you are guaranteed to get at least what you ask for. Implementations of
this should also ensure it does no more than is necessary. Finally the
logical flag indicates whether you require the cross curve normal filled in;
again this may (will) have implications on the amount of other stuff you
get back, but if passed as TRUE then this is guaranteed to be returned.
Note that calling this with for example –1, –1 and TRUE is valid

public: virtual subtrans_object*
rb_blend_spl_sur::copy () const;

Construct a duplicate in free store of this object but with zero use count.

Kernel R10

public: virtual void rb_blend_spl_sur::debug (
char const*, // loader line
logical, // brief output flag
FILE* // file
) const;

Debug printout. The virtual function debug prints a class-specific
identifying line, then calls the ordinary function debug_data to put out the
details. It is done this way so that a derived class’ debug_data can call its
parent’s version first, to put out the common data. Indeed, if the derived
class has no additional data it need not define its own version of
debug_data and use its parent’s instead. A string argument provides the
introduction to each displayed line after the first, and a logical sets brief
output (normally removing detailed subsidiary curve and surface
definitions).

public: virtual spl_sur*
rb_blend_spl_sur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual int rb_blend_spl_sur::evaluate (
SPApar_pos const&, // given param

// value
SPAposition&, // evaluated

// position
SPAvector** // derivative

= NULL, // vectors
int // # derivatives

= 0, // requested
evaluate_surface_quadrant // eval. surface

= evaluate_surface_unknown // quadrant
) const;

Kernel R10

The evaluate function calculates derivatives, of any order up to the
number requested, and stores them in vectors provided by the user. It
returns the number it was able to calculate; this will be equal to the
number requested in all but the most exceptional circumstances. A certain
number will be evaluated directly and (more or less) accurately; higher
derivatives will be automatically calculated by finite differencing; the
accuracy of these decreases with the order of the derivative, as the cost
increases.

public: virtual void
rb_blend_spl_sur::eval_prin_curv (
SPApar_pos const& uv, // uv parameter position
SPAunit_vector& u1, // first axis direction
double& c1, // curvature in first

// direction
SPAunit_vector& u2, // second axis direction
double& c2 // curvature in second

// direction
) const;

Find the principal axes of curvature of the surface at a point with given
parameter values, and the curvatures in those directions.

public: static int rb_blend_spl_sur::id ();

Returns the ID for the rb_blend_spl_sur list.

public: virtual SPApar_pos rb_blend_spl_sur::param (
SPAposition const&, // position
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Returns the parameter.

Kernel R10

public: virtual void rb_blend_spl_sur::point_perp (
SPAposition const& point, // point
SPAposition& foot, // foot
SPAunit_vector& norm, // normal
surf_princurv& curv, // curve
SPApar_pos const& uv_guess // uv guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& uv_actual // uv actual

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Find the point on the surface nearest to the given point, iterating from the
given parameter values (if supplied). Return the found point, the normal to
the surface at that point and the parameter values at the found point.

public: double rb_blend_spl_sur::radius () const;

Returns the radius.

public:logical rb_blend_spl_sur::relax (
SPAposition const& point, // position
SVEC& sv // svec
);

A version of point_perp to support SVEC::relax – it doesn’t pull the
relaxed parameters back to range.

public: virtual int rb_blend_spl_sur::type () const;

Returns the type of rb_blend_spl_sur.

public: virtual char const*
rb_blend_spl_sur::type_name () const;

Returns the string “rbblnsur”.

Internal Use: full_size

Related Fncs:
restore_rb_blend_spl_sur

Kernel R10

restore_def
Class: SAT Save and Restore

Purpose: Records an entity type name, a pointer to a restore_data routine for that
type of entity, and a link pointer.

Derivation: restore_def : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerndata/savres/savres.hxx

Description: This class records an entity type name, a pointer to a restore_data routine
for that type of entity, and a link pointer. A constructor for the class links
instances of the class into a chain at initialization.

Limitations: None

References: None

Data:
None

Constructor:
public: restore_def::restore_def (

char const*, // ext. entity name
int&, // entity type code
ptr_to_restore_routine_type, // sub–class head_ptr
restore_def* const* // ptr to associated

= NULL // entities
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: restore_def::restore_def (
restore_def*&, // owning class

// head_ptr
char const*, // ext. entity name
int&, // entity type code
ptr_to_restore_routine_type, // sub–class head_ptr
restore_def* const* // ptr to associated

= NULL // entities
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Kernel R10

Constructs the sub-class of a main class or sub-class of restore_def, with
some possible subclasses.

Destructor:
public: restore_def::~restore_def();

C++ destructor for restore_def which deallocates memory.

Methods:
public: int restore_def::get_ent_code () const;

Returns the integer identifier of objects of this class.

public: char const*
restore_def::get_ent_name () const;

Returns the string describing objects of this class.

public: ptr_to_restore_routine_type
restore_def::get_restore_routine () const;

Returns a pointer to the routine to restore objects of this class.

public: restore_def*
restore_def::get_sub_classes () const;

Returns a pointer to a list of restore_defs for all classes immediately
derived from this one.

public: restore_def* restore_def::next () const;

Returns a pointer to the next restore_def in the list.

public: static logical
restore_def::remove_from_list (
restore_def** sub_classes_list, // list of

// classes
restore_def* object_to_remove // object to

// remove
);

Removes an object from the restore list.

Kernel R10

Related Fncs:
copy_body_from_body, copy_entity_from_entity, find_entity_code,
get_save_file_version, get_savres_file_interface, read_array,
restore_body_from_file, restore_entity_from_file,
restore_entity_list_from_file, restore_some_entities, save_body_on_file,
save_entity_list_on_file, save_entity_on_file, set_save_file_version

rot_spl_sur
Class: Construction Geometry, SAT Save and Restore

Purpose: Represents a surface of rotation.

Derivation: rot_spl_sur : spl_sur : subtrans_object : subtype_object :
ACIS_OBJECT : –

SAT Identifier: “rotsur”

Filename: kern/kernel/kerngeom/splsur/rot_spl.hxx

Description: This class represents a surface of rotation. The surface is defined by an
axis of rotation and a curve. The curve must not intersect with the axis,
except possibly at its ends, and must not be tangential to a circle centered
on the axis and perpendicular to it (i.e., at no point on the curve can the
tangent direction be the same as that of a circle that is centered on the axis
of revolution, perpendicular to it, and through the point). The parameter
ranges defining the surface are the u-direction along the curve following
its parameterization, and the v-direction clockwise around the axis, with
the given curve as the v=0 parameter line.

Limitations: None

References: KERN curve
BASE SPAposition, SPAunit_vector

Data:
None

Constructor:
public: rot_spl_sur::rot_spl_sur(

const rot_spl_sur& // rot_spl_sur
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

public: rot_spl_sur::rot_spl_sur (
curve const&, // given curve
SPAposition const&, // axis point
SPAunit_vector const&, // axis direction
SPAinterval const& // u–parameter range

= * (SPAinterval*) NULL_REF,
SPAinterval const& // v–parameter range

= * (SPAinterval*) NULL_REF
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

The u-parameter range defaults to the full given curve, or it returns an
error if the curve is unbounded. The v-parameter range defaults to a full
circle, 0 to 2pi.

Destructor:
None

Methods:
public: virtual spl_sur* rot_spl_sur::deep_copy (

pointer_map* pm // list of items within
= NULL // the entity that are

// already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual curve*
rot_spl_sur::get_path () const;

Returns the path used for the rotation.

public: virtual sweep_path_type
rot_spl_sur::get_path_type () const;

Returns the path type used used for the rotation operation.

public: virtual curve*
rot_spl_sur::get_profile (
double // parameter
) const;

Kernel R10

Returns sweep information for the curve.

public: virtual law* rot_spl_sur::get_rail () const;

Returns the rail used for profile orientation in the rotation operation.

public: static int rot_spl_sur::id ();

Returns the ID for the rot_spl_sur list.

protected: virtual void rot_spl_sur::make_approx (
double fit, // fit tolerance
const spline& spl // pointer to output

= * (spline*) NULL_REF, // spline approx.
logical force // flag for forcing

= FALSE
) const;

Makes or remakes an approximation of the rot_spl_sur, within the given
tolerance.

private: void rot_spl_sur::restore_data ();

Restores the information for a rot_spl_sur from a save file.

restore_curve Save the underlying curve
read_position axis root
read_unit_vector axis direction
if (restore_version_number < APPROX_SUMMARY_VERSION)

read_interval u range
read_interval v range
if (restore_version_number >= DISCONTINUITY_VERSION)

discontinuity_info::restore u discontinuity information.
discontinuity_info::restore v discontinuity information.

else
spl_sur::restore_common_data Save the common data.

public: virtual void rot_spl_sur::save_data () const;

Saves the information for a rot_spl_sur to a save file.

public: virtual int rot_spl_sur::type () const;

Kernel R10

Returns the integer representing the type of this spl_sur.

public: virtual char const*
rot_spl_sur::type_name () const;

Returns the type of “rotsur”.

Internal Use: full_size

Related Fncs:
restore_rot_spl_sur

