
Kernel R10

Chapter 36.
Classes Sa thru Sq

Topic: Ignore

SabFile
Class: SAT Save and Restore

Purpose: Performs save and restore to stream files.

Derivation: SabFile : BinaryFile : FileInterface : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/fileio/sabfile.hxx

Description: This class performs ACIS save and restore to stream files using the new
binary format that supports unknown ENTITY data.

Limitations: None

References: None

Data:
None

Constructor:
public: SabFile::SabFile (

FILE* // file pointer
);

C++ constructor, creating a SabFile using the specified parameters.

Destructor:
public: virtual SabFile::~SabFile ();

C++ destructor, deleting a SabFile.

Methods:
public: virtual FilePosition SabFile::goto_mark (

FilePosition // file position
);

Kernel R10

Moves the file pointer to the specified position in the SabFile.

protected: virtual size_t SabFile::read (
void* buf, // buffer for data
size_t length, // memory size
logical swap // support byte swapping
);

Reads data from a stream file in binary format.

public: virtual FilePosition SabFile::set_mark ();

Returns the current file position within the SabFile.

protected: virtual void SabFile::write (
const void* data, // pointer to data
size_t len, // memory size
logical swap // support byte swapping
);

Writes data to a stream file in binary format.

Related Fncs:
None

SatFile
Class: SAT Save and Restore

Purpose: Defines the SatFile class for doing ACIS save and restore to stream files in
text format.

Derivation: SatFile : FileInterface : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/fileio/satfile.hxx

Description: Defines the SatFile class for doing ACIS save and restore to stream files in
text format.

Limitations: None

References: None

Kernel R10

Data:
None

Constructor:
public: SatFile::SatFile (

FILE* // filename
);

C++ constructor, creating a SatFile using the specified parameters.

Destructor:
public: virtual SatFile::~SatFile ();

C++ destructor, deleting a SatFile.

Methods:
public: virtual FilePosition SatFile::goto_mark (

FilePosition // file position
);

Moves the file pointer to the specified pointer in the SatFile.

public: virtual char SatFile::read_char ();

Reads a character. Written with C printf format “%c”.

public: virtual TaggedData* SatFile::read_data ();

Reads the data for an unknown ENTITY until the end of record terminator
is reached.

public: virtual double SatFile::read_double ();

Reads a double. Written with C printf format “%g ”.

public: virtual int SatFile::read_enum (
enum_table const& // enumeration table
);

Read an enumeration table. The <identifier> specifies which enumeration
is active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format
“%s”.

Kernel R10

public: virtual float SatFile::read_float ();

Reads a float. Written with C printf format “%g ”.

public: virtual logical SatFile::read_header (
int&, // first integer
int&, // second integer
int&, // third integer
int& // fourth integer
);

Reads a header. The first record of the ACIS save file is a header, such as:
200 0 1 0

First Integer: An encoded version number. In the example, this is “200”.
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for the .sat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

public: virtual int SatFile::read_id (
char*, // title
int // integer

= 0
);

Reads an identifier. The save identifier written with C printf format “%s ”.

public: virtual logical SatFile::read_logical (
const char* f // title

= ”F”,
const char* t // title

= ”T”
);

Kernel R10

Reads a logical. (false_string, true_string {or any_valid_string}):
Appropriate string written with C printf format “%s ”.

public: virtual long SatFile::read_long ();

Reads a long. Written with C printf format “%ld”.

public: virtual void* SatFile::read_pointer ();

Reads a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual int SatFile::read_sequence ();

Reads a sequence. Written as “–” followed by the entity index written as
long.

public: virtual short SatFile::read_short ();

Reads a short. Written with C printf format “%d”.

public: virtual char* SatFile::read_string (
int& // integer
);

Reads a string, allocates memory for it, and the argument returns the
length of the string. Length written as long followed by string written with
C printf format “%s”.

public: virtual size_t SatFile::read_string (
char* buf, // buffer
size_t maxlen // maximum length

= 0
);

Reads a string into a supplied buffer of a given size, maxlen.

public: virtual logical SatFile::read_subtype_end ();

Reads subtype end. Braces around the subtypes, written as “} ”.

Kernel R10

public: virtual logical
SatFile::read_subtype_start ();

Reads subtype start. Braces around the subtypes, written as “{ ”.

public: virtual FilePosition SatFile::set_mark ();

Returns the current file position within the SatFile.

public: virtual void SatFile::write_char (
char // character
);

Writes a character. Written with C printf format “%c”.

public: virtual void SatFile::write_double (
double // parameter
);

Writes a real. Written with C printf format “%g ”.

public: virtual void SatFile::write_enum (
int, // number in
enum_table const& // enumeration table
);

Writes enumeration table. The <identifier> specifies which enumeration is
active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format
“%s”.

public: virtual void SatFile::write_float (
float // float
);

Writes a float. Written with C printf format “%g ”.

Kernel R10

public: virtual void SatFile::write_header (
int, // first integer
int, // second integer
int, // third integer
int // fourth integer
);

Writes a header. The first record of the ACIS save file is a header, such as:
200 0 1 0

First Integer: An encoded version number. In the example, this is “200”.
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for the .sat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

public: virtual void SatFile::write_id (
const char*, // character
int // integer
);

Writes an identifier. The save identifier written with C printf format “%s ”.

public: virtual void SatFile::write_literal_string (
const char*, // character
size_t len // length

= 0
);

Writes a literal string.

Kernel R10

public: virtual void SatFile::write_logical (
logical, // logical
const char* f // character

= ”F”,
const char* t // character

= ”T”
);

Writes a logical. (false_string, true_string, {or any_valid_string}):
Appropriate string written with C printf format “%s ”.

public: virtual void SatFile::write_long (
long // long
);

Writes a long. Written with C printf format “%ld”.

public: virtual void SatFile::write_newline (
int // number of newlines

= 1
);

Writes a new line.

public: virtual void SatFile::write_pointer (
void* // parameter
);

Writes a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual void SatFile::write_sequence (
int // integer
);

Writes a sequence. Written as “–” followed by the entity index written as
long.

public: virtual void SatFile::write_short (
short // short
);

Kernel R10

Writes a short. Written with C printf format “%d”.

public: virtual void SatFile::write_string (
const char*, // character
size_t len // length

= 0
);

Writes a string. Length written as long followed by string written with C
printf format “%s”.

public: virtual void SatFile::write_subtype_end ();

Writes a subtype end. Braces around the subtypes, written as “} ”.

public: virtual void SatFile::write_subtype_start ();

Writes a subtype start. Braces around the subtypes, written as “{ ”.

public: virtual void SatFile::write_terminator ();

Writes a terminator. Written as “#”.

Related Fncs:
None

SHELL
Class: Model Topology, SAT Save and Restore

Purpose: Represents the external boundary of a LUMP, or the internal boundary of a
void (unoccupied space) within a LUMP.

Derivation: SHELL : ENTITY : ACIS_OBJECT : –

SAT Identifier: “shell”

Filename: kern/kernel/kerndata/top/shell.hxx

Description: The shell is a connected portion of a lump’s boundary. It has no physical
or topological connection with any other shell. It is not possible to traverse
the topological structure of one shell and end up on another shell. If a
lump has no voids, then exactly one shell gives its overall extent. Any
other shells bound voids wholly within the lump. There is no distinction
made in the data structure between peripheral and void shells. In this
context a shell is closed and bounded.

Kernel R10

It is technically possible for a shell to be open and bounded or unbounded.
If bounded, the containing lump (and body) is considered incomplete, or
more accurately, incompletely bounded. It interacts with other bodies only
so far as the defined portions of their shells interact. There are
configurations of that interaction that are disallowed. If the shell is
unbounded, it can be semi-infinite (e.g., a plane bounded by a single
infinite straight line) or infinite (e.g., two half-infinite planes joined at
their boundaries). If the shell is semi-infinite, the body is incomplete,
while an infinite shell is completely defined, though of infinite extent.

The concepts of peripheral and void shells, and of connected and disjoint
bodies have no meaning when applied to incomplete lump or body.

A shell is constructed from a collection of “faces” and “wires.” Large
collections may be subdivided into a hierarchy of “subshells,” each
containing a proper subcollection. A shell subdivided into subshells may
also contain faces and wires directly; in this case, these entities are not
contained in any subshell.

Limitations: None

References: KERN FACE, LUMP, SUBSHELL, WIRE
by KERN FACE, LUMP, pattern_holder

Data:
None

Constructor:
public: SHELL::SHELL ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SHELL::SHELL (
FACE*, // list of FACEs
SUBSHELL*, // list of SUBSHELLs
SHELL* // sister SHELL
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Kernel R10

Creates a SHELL, initializes all the class data, and records the creation in
the bulletin board. The first two arguments are the starts of lists of FACEs
and SUBSHELLs contained, and the last is a list of sister SHELLs already
in the current LUMP. The calling routine must set lump_ptr and if desired,
bound_ptr, using set_lump and set_bound.

Destructor:
public: virtual void SHELL::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual SHELL::~SHELL ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
SHELL(...) then later x–>lose.)

Methods:
public: SPAbox* SHELL::bound () const;

Returns a pointer to a geometric bounding region (a box), within which the
entire SHELL lies (with respect to the internal coordinate system of the
BODY). The return may be NULL if the bound was not calculated since
the SHELL was last changed.

protected: virtual logical
 SHELL::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data – called by
bulletin_no_change. For the identical_comparator argument to be TRUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non–overridden subclasses). FALSE indicates
tolerant compares and returns FALSE as a default.

public: logical SHELL::copy_pattern_down (
ENTITY* target // target
) const;

Kernel R10

Copies the pattern through all children of the target entity.

public: virtual void SHELL::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: FACE* SHELL::face () const;

Returns the first FACE in a complete enumeration of all the FACEs in the
SHELL, continued by repeated use of FACE::next_face. The undefined
order of SUBSHELLs fluctuates with each change of the SUBSHELL
subdivision.

public: FACE* SHELL::face_list () const;

Returns a pointer to the first FACE of a list of FACEs immediately
contained in this SHELL.

public: void SHELL::get_all_patterns (
VOID_LIST& list // list
);

Returns all patterns in the list.

public: virtual int SHELL::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier SHELL_TYPE. If
level is specified, returns SHELL_TYPE for that level of derivation from
ENTITY. The level of this class is defined as SHELL_LEVEL.

public: logical SHELL::is_closed () const;

Determine if the shell is closed or not. This method considers only
single–sided faces. It ignores all double–sided faces and wires.

Kernel R10

public: virtual logical SHELL::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: LUMP* SHELL::lump () const;

Returns a pointer to the owning LUMP (SHELLs in separate LUMPs are
entirely separate).

public: SHELL* SHELL::next (
PAT_NEXT_TYPE next_type // shell type

= PAT_CAN_CREATE // for patterns
) const;

Returns a pointer to the next SHELL in the list of SHELLs contained in a
BODY.

The next_type argument controls how the next method treats patterns, and
can take any one of three values:

PAT_CAN_CREATE: if the next shell is to be generated from a pattern,
create it if it doesn’t yet exist and return its pointer.

PAT_NO_CREATE: if the next shell is to be generated from a pattern, but
hasn’t yet been created, bypass it and return the pointer of the next
already–created shell (if any).

PAT_IGNORE: behave as though there is no pattern on the shell.

public: ENTITY* SHELL::owner () const;

Returns a pointer to the owning LUMP.

public: logical SHELL::patternable () const;

Returns TRUE.

public: logical SHELL::remove_from_pattern ();

Removes the pattern element associated with this entity from the pattern.
Returns FALSE if this entity is not part of a pattern element, otherwise
TRUE.

Kernel R10

Note The affected entities are not destroyed, but are merely made
independent of the pattern. The pattern itself is correspondingly
modified to “drop out” the newly disassociated element.

public: logical SHELL::remove_from_pattern_list ();

Removes this entity from the list of entities maintained by its pattern, if
any. Returns FALSE if no pattern is found, otherwise TRUE.

public: logical SHELL::remove_pattern ();

Removes the pattern on this and all associated entities. Returns FALSE if
no pattern is found, otherwise TRUE.

public: void SHELL::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

In versions before 1.6, the next tag will be for a body, but put it in the
lump pointer for now anyway, and fix it up later (in fix_pointers).

Kernel R10

if (restore_version_number >= PATTERN_VERSION
read_ptr Pointer to record in save file for

APATTERN on loop
if (apat_idx != (APATTERN*)(–1)))
restore_cache();

read_ptr Pointer to record in save file for
next SHELL in lump

read_ptr Pointer to record in save file for
first SUBSHELL in shell

read_ptr Pointer to record in save file for
first FACE in shell

if (restore_version_number >= WIREBOOL_VERSION)
read_ptr Pointer to record in save file for

first WIRE in shell
else Pointer for first WIRE in shell is

set to NULL
read_ptr Pointer to record in save file for

body owning the LUMP containing
shell

public: void SHELL::set_bound (
SPAbox* // new bounding box
);

Sets the SHELL’s bounding SPAbox pointer to the given SPAbox. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SHELL::set_face (
FACE* // new FACE
logical reset_pattern // reset or not

= TRUE
);

Sets the SHELL’s FACE pointer to the given FACE. Before performing a
change, it checks if the data structure is posted on the bulletin board. If
not, the method calls backup to put an entry on the bulletin board.

Kernel R10

public: void SHELL::set_lump (
LUMP* // new owning LUMP
logical reset_pattern // reset or not

= TRUE
);

Sets the SHELL’s LUMP pointer to the given owning LUMP. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SHELL::set_next (
SHELL* // new sister SHELL
logical reset_pattern // reset or not

= TRUE
);

Sets the SHELL’s next SHELL pointer to the given sister SHELL. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SHELL::set_pattern (
pattern* in_pat //
logical reset_pattern // reset or not

= TRUE
);

Set the current pattern.

public: void SHELL::set_subshell (
SUBSHELL* // new SUBSHELL
logical reset_pattern // reset or not

= TRUE
);

Sets the SHELL’s SUBSHELL pointer to the given SUBSHELL. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

Kernel R10

public: void SHELL::set_wire (
WIRE* // wire
logical reset_pattern // reset or not

= TRUE
);

Sets the SHELL’s WIRE pointer to the given WIRE. Before performing a
change, it checks if the data structure is posted on the bulletin board. If
not, the method calls backup to put an entry on the bulletin board.

public: SUBSHELL* SHELL::subshell () const;

Returns a pointer to the first SUBSHELL in a list of SUBSHELLs
immediately contained within this SHELL.

public: virtual const char*
SHELL::type_name () const;

Returns the string “shell”.

public: WIRE* SHELL::wire () const;

Returns the first WIRE in a complete enumeration of all the WIREs in the
SHELL, continued by repeated use of WIRE::next. The undefined order of
SUBSHELLs fluctuates with each change of the SUBSHELL subdivision.

public: WIRE* SHELL::wire_list () const;

Returns a pointer to the first WIRE of a list of WIREs immediately
contained in this SHELL.

Internal Use: first_face, save, save_common

Related Fncs:
is_SHELL

skin_spl_sur
Class: Skinning and Lofting, Construction Geometry, SAT Save and Restore

Purpose: Defines a skin surface between a list of curves.

Kernel R10

Derivation: skin_spl_sur : spl_sur : subtrans_object : subtype_object :
ACIS_OBJECT : –

SAT Identifier: “skinsur”

Filename: kern/kernel/sg_husk/skin/skin_spl.hxx

Description: This class defines a skin surface between a list of curves.

Surface Parameterization

The surface parameterization is the u-direction corresponds to the
parameterization of the curves to be skinned and the v-direction
corresponds to the cubic Bezier between the skin-curves.

The input to this surface class are the curves to be skinned (all the curves
are reparameterized to lie in [0.0 – 1.0] range), optional tangents (the
magnitude of the curves’ tangents have to match on the ends) in
u-direction, and the optional surfaces on which the curves lie. If surfaces
containing the curves are provided, these determine the tangent directions
in v.

Evaluation Process

The evaluation process is a three-step process, as described below.

Step 1

If any matching tangent magnitudes are given, the section curves (curves
to be skinned) are reparameterized as follows: parameter t is the parameter
on the original curve. Parameter u on the skin surface is determined such
that the u-partial at each end of the skin surface is equal to the matching
tangent magnitude.

t = f(u) = t s*H0(u) + m 0*H1(u) + m 1*H2(u) +
t e*H3(u)

In the above expression, Hn are the cubic Hermite polynomials and ts and
te are the start and end parameter values of the original curves to be
skinned, which here are 0 and 1, respectively.

So, ds/du on the ends are:

dc/du = dc/dt * dt/du

where the dt/du values on the ends are m0 and m1.

So by choosing the values m0 and m1 such that the dc/du on the left surface
is equal to dc/du on the right surface (provided that the curves are G1), a
C1 continuous surface is achieved even when skinning G1 continuous
curves.

Kernel R10

Step 2

The tangent directions for the v are determined by fitting a circle through
the points corresponding to the same u-value on the adjacent section
curves to the left and right. The scheme followed is similar to the way
Bessel tangents are computed. If there are only two section curves, the
circle radius is chosen to be infinity. If the surfaces are given for any
section, the tangent direction in v when on that curve is obtained by the
cross product of surface normal and the section curve tangent at that point.
The direction also has an optional scalar value that can be applied. The
surface is called a loft surface when such a surface is provided.

Step 3

Now the skin/loft surface is defined using cubic Hermite interpolants
between sections that join each other C1 continuously. To evaluate the
surface s(u,v) at a particular v-parameter, the first step is to find the
segment to which this parameter corresponds. Then a local parameter vi is
computed, which ranges from 0 to 1. The section curves ci and ci+1 , and
the v-tangents ti and ti+1 are also obtained. The surface is defined as:

s(u,v) = c i (u)*H 0(v i) + t i *H1(v i) + t i+1 *H2(v i) +
c i+1 *H3(v i)

The parametric derivatives of this surface are obtained by differentiating
the above equation algebraically.

Limitations: None

References: KERN pcurve, surface
BASE SPAvector
LAW law

Data:
protected VOID_LIST curves;
The list of curves to be skinned.

protected VOID_LIST path_curves;
Array of curves used to define the path for skinning.

protected int no_path_crv;
Value specifies how many path curves are in entity list.

protected law **laws;
Array of laws used to define how skinning is performed.

protected double *deriv_cache;
Section mapping information.

Kernel R10

protected double *matching_derivs;
Section mapping information.

protected double *tan_factors;
An array of factors applied to the cross boundary tangents.

protected double *v_knots;
An array of reals indicating the knot values at each section that is being
interpolated.

protected int no_crv;
The number of curves to be skinned.

protected pcurve **pcurves;
Pcurves corresponding to the curves and surfaces are stored.

protected logical arc_length_param;
Flag for using arc-length parameterization. When set, arc-length
parameterization is used. When clear, arc-wise parameterization is used.

protected logical perpendicular_option;
Flag for the loft direction. When set, it is perpendicular to the curve; when
clear, it is in the curve direction.

protected logical skin_2p1_surface;
Flag to indicate this is an old skin surface.

protected surface **surfaces;
An array of pointers to the surface. The curves that are skinned lie on
these surfaces and the surfaces are used to obtain cross boundary tangents.
If this is NULL, the cross boundary tangents are calculated on the fly.

protected skin_data *surface_data;
Data cache for computing the optimal tangent factors for the skin surface.

protected SPAvector *tangents;
An array of cross-boundary tangents. If these are NULL, the tangents at
each point are calculated on the fly.

Constructor:
protected: skin_spl_sur::skin_spl_sur ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: skin_spl_sur::skin_spl_sur (
const skin_spl_sur& // surface to copy
);

Kernel R10

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Destructor:
protected: virtual skin_spl_sur::~skin_spl_sur ();

C++ destructor, deleting a skin_spl_sur.

Methods:
public: int skin_spl_sur::accurate_derivs (

SPApar_box const& // area for deriv
= * (SPApar_box*) NULL_REF

) const;

Calculates the derivatives within the given parameter box.

public: void skin_spl_sur::add_path_data (
int no_curves, // number of curves in

// path
curve** curves // curve paths to add
);

Adds the path data to the skin_spl_sur object.

protected: virtual void
 skin_spl_sur::calculate_disc_info ();

Calculates the discontinuity information from the defining curves.

protected: virtual subtrans_object*
skin_spl_sur::copy () const;

Constructs a duplicate skin_spl_sur in free storage of this object, with a
zero use count.

protected: void
skin_spl_sur::curve_add_discontinuities ();

Calculates discontinuity information from the generating curves and adds
it to the skin surface.

protected: virtual void skin_spl_sur::debug (
char const*, // leader string
logical, // brief output OK?
FILE* // output pointer
) const;

Kernel R10

Prints out a class-specific identifying line to standard output or to the
specified file.

protected: void skin_spl_sur::debug_data (
char const*, // leader string
logical, // brief output ok?
FILE* // output pointer
) const;

Prints out the details. The debug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own version of debug_data and may
use its parent’s instead. A string argument provides the introduction to
each displayed line after the first, and a logical sets brief output (normally
removing detailed subsidiary curve and surface definitions).

public: virtual spl_sur* skin_spl_sur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In a deep copy, all the information about the copied item is self-contained
in a new memory block. By comparison, a shallow copy stores only the
first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For example, a deep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

public: double
skin_spl_sur::estimate_min_rad_curv ();

This function estimates the minimum radius of curvature of the skin
surface for a given set of tangent factor values.

Kernel R10

public: void skin_spl_sur::estimate_tanfacs_scale (
SPAinterval& tan_range // range to use
);

Estimates the scaling factor range by which the tangent factors controlling
the skin surface should be scaled so as to get the surface with as large a
radius of curvature as possible.

protected: virtual void skin_spl_sur::eval (
SPApar_pos const& uv, // param space location
SPAposition& pos, // returned point
SPAvector* dpos, // first derivatives
SPAvector* ddpos // second derivatives
) const;

Finds the position and the first and second derivatives of the surface at a
specified point. dpos is of length 2, ddpos is of length 3. Upon return,
dpos contains xu and xv. ddpos contains xuu, xuv, xvv.

protected: virtual int skin_spl_sur::evaluate (
SPApar_pos const&, // parameter on

// surface point
SPAposition&, // for deriv
SPAvector** // first

= NULL, // derivative
int // second

= 0, // derivative
evaluate_surface_quadrant // quadrant of

= evaluate_surface_unknown // discontinuity
// to evaluate

) const;

The evaluate function calculates derivatives, of any order up to the
number requested, and stores them in vectors provided by the user. It
returns the number it was able to calculate; this will be equal to the
number requested in all but the most exceptional circumstances. A certain
number will be evaluated directly and (more or less) accurately; higher
derivatives will be automatically calculated by finite differencing; the
accuracy of these decreases with the order of the derivative, as the cost
increases.

Kernel R10

protected: void skin_spl_sur::eval_2p1_skin (
SPApar_pos const& uv, // param space location
SPAposition& pos, // returned point
SPAvector* dpos, // first derivatives
SPAvector* ddpos // second derivatives
) const;

Finds the position and first and second derivatives of the ACIS 2.1 skin
surface at a given point.

protected: void skin_spl_sur::eval_skin (
SPApar_pos const& uv, // parameter on surface
SPAposition& pos, // point for deriv
SPAvector* dpos, // first deriv. array of

// length 2 in order
// xu, xv

SPAvector* ddpos, // second deriv. array of
// length 3 in order
// xuu, xuv, xvv

SPAvector* dddpos, // third deriv. array of
// length

evaluate_surface_quadrant // which quadrant to
quadrant // evaluate

) const;

Finds the position and first and second derivatives of the skin surface at
the given parameter position value.

public: void skin_spl_sur::get_curves (
int& no_crv, // number of curves
curve** *curves // output array pointer
) const;

Returns the surface curves.

public: void skin_spl_sur::get_laws (
int& no_laws, // number of laws
law**& laws // list of laws pointer
) const;

Returns a list of laws used by the skin_spl_sur. The use count of the laws
is incremented by one.

Kernel R10

public: void skin_spl_sur::get_surfaces (
int& no_surfaces, // number of surfaces
surface**& surf_arr // surface array pointer
) const;

Returns the surfaces. The array of surfaces need to be deleted by the
calling routine.

public: void skin_spl_sur::get_tanfacs (
double* tangents // tangent factors
);

Get the tangent factors to determine optimal values for them.

public: void skin_spl_sur::get_v_knots (
double u, // u parameter
int& out_no_knots, // number of knots
double** out_vknots // output array pointer
) const;

Returns the v_knot sequence for a given parameter value.

public: static int skin_spl_sur::id ();

Returns the ID for the skin_spl_sur list.

protected: void skin_spl_sur::initialize ();

Initializes the member data for this class.

protected: virtual void skin_spl_sur::make_approx (
double fit, // fit tolerance
const spline& spl // pointer to output

= * (spline*) NULL_REF, // approximation
logical force // flag for forcing

= FALSE
) const;

Makes or remakes an approximation of the skin_spl_sur, within the given
tolerance.

Kernel R10

public: static spl_sur*
skin_spl_sur::make_skin_spl_sur (
logical, // arc–length option
int, // number of curves
curve**, // array of curves
double*, // array of knot values
double*, // array of left tangents
double*, // array of rt tangents
SPAvector* // array of tangent dirs.

= (SPAvector*) NULL,
closed_forms // Flag for periodicity

= OPEN, // of surface in u
closed_forms // Flag for periodicity

= OPEN // of surface in v
);

Constructs a skin surface from the given section curves and the optional
matching tangents.

public: static spl_sur*
skin_spl_sur::make_skin_spl_sur (
logical, // arc–length flag
logical, // perpendicular flag
int, // # section curves
curve**, // array of curves
double*, // array of knot values
double*, // array of left tangents
double*, // right tangents array
surface**, // array of surfaces
double*, // cr–bnd tangents array
law**, // array of laws
closed_forms // Flag for periodicity

= OPEN, // of surface in u
closed_forms // Flag for periodicity

= OPEN // of surface in v
);

Constructs a loft surface from the given section curves and the
corresponding surfaces on which the sections lie and the optional tangent
factors that should be applied to cross-boundary tangents. The surfaces are
passed in are owned by the skin_surface, so the user should pass in a
copy. All arrays are the size of int, the number of sections.

Kernel R10

protected: virtual void skin_spl_sur::operator*= (
SPAtransf const& // transformation
);

Transforms this surface by the specified transform.

protected: logical skin_spl_sur::operator== (
subtype_object const& // object sub–type
) const;

Tests for equality. This does not guarantee to find all effectively equal
surfaces, but it does guarantee that different surfaces are correctly
identified as different.

protected: virtual SPApar_pos skin_spl_sur::param (
SPAposition const&, // given point
SPApar_pos const& // guess value

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values of a point on a 3D B–spline surface, iterating
from the given parameter values, if supplied.

protected: void skin_spl_sur::restore_data ();

Restore the data for a skin_spl_sur from a save file.

Kernel R10

if (restore_version_number >= ARCWISE_SKIN_VERSION)
read_logical // skin_2p1_surface, ”FALSE” or

”TRUE”
read_logical // arc length parameter, ”ISO” or

”ARC”
read_logical // perpendicular option, ”SKIN” or

”PERPENDICULAR”
read_int // number of curves
for(int i = 0; i < no_crv; i ++) { // for each curve

read_real // tangent length at start of curve or
–1

read_real // tangent length at end of curve or
–1

read_real // matching tangent length at start
of curve or –1

read_real // matching tangent length at end
of curve or –1

read_real // v knots
restore_curve // restore the underlying curve
read_vector // tangent vector
restore_surface // underlying surface
read_real // tangent factor
if (restore_version_number >= LOFT_LAW_VERSION)

restore_law // restore law definition if available
if (restore_version_number >= LOFT_PCURVE_VERSION)

restore_pcurve // restore pcurve definition if
available

if (restore_version_number >= LOFT_LAW_VERSION) {
read_int // number of path curves

for(int i = 0; i < no_path_crv; i ++) // for each path curve
restore_curve // restore path curve to be skinned

or lofted
spl_sur::restore_common_data Restore the rest of the surface

public: virtual void skin_spl_sur::save () const;

Saves the skin_spl_sur as an approximation if there is a need to
approximate.

public: virtual void
skin_spl_sur::save_data () const;

Saves the information for skin_spl_sur to the save file.

Kernel R10

public: void skin_spl_sur::set_tanfacs (
double* tangents, // tangent factors
logical remake_approx // remake enabled

= TRUE // or not
);

Set the tangent factors and get them for purposes of determining optimal
values for them.

protected: virtual void skin_spl_sur::shift_u (
double // shift value
);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void skin_spl_sur::shift_v (
double // shift value
);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void skin_spl_sur::split_u (
double, // u–parameter value
spl_sur* [2] // two spline surfaces
);

Divides a surface into two pieces at the u-parameter value.

protected: virtual void skin_spl_sur::split_v (
double, // v–parameter value
spl_sur* [2] // two spline surfaces
);

Divides a surface into two pieces at the specified v-parameter value.

public: virtual int skin_spl_sur::type () const;

Kernel R10

Returns the type of skin_spl_sur.

public: virtual char const*
skin_spl_sur::type_name () const;

Returns the string of the given spline surface type, which is “skinsur” for a
skin_spl_surf.

Internal Use: arclength_index_end, arclength_index_general, arclength_index_start,
calculate_arcwise_data, calculate_iso_data,
compute_bernstein_polynomials, deep_copy_elements_skin, full_size,
remap_and_eval, sg_calculate_surface_normal_dervs,
sg_recalculate_vknots_and_dervs

Related Fncs:
restore_skin_spl_sur

SPHERE
Class: Model Geometry, SAT Save and Restore

Purpose: Defines a sphere as an object in the model.

Derivation: SPHERE : SURFACE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “sphere”

Filename: kern/kernel/kerndata/geom/sphere.hxx

Description: SPHERE is a model geometry class that contains a pointer to a
(lowercase) sphere, the corresponding construction geometry class. In
general, a model geometry class is derived from ENTITY and is used to
define a permanent model object. It provides model management
functionality, in addition to the geometry definition.

SPHERE is one of several classes derived from SURFACE to define a
specific type of surface. The sphere class defines a sphere by its center
point and radius.

Along with the usual SURFACE and ENTITY class methods, SPHERE
has member methods to provide access to specific implementations of the
geometry. For example, methods are available to set and retrieve the
center and radius of a sphere.

A use count allows multiple references to a SPHERE. The construction of
a new SPHERE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Kernel R10

Limitations: None

References: KERN sphere

Data:
None

Constructor:
public: SPHERE::SPHERE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SPHERE::SPHERE (
SPAposition const&, // center point
double // radius
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

public: SPHERE::SPHERE (
sphere const& // sphere
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloaded new operator, because this
reserves the memory on the heap, a requirement to support roll back and
history management.

Destructor:
public: virtual void SPHERE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual SPHERE::~SPHERE ();

Kernel R10

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
SPHERE(...) then later x–>lose.)

Methods:
protected: virtual logical

 SPHERE::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data – called by
bulletin_no_change. For the identical_comparator argument to be TRUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non–overridden subclasses). FALSE indicates
tolerant compares and returns FALSE as a default.

public: SPAposition const& SPHERE::centre () const;

Returns the center of the SPHERE.

public: virtual void SPHERE::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: surface const& SPHERE::equation () const;

Returns the surface equation of a SPHERE.

public: surface& SPHERE::equation_for_update ();

Returns a pointer to surface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

Kernel R10

public: virtual int SPHERE::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier SPHERE_TYPE . If
level is specified, returns SPHERE_TYPE for that level of derivation
from ENTITY. The level of this class is defined as SPHERE_LEVEL .

public: virtual logical SPHERE::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: SPAbox SPHERE::make_box (
LOOP*, // list of LOOPs
SPAtransf const* t // for future use

= NULL,
logical tight_box_switch // for future use

= FALSE,
SPAbox* untransformed_box// for future use

= NULL
) const;

Makes a bounding box for this surface. The box contains the complete
underlying surface and ignores the bounding EDGEs, unless the
tight_sphere_box option is on.

public: void SPHERE::operator*= (
SPAtransf const& // transform
);

Transforms a SPHERE. Before performing a change it checks whether the
data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: double SPHERE::radius () const;

Returns the radius of the SPHERE.

public: void SPHERE::restore_common ();

Kernel R10

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

sphere::restore_data low-level geometry definition for
sphere data.

public: void SPHERE::set_centre (
SPAposition const& // center point
);

Sets the SPHERE ’s center point to the given SPAposition. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: void SPHERE::set_radius (
double // radius
);

Sets the SPHERE ’s radius to the given value. Before performing a change
it checks whether the data structure is posted on the bulletin board. If not,
the routine calls backup to put an entry on the bulletin board.

public: surface* SPHERE::trans_surface (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // reversed

= FALSE
) const;

Returns the transformed surface equation. If the logical is TRUE, the
surface is reversed.

public: virtual const char*
SPHERE::type_name () const;

Returns the string “sphere”.

Kernel R10

Internal Use: full_size

Related Fncs:
is_SPHERE

sphere
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines a spherical surface.

Derivation: sphere : surface : ACIS_OBJECT : –

SAT Identifier: “sphere”

Filename: kern/kernel/kerngeom/surface/sphdef.hxx

Description: A sphere is defined by a center point and radius. A positive radius
indicates an outward pointing surface normal. A negative radius indicates
an inward pointing surface normal.

Five data members define the parameterization of the sphere and they are
described in “Data.”

The u-parameter is the latitude metric, running from –pi/2 at the south
pole through 0 at the equator to pi/2 at the north pole. The v-parameter is
the longitude metric, running from –pi to pi, with 0 on the meridian
containing ori_dir, and increasing in a clockwise direction around pole_dir,
unless reverse_v is TRUE.

Let P be pole_dir and Q ori_dir, and let R be P x Q, negated if reverse_v
is TRUE. Let r be the absolute value of the sphere radius. Then:

pos = center + r* sin(u)* P + r* cos(u)*
(cos(v)* Q + sin(v) R)

This parameterization is left-handed for a convex sphere and right-handed
for a hollow one, if reverse_v is FALSE, and reversed if it is TRUE.

When the sphere is transformed, the sense of reverse_v is inverted if the
transform includes a reflection. No special action is required for a
negation.

In summary, spheres are:

– Not true parametric surfaces.
– Periodic in v (–pi to pi with period 2 * pi) but not in u.
– Closed in v but not in u.
– Singular in u at the poles; nonsingular everywhere else.

Kernel R10

Limitations: None

References: by KERN SPHERE
BASE SPAposition, SPAunit_vector

Data:
public logical reverse_v;
Constant u-parameter lines are circles around pole_dir, normally
clockwise, but counterclockwise if this is TRUE.

public SPAposition centre;
The center of the sphere.

public double radius;
The radius of a sphere. If negative, the surface normal points inward to the
center of the sphere.

public SPAunit_vector pole_dir;
Direction normal to uv_oridir that points from the center to the “north
pole” of the sphere; i.e., the maximum-u singularity.

public SPAunit_vector uv_oridir;
Direction from the center of the sphere to the origin of parameter space.

Constructor:
public: sphere::sphere ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: sphere::sphere (
SPAposition const&, // position
double // radius
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: sphere::sphere (
sphere const& // given sphere
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

Destructor:
public: sphere::~sphere ();

C++ destructor, deleting a sphere.

Methods:
public: virtual int sphere::accurate_derivs (

SPApar_box const& // parameter box name
= * (SPApar_box*) NULL_REF

) const;

Returns the number of derivatives that evaluate can find accurately (and
directly), rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, returns the
value ALL_SURFACE_DERIVATIVES. This is the case with a sphere.

public: virtual SPAbox sphere::bound (
SPAbox const&, // box
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box that encloses the surface in object space.

public: virtual SPAbox sphere::bound (
SPApar_box const& // parameter space box

= * (SPApar_box*) NULL_REF,
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box that encloses the surface in parameter space.

public: virtual logical sphere::closed_u () const;

Reports whether the surface is closed, smoothly or not, in the u-parameter
direction. A sphere is open in the u-direction.

public: virtual logical sphere::closed_v () const;

Reports whether the surface is closed, smoothly or not, in the v-parameter
direction. A sphere is closed in the v-direction

Kernel R10

public: virtual void sphere::debug (
char const*, // leader string
FILE* // file pointer

= debug_file_ptr
) const;

Prints out details of sphere.

public: virtual surface* sphere::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual void sphere::eval (
SPApar_pos const&, // parameter position
SPAposition&, // position
SPAvector* // 1st derivatives array

= NULL, // length 2, in order xu,
// xv

SPAvector* // second derivatives –
= NULL // array of length 3, in

// order xuu, xuv, xvv
) const;

Finds the point on a parametric surface with given parameter values, and
optionally the first and second derivatives as well or instead.

Kernel R10

public: virtual int sphere::evaluate (
SPApar_pos const&, // param position
SPAposition&, // pt on surface

// at given
// param position

SPAvector** // array of ptrs
= NULL, // to arrays of

// vectors
int // number of

= 0, // derivatives
// required

evaluate_surface_quadrant // the evaluation
// location
// above, below
// for each
// parameter
// dir., or don’t

= evaluate_surface_unknown // care.
) const;

Calculates derivatives, of any order up to the number requested, and stores
them in vectors provided by the user. The function returns the number of
derivatives calculated. Any of the pointers may be NULL, in which case
the corresponding derivatives will not be returned. Otherwise they must
point to arrays long enough for all the derivatives of that order - i.e., 2 for
the first derivatives, 3 for the second, etc.

public: virtual double sphere::eval_cross (
SPApar_pos const&, // parameter position
SPAunit_vector const& // direction
) const;

Finds the curvature of a cross-section curve of the parametric surface at
the point with given parameter values. The cross-section curve is given by
the intersection of the surface with a plane passing through the point and
with given normal.

public: virtual SPAunit_vector sphere::eval_normal (
SPApar_pos const& // parameter position
) const;

Finds the normal to a parametric surface at a point with given parameter
values.

Kernel R10

public: surf_princurv sphere::eval_prin_curv (
SPApar_pos const& param // parameter position
) const;

Finds the principle axes of curvature and the curvatures in those directions
of the surface at a point with given parameter values. For a sphere, the
curvature in every direction is a constant, so the direction of the principle
axes is arbitrary.

public: virtual void sphere::eval_prin_curv (
SPApar_pos const&, // parameter
SPAunit_vector&, // first axis direction
double&, // curvature in the first

// direction
SPAunit_vector&, // second axis direction
double& // curvature in the 2nd

// direction
) const;

Finds the principle axes of curvature and the curvatures in those directions
of the surface at a point with given parameter values. For a sphere, the
curvature in every direction is a constant, so the direction of the principle
axes is arbitrary.

public: logical sphere::hollow () const;

Determines if a sphere is hollow.

public: virtual logical
sphere::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is
right-handed or left-handed.

With a right-handed system, at any point the outward normal is given by
the cross product of the increasing u-direction with the increasing
v-direction, in that order. With a left-handed system the outward normal is
in the opposite direction from this cross product.

public: virtual surface* sphere::make_copy () const;

Makes a copy of this sphere on the heap, and returns a pointer to it.

Kernel R10

public: virtual surface& sphere::negate ();

Negates this sphere.

public: virtual surf_normcone sphere::normal_cone (
SPApar_box const&, // parameter bounds
logical // approx. results OK?

= FALSE,
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a cone bounding the normal direction of a curve.

The cone is deemed to have its apex at the origin, and has a given axis
direction and (positive) half-angle. If the logical argument is TRUE, then a
quick approximation may be found. The approximate result may lie
completely inside or outside the guaranteed bound (obtained with a
FALSE argument), but may not cross from inside to outside. Flags in the
returned object indicate whether the cone is in fact the best available, and
if not whether this result is inside or outside the best cone.

public: virtual surface& sphere::operator*= (
SPAtransf const& // transformation
);

Transforms this sphere by the given transform.

public: sphere sphere::operator– () const;

Returns a copy of this sphere negated; i.e., with normal reversed.

public: virtual logical sphere::operator== (
surface const& // surface name
) const;

Tests two surfaces for equality.

This, like testing floating point numbers for equality, is not guaranteed to
say equal for effectively equal surfaces, but is guaranteed to say not equal
if they are indeed not equal. The result can be used for optimization, but
not where it really matters.

Kernel R10

public: virtual SPApar_pos sphere::param (
SPAposition const&, // position
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values of a point on a surface, given an optional first
guess.

public: virtual logical sphere::parametric () const;

Determines if a sphere is parametric. A sphere is not considered to be
parametric.

public: virtual double
sphere::param_period_u () const;

Return the period of a periodic parametric surface, or 0 if the surface is not
periodic in the u-parameter or not parametric. A sphere is not periodic in
the u-direction.

public: virtual double
sphere::param_period_v () const;

Return the period of a periodic parametric surface, or 0 if the surface is not
periodic in the v-parameter or not parametric. A sphere has a period of 2 *
pi in the v-direction.

public: virtual SPApar_box sphere::param_range (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Returns the parameter ranges of the portion of a surface lying within the
given box.

public: virtual SPAinterval sphere::param_range_u (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Kernel R10

Returns the parameter ranges of the portion of a surface that lies within the
given box in a u-parameter direction.

public: virtual SPAinterval sphere::param_range_v (
SPAbox const& // box name

= * (SPAbox*) NULL_REF
) const;

Returns the parameter ranges of the portion of a surface that lies within the
given box in a v-parameter direction.

public: virtual SPApar_vec sphere::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& // parameter position
) const;

Finds the rate of change in surface parameter corresponding to a unit
velocity in a given object-space direction at a given position in parameter
space.

public: virtual logical sphere::periodic_u () const;

Reports whether the surface is periodic in the u-parameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A sphere is not
periodic in the u-direction.

public: virtual logical sphere::periodic_v () const;

Reports whether the surface is periodic in the v-parameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A sphere is not
periodic in the v-direction.

public: virtual double sphere::point_cross (
SPAposition const&, // position
SPAunit_vector const&, // direction
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Returns the curvature of a curve in the surface through a given point
normal to a given direction in the surface. The curvature of a sphere is
1/radius in all directions, at all locations.

Kernel R10

public: virtual SPAunit_vector sphere::point_normal (
SPAposition const&, // position
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Returns the surface normal at a given point on the surface.

public: virtual void sphere::point_perp (
SPAposition const&, // first position
SPAposition&, // second position
SPAunit_vector&, // direction
surf_princurv&, // surf. principle curve
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // parameter position

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the given point. Optionally, the
function may determine the normal to and principal curvatures of the
surface at that point. If the surface is parametric, also return the parameter
values at the found point.

public: void sphere::point_perp (
SPAposition const& pos, // position
SPAposition& foot, // foot position
SPApar_pos const& param_guess // possible param

= * (SPApar_pos*) NULL_REF,
SPApar_pos& param_actual // actual param

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

Kernel R10

public: void sphere::point_perp (
SPAposition const& pos, // position
SPAposition& foot, // foot position
SPAunit_vector& norm, // direction
SPApar_pos const& param_guess // possible param

= * (SPApar_pos*) NULL_REF,
SPApar_pos& param_actual // actual param

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the given point. Optionally, the
function may determine the normal to the surface at that point. If the
surface is parametric, also return the parameter values at the found point.

public: surf_princurv sphere::point_prin_curv (
SPAposition const& pos, // position
SPApar_pos const& param_guess// parameter

= * (SPApar_pos*) NULL_REF// position
) const;

Finds the principal axes of curvature of the surface at a given point, and
the curvatures in those directions.

public: virtual void sphere::point_prin_curv (
SPAposition const&, // position
SPAunit_vector&, // first axis direction
double&, // curvature in first

// direction
SPAunit_vector&, // second axis direction
double&, // curvature in second

// direction
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF
) const;

Finds the principal axes of curvature of the surface at a given point, and
the curvatures in those directions.

public: void sphere::restore_data ();

Kernel R10

Restore the data for a sphere from a save file.

read_position Center of sphere
read_real Radius of sphere
if (restore_version_number < SURFACE_VERSION)

// Old style – that is all to read.
else

read_unit_vector uv x-axis
read_unti_vector pole direction (z-axis)
read_logical Reverse v; either “forward_v” or

“reversed_v”
surface::restore_data Restore remainder of surface data

public: virtual void sphere::save () const;

Saves the type or id, then calls save_data.

public: void sphere::save_data () const;

Saves the information for sphere in the save file.

public: virtual logical sphere::singular_u (
double // constant u-parameter
) const;

Reports whether the surface parameterization is singular at the specified
u-parameter value. A sphere is singular in u at both poles.

public: virtual logical sphere::singular_v (
double // constant v-parameter
) const;

Reports whether the surface parameterization is singular at the specified
v-parameter value. A sphere is not singular in v anywhere.

public: virtual logical sphere::test_point_tol (
SPAposition const&, // position
double // parameter

= 0,
SPApar_pos const& // parameter position

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // parameter

= * (SPApar_pos*) NULL_REF
) const;

Kernel R10

Tests whether a point lies on the surface, to user-supplied precision.

public: virtual int sphere::type () const;

Returns the type of sphere.

public: virtual char const*
sphere::type_name () const;

Returns the string “sphere”.

public: virtual logical sphere::undef () const;

Verifies if the sphere is properly defined.

public: virtual curve* sphere::u_param_line (
double // constant v-parameter
) const;

Constructs a parameter line on the surface.

A u-parameter line runs in the direction of increasing u-parameter, at
constant v. The parameterization in the nonconstant direction matches that
of the surface, and has the range obtained by use of param_range_u. The
new curve is constructed in free store, so it is the responsibility of the
caller to ensure that it is correctly deleted.

public: virtual curve* sphere::v_param_line (
double //constant u-parameter
) const;

Constructs a parameter line on the surface.

A v-parameter line runs in the direction of increasing v, at constant u. The
parameterization in the nonconstant direction matches that of the surface,
and has the range obtained by use of param_range_v. The new curve is
constructed in free store, so it is the responsibility of the caller to ensure
that it is correctly deleted.

Internal Use: full_size

Related Fncs:
restore_cone

Kernel R10

friend: sphere operator* (
sphere const&, // sphere name
SPAtransf const& // transform to use
);

Transforms a sphere surface.

SPLINE
Class: Model Geometry, SAT Save and Restore

Purpose: Defines a parametric surface as an object in the model.

Derivation: SPLINE : SURFACE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “spline”

Filename: kern/kernel/kerndata/geom/spline.hxx

Description: SPLINE is a model geometry class that contains a pointer to a (lowercase)
spline, the corresponding construction geometry class. In general, a model
geometry class is derived from ENTITY and is used to define a permanent
model object. It provides model management functionality, in addition to
the geometry definition.

SPLINE is one of several classes derived from SURFACE to define a
specific type of surface. The spline class holds a pointer to a spl_sur and a
logical denoting the sense of the stored surface. A spl_sur also contains a
use count and a detailed parametric surface description.

Along with the usual SURFACE and ENTITY class methods, SPLINE has
member methods to provide access to specific implementations of the
geometry. For example, a spline can be transformed, resulting in another
surface. All access to the surface data is through methods for the spline
class.

A use count allows multiple references to a SPLINE. The construction of a
new SPLINE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Limitations: None

References: KERN spline

Data:
None

Kernel R10

Constructor:
public: SPLINE::SPLINE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SPLINE::SPLINE (
spline const& // spline object
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloaded new operator, because this
reserves the memory on the heap, a requirement to support roll back and
history management.

Destructor:
public: virtual void SPLINE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual SPLINE::~SPLINE ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
SPLINE(...) then later x–>lose.)

Methods:
protected: virtual logical

 SPLINE::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data – called by
bulletin_no_change. For the identical_comparator argument to be TRUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non–overridden subclasses). FALSE indicates
tolerant compares and returns FALSE as a default.

Kernel R10

public: virtual void SPLINE::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: surface const& SPLINE::equation () const;

Returns the surface equation if the SPLINE for reading only.

public: surface& SPLINE::equation_for_update ();

Returns a pointer to surface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: virtual int SPLINE::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier SPLINE_TYPE . If
level is specified, returns SPLINE_TYPE for that level of derivation from
ENTITY. The level of this class is defined as SPLINE_LEVEL .

public: virtual logical SPLNE::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: SPAbox SPLINE::make_box (
LOOP*, // list of LOOPs
SPAtransf const* t // for future use

= NULL,
logical tight_box // for future use

= FALSE,
SPAbox* untransformed_box// for future use

= NULL
) const;

Kernel R10

Creates a bounding box for this surface that is surrounded by a loop of
EDGEs. The box contains the complete underlying surface, and ignores
the bounding EDGEs. If the surface is kept minimal, this is sufficient.

public: void SPLINE::operator*= (
SPAtransf const& // transform
);

Transforms the SPLINE in place. Before performing a change it checks
whether the data structure is posted on the bulletin board. If not, the
routine calls backup to put an entry on the bulletin board.

public: void SPLINE::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

if (restore_version_number < SURFACE_VERSION)
// Old style – the reverse bit was read explicitly, and
// forgotten when reading a lower–case spline normally.
read_int Reverse bit

spline::restore_data Low-level spline surface geometry
definition.

if (reverse bit)
spline::negate Change definition of underlying

spline.

public: void SPLINE::set_def (
spline const& // spline
);

Sets the definition spline to the given spline. Before performing a change
it checks whether the data structure is posted on the bulletin board. If not,
the routine calls backup to put an entry on the bulletin board.

Kernel R10

public: surface* SPLINE::trans_surface (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // reversed

= FALSE
) const;

Returns a new surface that is the spline of the SPLINE. If the SPAtransf is
non-NULL, it is transformed. If logical is TRUE, it is reversed in sense.

public: virtual const char*
SPLINE::type_name () const;

Returns the string “spline”.

Internal Use: full_size

Related Fncs:
is_SPLINE

spline
Class: Construction Geometry, SAT Save and Restore

Purpose: Records a B–spline surface.

Derivation: spline : surface : ACIS_OBJECT : –

SAT Identifier: “spline”

Filename: kern/kernel/kerngeom/surface/spldef.hxx

Description: The spline class represents a parametric surface that maps a rectangle
within a 2D real vector space (parameter space) into a 3D real vector
space (object space). This mapping must be continuous, and one-to-one
except possibly at the boundary of the rectangle in parameter space. It is
differentiable twice, and the normal direction is continuous, though the
derivatives need not be. The positive direction of the normal is in the
sense of the cross product of the partial derivatives with respect to u and v
in that order. The portion of the neighborhood of any point on the surface
that the normal points to is outside the surface, and the other part is inside.

Opposite sides of the rectangle can map into identical lines in object
space, in which case the surface is closed in the parameter direction
normal to those boundaries. If the parameterization and derivatives also
match at these boundaries, the surface is periodic in this parameter
direction. The line in object space corresponding to the coincident
boundaries is known as the seam of a periodic surface.

Kernel R10

If a surface is periodic in one parameter direction, it is defined for all
values of that parameter. A parameter value outside the domain rectangle
is brought within the rectangle by adding a multiple of the rectangle’s
width in that parameter direction, and the surface evaluated at that value.
If the surface is periodic in both parameters, it is defined for all parameter
pairs (u,v), with reduction to standard range happening with both
parameters.

One side of the rectangle can map into a single point in object space. This
point is a parametric singularity of the surface. If the surface normal is not
continuous at this point, it is a surface singularity.

The spline contains a “reversed” bit together with a pointer to another
structure, a spl_sur or something derived from it, that contains the bulk of
the information about the surface.

Providing this indirection serves two purposes. First, when a spline is
duplicated, the copy simply points to the same spl_sur and does not copy
the bulk of the data. The system maintains a use count in each spl_sur.
This allows automatic duplication if a shared spl_sur is to be modified,
and deletes any spl_sur no longer accessible.

Second, the spl_sur contains virtual functions to perform all spline
operations defined that depend on the method of definition of the true
surface. Therefore, new surface types can be defined by declaring and
implementing derived classes. The spline and everything using it require
no changes to make use of the new definition.

Limitations: None

References: KERN discontinuity_info, spl_sur
by KERN SPLINE, spl_sur, sub_spl_sur

Data:
None

Constructor:
public: spline::spline ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: spline::spline (
bs3_surface // bs3 surface
);

Kernel R10

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Construct a spline from a bs3_surface, which is the type that represents
the fundamental parametric surface. The resulting spline surface is taken
to be exactly the bs3_surface supplied. After construction, the
bs3_surface is owned by the spline object, so should not be reused or
deleted by the caller.

public: spline::spline (
spline const& //given spline
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: spline::spline (
spl_sur* // spline surface
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Construct a spline from a pointer to an underlying spl_sur (usually in fact
a class derived from it). This adds one new reference to the spl_sur, for
the purposes of eventual deletion.

Destructor:
public: virtual spline::~spline ();

C++ destructor, deleting a spline.

Methods:
public: virtual int spline::accurate_derivs (

SPApar_box const& // default to the surface
= * (SPApar_box*) NULL_REF

) const;

Return the number of derivatives that evaluate can find accurately and
fairly directly, rather than by finite differencing, over the given portion of
the surface. If there is no limit to the number of accurate derivatives,
returns the value ALL_SURFACE_DERIVATIVES.

Kernel R10

public: virtual const double*
spline::all_discontinuities_u (
int& n_discont, // number of disc
int order // order
);

Returns in a read-only array the number and parameter values of
discontinuities of the surface, up to the given order (maximum three).

public: virtual const double*
spline::all_discontinuities_v (
int& n_discont, // number of disc
int order // order
);

Returns in a read-only array the number and parameter values of
discontinuities of the surface, up to the given order (maximum three).

public: SPAbox spline::bound (
SPAtransf const&, // transform
SPApar_box const& // parameter range

= * (SPApar_box*) NULL_REF
) const;

Return a box around the spline. This is retained for historical reasons—it
exactly parallels the previous virtual function.

public: virtual SPAbox spline::bound (
SPAbox const&, // object space box
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF
) const;

Return a box that encloses the portion of the surface that lies within the
given box after transformation.

public: virtual SPAbox spline::bound (
SPApar_box const& // parameter range

= * (SPApar_box*) NULL_REF,
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF
) const;

Kernel R10

Return a box that encloses the portion of the surface within the given
range after transformation.

public: virtual void spline::change_event ();

Notifies the derived type that the surface has been changed (e.g. the
subset_range has changed) so that it can update itself.

public: virtual check_status_list* spline::check (
const check_fix& input // flags for

= * (const check_fix*) // allowed
NULL_REF, //fixes

check_fix& result // fixes applied
= * (check_fix*) NULL_REF,

const check_status_list* // checks to be
= (const check_status_list*)// made, default
NULL_REF // is none

);

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: virtual logical spline::closed_u () const;

Report whether the surface is closed, smoothly or not, in the u-parameter
direction.

public: virtual logical spline::closed_v () const;

Report whether the surface is closed, smoothly or not, in the v-parameter
direction.

public: logical spline::contains_pipe () const;

Kernel R10

Returns TRUE if this spline depends on a pipe surface.

public: virtual void spline::debug (
char const*, // title line
FILE* // file

= debug_file_ptr
) const;

Print out details of a spline.

public: virtual surface* spline::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual const double*
spline::discontinuities_u (
int& n_discont, // number of discont
int order // spline order
) const;

Returns the number and parameter values of discontinuities of the surface
of the given order (maximum three) in a read-only array.

public: virtual const double*
spline::discontinuities_v (
int& n_discont, // number of discont
int order // spline order
) const;

Returns the number and parameter values of discontinuities of the surface
of the given order (maximum three) in a read-only array.

public: virtual int spline::discontinuous_at_u (
double u // location
) const;

Kernel R10

Returns whether a particular parameter value is a discontinuity.

public: virtual int spline::discontinuous_at_v (
double v // location
) const;

Returns whether a particular parameter value is a discontinuity.

public: virtual void spline::eval (
SPApar_pos const& uv, // parameter
SPAposition& pos, // position
SPAvector* dpos // 1st derivatives array

= NULL, // length 2 in order xu,
// xv

SPAvector* ddpos // second derivatives -
= NULL // array of length 3 in

// order xuu, xuv, xvv
) const;

Find the position and first and second derivatives of the surface at given
parameter values.

public: virtual int spline::evaluate (
SPApar_pos const&, // param value
SPAposition&, // pt on surface

// at given
// parameter

SPAvector** // array of ptrs
= NULL, // to arrays

// of vectors.
int // # derivatives

= 0, // required (nd)
evaluate_surface_quadrant // the evaluation

// loc. above,
// below for each
// parameter
// direction,

= evaluate_surface_unknown // or don’t care.
) const;

Kernel R10

Calculates derivatives, of any order up to the number requested, and stores
them in vectors provided by the user. Any of the pointers may be NULL, in
which case the corresponding derivatives will not be returned. Otherwise
they must point to arrays long enough for all the derivatives of that order;
i.e., 2 for the first derivatives, 3 for the second, etc.

public: virtual int spline::evaluate_iter (
SPApar_pos const&, // parameter position
surface_evaldata*, // data supplying

// initial values,
// and set to reflect
// the results of
// this evaluation

SPAposition&, // point on curve at
// given parameter

SPAvector** // array of pointers
= NULL, // to vectors, of

// size nd. Any of
// the pointers may
// be null, in which
// case the
// corresponding
// derivative will
// not be returned

int // number of
= 0, // derivatives

// required (nd)
evaluate_surface_quadrant // evaluation

// location – above,
// below, don’t care

= evaluate_surface_unknown
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation, for use as
initial values for any iteration involved.

public: virtual double spline::eval_cross (
SPApar_pos const&, // parameter
SPAunit_vector const& // curve normal
) const;

Kernel R10

Finds the curvature of a cross-section curve of the surface at the point on
the surface with given parameter values. The cross-section curve is
determined by the intersection of the surface with a plane passing through
the point on the surface and with given normal.

public: virtual SPAunit_vector spline::eval_normal (
SPApar_pos const& // parameter value
) const;

Finds the normal to the spline at the point with given parameter values.

public: virtual SPAunit_vector spline::eval_outdir (
SPApar_pos const& // parameter value
) const;

Find an outward direction from the surface at a point with given parameter
values.

public: virtual SPAposition spline::eval_position (
SPApar_pos const& // parameter values
) const;

Finds the point on the spline with given parameter values.

public: surf_princurv spline::eval_prin_curv (
SPApar_pos const& param // parameter value
) const;

Finds the principal axes of curvature of the surface at a point.

public: virtual void spline::eval_prin_curv (
SPApar_pos const&, // parameter value
SPAunit_vector&, // first axis direction
double&, // 1st direction

// curvature
// direction

SPAunit_vector&, // second axis direction
double& // second direction

// curvature
) const;

Finds the principal axes of curvature of the surface at a point with given
parameter values, and the curvatures in those directions.

Kernel R10

public: double spline::fitol () const;

Returns the fit tolerance of the bs3_curve to the true spline surface.

public: virtual const discontinuity_info&
spline::get_disc_info_u() const;

Returns read–only access to the disc_info objects.

public: virtual const discontinuity_info&
spline::get_disc_info_v() const;

Returns read-only access to the disc_info objects.

public: virtual curve* spline::get_path () const;

Returns the sweep path curve for this spline.

public: virtual sweep_path_type
spline::get_path_type () const;

Returns the sweep path type for this spline.

public: virtual curve* spline::get_profile (
double // parameter
) const;

Returns the sweep profile curve for this spline.

public: virtual law* spline::get_rail () const;

Returns the sweep rail law for this spline.

public: spl_sur const& spline::get_spl_sur () const;

Returns defining spline surface and should only be used when absolutely
necessary.

public: virtual logical
spline::left_handed_uv () const;

Kernel R10

Indicates whether the parameter coordinate system of the surface is right
or left-handed. With a right-handed system, at any point the outward
normal is given by the cross product of the increasing u-direction with the
increasing v-direction, in that order. With a left-handed system the
outward normal is in the opposite direction from this cross product.

public: virtual surface* spline::make_copy () const;

Makes a copy of this spline on the heap, and returns a pointer to it.

public: virtual surface_evaldata*
spline::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

public: void spline::make_single_ref ();

Makes a single reference to this spline.

public: virtual surface& spline::negate ();

Negates this spline.

public: virtual surf_normcone spline::normal_cone (
SPApar_box const&, // parameter bounds
logical // approx. ok?

= FALSE,
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Return a cone bounding the normal direction of the surface. The cone is
deemed to have its apex at the origin, and has a given axis direction and
(positive) half-angle. If the logical argument is TRUE, then a quick
approximation may be found. The approximate result may lie wholly
within or wholly outside the guaranteed bound (obtained with a FALSE
argument), but may not cross from inside to outside. Flags in the returned
object indicate whether the cone is in fact the best available, and if not
whether this result is inside or outside the best cone.

Kernel R10

public: virtual surface& spline::operator*= (
SPAtransf const& // transformation
);

Transforms this spline by the given transformation.

public: spline spline::operator– () const;

Returns a surface with a reversed sense.

public: spline& spline::operator= (
spline const& // spline name
);

Copies the spline record, and adjust the use counts of the underlying
information to suit.

public: virtual logical spline::operator== (
surface const& // surface to be compared
) const;

This, like testing floating point numbers for equality, is not guaranteed to
say equal for effectively equal surfaces, but is guaranteed to say not equal
if they are indeed not equal. The result can be used for optimization, but
not where it really matters. The default always says not equal, for safety.

public: virtual SPApar_pos spline::param (
SPAposition const&, // position
SPApar_pos const& // initial guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values of a point on a 3D B–spline surface, iterating
from the given parameter values (if supplied).

public: virtual logical spline::parametric () const;

Indicates if the surface is parametric. Always TRUE for splines.

public: virtual double
spline::param_period_u () const;

Kernel R10

Returns the period of a periodic parametric surface, 0 if the surface is not
periodic in the u-parameter or not parametric.

public: virtual double
spline::param_period_v () const;

Returns the period of a periodic parametric surface, 0 if the surface is not
periodic in the v-parameter or not parametric.

public: virtual SPApar_box spline::param_range (
SPAbox const& // region of interest

= * (SPAbox*) NULL_REF
) const;

Returns the principal parameter range of a parametric surface in a chosen
parameter direction. For a nonparametric surface, the range is returned as
the empty interval or box. A periodic surface is defined for all parameter
values in the periodic direction, by reducing the given parameter modulo
the period into this principal range. For a surface open or nonperiodic in
the chosen direction the surface evaluation functions are defined only for
parameter values in the returned range. If a box is provided, the parameter
range returned may be restricted to a portion of the surface that is
guaranteed to contain all portions of the surface that lie within the region
of interest. If none is provided, and the parameter range in some direction
is unbounded, then conventionally an empty interval is returned.

public: virtual SPAinterval spline::param_range_u (
SPAbox const& // region of interest

= * (SPAbox*) NULL_REF
) const;

Refer to previous description.

public: virtual SPAinterval spline::param_range_v (
SPAbox const& // region of interest

= * (SPAbox*) NULL_REF
) const;

Refer to previous description.

Kernel R10

public: virtual SPApar_vec spline::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& // parameter
) const;

Finds the change in surface parameter corresponding to a unit offset in a
given direction at a given position.

public: virtual logical spline::periodic_u () const;

Reports whether a parametric surface is periodic in the u-parameter
direction; i.e., it is smoothly closed, so faces can run over the seam.

public: virtual logical spline::periodic_v () const;

Reports whether a parametric surface is periodic in the v-parameter
direction; i.e., it is smoothly closed, so faces can run over the seam.

public: virtual logical spline::planar (
SPAposition&, // location
SPAunit_vector& // unit vector
) const;

Determines whether spline is planar.

public: virtual double spline::point_cross (
SPAposition const&, // position
SPAunit_vector const&, // direction
SPApar_pos const& // initial param guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface closest to the given point, iterating from the given parameter
values (if supplied). The cross-section curve is determined by the
intersection of the surface with a plane passing through the point on the
surface and with given normal.

public: virtual SPAunit_vector spline::point_normal (
SPAposition const&, // position
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Kernel R10

Finds the normal to the surface at the given point.

public: virtual SPAunit_vector spline::point_outdir (
SPAposition const&, // position
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds an outward direction from the surface at a point on the surface
nearest to the given point. Normally just the normal, but nonzero at a
singularity.

public: virtual void spline::point_perp (
SPAposition const&, // given position
SPAposition&, // position on a surface
SPAunit_vector&, // surface normal
surf_princurv&, // principal curvature
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // actual parameter

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the given point and the normal to
and principal curvatures of the surface at that point. If the surface is
parametric, also return the parameter values at the found point.

public: void spline::point_perp (
SPAposition const& pos, // given position
SPAposition& foot, // position on a surface
SPApar_pos const& // parameter position

param_guess // parameter guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual // actual parameter
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

Kernel R10

public: void spline::point_perp (
SPAposition const& pos, // given position
SPAposition& foot, // position on a surface
SPAunit_vector& norm, // surface normal
SPApar_pos const& // parameter position

param_guess // parameter guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual // actual parameter
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

public: surf_princurv spline::point_prin_curv (
SPAposition const& pos, // position
SPApar_pos const& // parameter position

param_guess // possible parameter
= * (SPApar_pos*) NULL_REF

) const;

Find the principal curvatures at a given point, returning the values in a
struct. Just uses the other (virtual) principal curvature function.

public: virtual void spline::point_prin_curv (
SPAposition const&, // position
SPAunit_vector&, // first axis direction
double&, // curvature in first

// direction
SPAunit_vector&, // second axis direction
double&, // curvature in second

// direction
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Find the principal axes of curvature of the surface at a given point, and the
curvatures in those directions.

Kernel R10

public: void spline::reparam (
double, // new start u parameter
double, // new end u parameter
double, // new start v parameter
double // new end v parameter
);

Reparameterizes the curve.

public: void spline::reparam_u (
double, // new start u parameter
double // new end u parameter
);

Reparameterizes the curve in u.

public: void spline::reparam_v (
double, // new start v parameter
double // new end v parameter
);

Reparameterizes the curve in v.

public: void spline::restore_data ();

Restore the data for a spline from a save file.

if (restore_version_number < SPLINE_VERSION)
// Just restore as an exact spline.
(spl_sur *)dispatch_restore_subtype(”sur”, ”exactsur”)

else
read_logical Reverse flag; either “forward” or

“reversed”
// Switch to the right restore routine, using the standard
// system mechanism. Note that the argument is to enable
// the reader to distinguish old–style types where ”exact”
// was both an int_cur and a spl_sur. They are now ”exactcur”
// and ”exactsur”.
(spl_sur *)dispatch_restore_subtype(”sur”)

surface::restore_data Fix the underlying surface

public: logical spline::reversed () const;

Kernel R10

Determines if the underlying sculptured (spline) surface is in the opposite
direction of the ACIS spline surface. This function returns TRUE if spline
surface is opposite.

public: virtual void spline::save () const;

Saves the type or id, then calls save_data.

public: void spline::save_data () const;

Saves the information for the spline in the save file.

public: const eval_sscache_entry*
spline::search_eval_cache (
const SPAposition& pos // position to evaluate
) const;

Searches the underlying cache for an entry at the given position. Returns
the matching eval entry if this is found, or NULL otherwise.

public: void spline::set_sur (
bs3_surface, // surface data
double fitol // fit tolerance

= –1.0
);

Sets the surface information.

public: virtual logical spline::singular_u (
double // constant u–parameter
) const;

Reports whether the surface parameterization is singular at the specified
u-parameter value. The only singularity recognized is where every value
of the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: virtual logical spline::singular_v (
double // constant v–parameter
) const;

Kernel R10

Reports whether the surface parameterization is singular at the specified
v-parameter value. The only singularity recognized is where every value
of the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: spline* spline::split_u (
double // parameter
);

Divide a surface into two pieces at a u-parameter value. Returns a new
surface for the low-parameter side, and change the old one to represent the
high-parameter side.

public: spline* spline::split_v (
double // parameter
);

Divide a surface into two pieces at a v-parameter value. Returns a new
surface for the low-parameter side, and change the old one to represent the
high-parameter side.

public: int spline::split_at_kinks_u (
spline**& pieces, // pieces
double curvature = 0.0 // curvature
) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non–G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the the pieces argument. The function returns the
count of split pieces.

public: int spline::split_at_kinks_v (
spline**& pieces, // pieces
double curvature = 0.0 // curvature
) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non–G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the the pieces argument. The function returns the
count of split pieces.

Kernel R10

public: spline* spline::subset (
SPApar_box const& // parameter range
) const;

Constructs a new spline that is a copy of the part of the given one within
given parameter bounds.

public: bs3_surface spline::sur (
double tol // tolerance

= –1.0
) const;

Returns (a pointer to) the underlying surface, or NULL if none.

public: logical spline::sur_present () const;

Returns TRUE if there is underlying surface data.

public: virtual logical spline::test_point_tol (
SPAposition const&, // position
double // parameter

= 0,
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // actual parameter

= * (SPApar_pos*) NULL_REF
) const;

Tests whether a point lies on the surface, to user-defined tolerance.

public: virtual int spline::type () const;

Returns the type of spline.

public: virtual char const*
spline::type_name () const;

Returns string “spline_xxx” where xxx is replaced with type_names of the
underlying spl_sur.

public: virtual logical spline::undef () const;

Kernel R10

Indicates if the spline is improperly defined.

public: virtual curve* spline::u_param_line (
double // u–parameter
) const;

Constructs a u-parameter line on the surface. A u-parameter line runs in
the direction of increasing u-parameter, at constant v. The
parameterization in the nonconstant direction matches that of the surface,
and has the range obtained by use of param_range_u. The new curve is
constructed in free store, so it is the responsibility of the caller to ensure
that it is correctly deleted.

public: virtual curve* spline::v_param_line (
double // v–parameter
) const;

Constructs a v-parameter line on the surface. A v-parameter line runs in
the direction of increasing v, at constant u. The parameterization in the
nonconstant direction matches that of the surface, and has the range
obtained by use of param_range_v. The new curve is constructed in free
store, so it is the responsibility of the caller to ensure that it is correctly
deleted.

Internal Use: full_size

Related Fncs:
restore_spline

friend: spline operator* (
spline const&, // spline name
SPAtransf const& // transformation
);

Transforms a spline surface.

spl_sur
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines an abstract base class from which spline surface definitions are
derived.

Kernel R10

Derivation: spl_sur : subtrans_object : subtype_object : ACIS_OBJECT : –

SAT Identifier: spl_sur

Filename: kern/kernel/kerngeom/surface/spldef.hxx

Description: In ACIS a sculptured surface is represented by the class spline, which
contains a pointer to an internal description called spl_sur. The spl_sur
further contains a bs3_surface that is a pointer to a rational or nonrational,
nonuniform B–spline surface in the underlying surface package.

To support various types of surface construction, ACIS uses classes
derived from the internal representation spl_sur. Also, surface classes can
be derived from the derived class to construct more complicated surfaces.
This section covers the base class spl_sur along with the methods used to
create derived classes, rewritten per their specifications. The section also
presents the classes derived from spl_sur and the construction method for
them.

This class contains the mathematical definition for a spline surface. It uses
use counts to limit copying, and it allows derivation to construct surfaces
that are only approximated by the bs3_surface. The base class spl_sur
contains the following information for defining the surface:

– A use count indicating the number of times this spl_sur is used.
– A pointer to a bs3_surface, that represents the spline surface.
– A fitting tolerance representing the precision of the spline

approximation to the true surface.

Classes derived from spl_sur can contain additional information, and can
record the creation method of the true spline surface.

All functions defined for the spline class are supported by virtual functions
that depend on the true definition of the surface. The functionality is made
virtual to allow the derived surfaces to implement the functionality on
their own. For surfaces that have an exact bs3_surface, there is no need to
implement the functionality because the methods written for the base class
are sufficient.

Limitations: None

References: KERN discontinuity_info, summary_bs3_surface
by KERN spline, summary_bs3_surface
BASE SPAinterval

Data:
protected bs3_surface sur_data;
Object-space approximation to true surface.

Kernel R10

protected closed_forms closed_in_u;
Takes the values OPEN, CLOSED or PERIODIC (or unset if the spl_sur
is undefined). If an approximating surface is present (in sur_data), the
closure of the approximating surface will be consistent.

protected closed_forms closed_in_v;
Takes the values OPEN, CLOSED or PERIODIC (or unset if the spl_sur
is undefined). If an approximating surface is present (in sur_data), the
closure of the approximating surface will be consistent.

protected discontinuity_info u_disc_info;
Storage for the discontinuities, if there are any.

protected discontinuity_info v_disc_info;
Storage for the discontinuities, if there are any.

protected double fitol_data;
The precision that the spline approximates the true surface.

protected SPAinterval u_range;
The full range of the spl_sur, as returned by param_range_u. If an
approximating surface is present (in sur_data), this range should be
identical to that of the approximating surface.

protected SPAinterval v_range;
The full range of the spl_sur, as returned by param_range_u. If an
approximating surface is present (in sur_data), this range should be
identical to that of the approximating surface.

protected logical calling_make_approx;
Prevents recursive calls to the method make_approx.

protected singularity_type u_singularity;
Records whether the surface is singular in v. If an approximating surface is
present (in sur_data), the singularities of the approximating surface will
be consistent.

protected singularity_type v_singularity;
Records whether the surface is singular in u. If an approximating surface is
present (in sur_data), the singularities of the approximating surface will
be consistent.

protected summary_bs3_surface* summary_data;
bs3_surface data in summary form. This field may be set on restore, if the
full surface is not available. It may be used to make the actual
bs3_surface.

Kernel R10

Constructor:
protected: spl_sur::spl_sur ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: spl_sur::spl_sur (
bs3_surface, // approximation surface
double // fit tolerance

= 0
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: spl_sur::spl_sur (
const spl_sur& // spline surface
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: spl_sur::spl_sur (
SPAinterval, // u range
SPAinterval, // v range
closed_forms, // type of closure in u
closed_forms, // type of closure in v
singularity_type, // singularity type for u
singularity_type // singularity type for v
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as arguments.

Destructor:
protected: virtual spl_sur::~spl_sur ();

C++ destructor, deleting a spl_sur.

Methods:
protected: virtual int spl_sur::accurate_derivs (

SPApar_box const& // parameter box
= * (SPApar_box*) NULL_REF

) const;

Kernel R10

Returns the number of derivatives that evaluate can find accurately and
directly, rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, this
method returns the value, ALL_SURFACE_DERIVATIVES.

protected: virtual void spl_sur::append_u (
spl_sur& // given surface
);

Concatenates the contents of two surfaces into one. the given surface
appends to the existing one along u. The surfaces are guaranteed to be the
same base or derived type and to have contiguous parameter ranges (“this”
is the beginning part of the combined surface; i.e., lower parameter values,
the argument gives the end part).

protected: virtual void spl_sur::append_v (
spl_sur& // given surface
);

Concatenates the contents of two surfaces into one. the given surface
appends to the existing one along v. The surfaces are guaranteed to be the
same base or derived type and to have contiguous parameter ranges (“this”
is the beginning part of the combined surface; i.e., lower parameter values,
the argument gives the end part).

protected: virtual SPAbox spl_sur::bound (
SPApar_box const& // parameter box

= * (SPApar_box*) NULL_REF
);

Returns a box around the surface. This need not be the smallest box which
contains the specified portion of the surface, but needs to balance the
tightness of the bound against the cost of evaluation.

protected: virtual void
spl_sur::calculate_disc_info ();

Calculates the discontinuity information for the surface.

Kernel R10

protected: virtual check_status_list*
spl_sur::check (
const check_fix& input // flags for

= * (const check_fix*) // allowed
NULL_REF, // fixes

check_fix& result // fixes
= * (check_fix*) NULL_REF, // applied

const check_status_list* // checks to
= (const check_status_list*)// be made
NULL_REF // default none

);

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: logical
spl_sur::closed_u () const;

Determines if the surface is closed, smoothly or not, in the u-parameter
direction.

public: logical
spl_sur::closed_v () const;

Determines if the surface is closed, smoothly or not, in the v-parameter
direction.

protected: virtual logical
spl_sur::contains_pipe () const;

Returns TRUE if this spl_sur depends on a pipe surface.

public: virtual subtrans_object*
spl_sur::copy () const = 0;

Kernel R10

Constructs a duplicate spl_sur in free storage of this object, with a zero
use count.

protected: virtual void spl_sur::debug (
char const*, // leader
logical, // brief
FILE* // output file
) const = 0;

Prints the definition of a spline surface to standard output or to the
specified file. As for save and restore the operation is split into two parts:
the virtual function debug prints a class-specific identifying line, then
calls the ordinary function debug_data to put out the details.

protected: void spl_sur::debug_data (
char const*, // leader
logical, // brief
FILE* // output file
) const;

Prints out the details. The debug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own version of debug_data and may
use its parent’s instead. A string argument provides the introduction to
each displayed line and a logical sets brief output (normally removing
detailed subsidiary curve and surface definitions).

public: virtual spl_sur* spl_sur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const = 0;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In a deep copy, all the information about the copied item is self-contained
in a new memory block. By comparison, a shallow copy stores only the
first instance of the item in memory, and increments the reference count
for each copy.

Kernel R10

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For example, a deep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

protected: void spl_sur::delete_summary_data ();

Allows derived classes to delete summary_data when it goes out of date.

protected: save_approx_level
spl_sur::enquire_save_approx_level () const;

Returns the default level at which the approximating surface should be
stored.

public: virtual void spl_sur::eval (
SPApar_pos const& uv, // given parameter
SPAposition& pos, // returned point
SPAvector* dpos, // first derivative
SPAvector* ddpos // second derivative
) const;

Finds the position and the first and second derivatives of the surface at a
specified point.

protected: virtual int spl_sur::evaluate (
SPApar_pos const&, // parameter
SPAposition&, // pt on surface

// at a given
// parameter

SPAvector** // Array of ptrs
= NULL, // to arrays of

// vectors size
// nd

int // number of
= 0, // derivatives

// required (nd)
evaluate_surface_quadrant // eval. location

= evaluate_surface_unknown
) const;

Kernel R10

Calculates position and derivatives. Once calculated the derivatives are
stored in vectors provided by the user. This method returns the number it
was able to calculate; this equals the number requested in all but the most
exceptional circumstances. A certain number are evaluated directly and
accurately; higher derivatives are automatically calculated by finite
differencing; the accuracy of these decreases with the order of the
derivative, as the cost increases. Any of the pointers may be NULL, in
which case the corresponding derivatives will not be returned. Otherwise
they must point to arrays long enough for all the derivatives of that order;
i.e., 2 for the first derivatives, 3 for the second, etc.

protected: virtual int spl_sur::evaluate_iter (
SPApar_pos const&, // parameter position
surface_evaldata*, // data supplying

// initial values,
// and set to reflect
// the results of
// this evaluation

SPAposition&, // point on surface
// at given parameter

SPAvector** // array of pointers
= NULL, // to vectors, of

// size nd. Any of
// the pointers may
// be null, in which
// case the
// corresponding
// derivative will
// not be returned

int // number of
= 0, // derivatives

// required (nd)
evaluate_surface_quadrant // evaluation

// location – above,
// below, don’t care

= evaluate_surface_unknown
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation for use as
initial values for any iteration involved.

Kernel R10

protected: int spl_sur::evaluate_iter_with_cache (
SPApar_pos const&, // parameter
surface_evaldata*, // data supplying initial

// values, and set to
// reflect results

SPAposition&, // point on curve at
// parameter

SPAvector** // size nd array of
// pointers to arrays of
// vectors.

= NULL,
int // Number of deriv’s req.

= 0,
evaluate_surface_quadrant // evaluation

// location – above,
// below, don’t care

= evaluate_surface_unknown
) const;

This non-virtual function looks in the cache for position and nd derivatives
at the given parameter value. If found it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_iter_with_cache method, rather than evaluate_iter, should be
called by classes derived from spl_sur, so as to get the benefit of caching.

protected: int spl_sur::evaluate_with_cache (
SPApar_pos const&, // parameter
SPAposition&, // position at parameter
SPAvector** // derivates at position

= NULL,
int // nd number of deriv’s

= 0,
evaluate_surface_quadrant // evaluation

// location above, below
// for each parameter
// direction

= evaluate_surface_unknown
) const;

Kernel R10

This non-virtual function looks in the cache for position and nd derivatives
at the given parameter value. If found it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_with_cache method, rather than evaluate, should be called by
classes derived from spl_sur, so as to get the benefit of caching.

protected: virtual double spl_sur::eval_cross (
SPApar_pos const&, // given parameter
SPAunit_vector const& // given plane normal
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface with the given parameter values. The cross-section is defined
as the intersection of the surface with a plane passing through the point on
the surface and normal to the given direction, which must lie in the
surface.

protected: virtual SPAunit_vector
spl_sur::eval_normal (

SPApar_pos const& // given parameter
) const;

Finds the normal to the surface at a given parameter.

protected: virtual SPAunit_vector
spl_sur::eval_outdir (

SPApar_pos const& // given parameter
) const;

Return a direction which points outward from the surface. This should be
the outward normal if the point is not singular, otherwise a fairly arbitrary
outward direction.

public: virtual SPAposition spl_sur::eval_position (
SPApar_pos const& // given parameter
) const;

Finds the point on the spline with the given parameter value.

Kernel R10

protected: virtual void spl_sur::eval_prin_curv (
SPApar_pos const&, // given parameter
SPAunit_vector&, // first axis direction
double&, // 1st direction

// curvature
SPAunit_vector&, // second axis direction
double& // 2nd direction

// curvature
) const;

Finds the principle axes of curvature of the surface at a point with given
parameter values and the curvatures in those directions.

protected: void spl_sur::eval_with_cache (
SPApar_pos const&, // parameter
SPAposition&, // position at parameter
SPAvector*, // 1st deriv
SPAvector* // 2nd deriv
) const;

This non-virtual function looks in the cache for point perpendicular at the
given parameter value. If found it returns them. Otherwise it computes
them, puts them in the cache, and returns them. The eval_with_cache
method, rather than eval, should be called by classes derived from spl_sur,
so as to get the benefit of caching.

public: double spl_sur::fitol () const;

Returns the fit tolerance for the approximating bs3_surface.

public: virtual curve* spl_sur::get_path () const;

Returns the sweep path curve for this spl_sur.

public: virtual sweep_path_type
spl_sur::get_path_type () const;

Returns the sweep path type for this spl_sur.

public: virtual curve* spl_sur::get_profile (
double // parameter
) const;

Kernel R10

Returns the sweep profile curve for this spl_sur.

public: virtual law* spl_sur::get_rail () const;

Returns the sweep rail law for this spl_sur.

protected: virtual void
spl_sur::incremental_make_approx (

double fit // tolerance value for
// approx. surface
// to be made

);

Makes an approximating surface for an extended spl_sur incrementally
given an approximating surface for the original spl_sur. The extension is
done first for the u/v direction, which is a smaller percentage of the
original range.

public: void spl_sur::invalidate_cache ();

Method to be called by any user who modifies the surface in an external
process, to ensure that stale evaluation results are discarded.

protected: logical spl_sur::iterate_perp (
SPAposition const&, // given position
surface_evaldata*, // surface
SPAposition&, // position on surface
SPAunit_vector&, // normal to surface
surf_princurv&, // principle curvature
SPApar_pos const&, // guess parameter
SPApar_pos&, // actual parameter
logical // TRUE to iterate to a

// (local) near–point
// rather than any
// perpendicular.

) const;

Support function for point_perp (and bs3_surface_perp). This method
finds a true perpendicular given an initial parameter guess, and avoiding
oscillations. It may be set to iterate to the nearest perpendicular of any sort
(minimum or maximum distance, or inflexion), or to find only minima
(which is sometimes more reliable when there are inflexions), and it
returns a success or failure indication.

Kernel R10

public: logical spl_sur::iterate_perp (
SPAposition const&, // given position
SPAposition&, // position on surface
SPAunit_vector&, // normal to surface
surf_princurv&, // principle curvature
SPApar_pos const&, // guess parameter
SPApar_pos&, // actual parameter
logical // TRUE to iterate to a

// (local) near–point
// rather than any
// perpendicular.

) const;

Support function for point_perp (and bs3_surface_perp). This method
finds a true perpendicular given an initial parameter guess, and avoiding
oscillations. It may be set to iterate to the nearest perpendicular of any sort
(minimum or maximum distance, or inflexion), or to find only minima
(which is sometimes more reliable when there are inflexions), and it
returns a success or failure indication.

protected: virtual logical
spl_sur::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is
right-handed or left-handed. With a right-handed system, at any point the
outward normal is given by the cross product of the increasing u direction
with the increasing v direction, in that order. With a left-handed system the
outward normal is in the opposite direction from this cross product

protected: virtual void spl_sur::make_approx (
double fit, // fit tolerance
const spline& spl // pointer to output

= * (spline*) NULL_REF,// spline approx.
logical force // flag for forcing

= FALSE
) const;

Makes or remakes an approximation of the surface, within the given
tolerance.

protected: virtual surface_evaldata*
spl_sur::make_evaldata () const;

Kernel R10

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

protected: virtual surf_normcone
spl_sur::normal_cone (
SPApar_box const& // parameter box

= * (SPApar_box*) NULL_REF,
logical // approx. results OK

= FALSE
);

Returns a cone bounding the normal direction of the surface. The cone has
its apex at the origin, and it has a specified axis direction and
(positive)half-angle. If logical is TRUE, then an approximation is found.
The approximate result may lie wholly within or wholly outside the
guaranteed bound (obtained with FALSE), but it may not cross from the
inside to the outside. Flags in the returned object indicate whether the cone
is in face the best available, and if the result is inside or outside the best
cone.

protected: virtual void spl_sur::operator*= (
SPAtransf const& // transform
);

Transforms this spline by the specified transform.

protected: virtual logical spl_sur::operator== (
subtype_object const& // object sub–type
) const;

Tests two surfaces for equality. This does not guarantee to find all
effectively equal surfaces, but it does guarantee that different surfaces are
correctly identified as different.

protected: virtual SPApar_pos spl_sur::param (
SPAposition const&, // given point
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF
) const = 0;

Kernel R10

Finds the parameter values of a point on a 3D B–spline surface, iterating
from the given parameter values, if supplied.

public: double
spl_sur::param_period_u () const;

Returns the u period of a periodic parametric surface, zero if the surface is
not periodic in the u direction.

public: double
spl_sur::param_period_v () const;

Returns the v period of a periodic parametric surface, zero if the surface is
not periodic in the v direction.

public: SPApar_box spl_sur::param_range (
SPAbox const& // object space box

= * (SPAbox*) NULL_REF
) const;

Return the principal parameter range of a parametric surface in both u and
v-parameter directions. For a nonparametric surface, the range is returned
as the empty interval or box.

A periodic surface is defined for all parameter values in the periodic
direction, by reducing the given parameter modulo the period into this
principal range. For a surface open or nonperiodic in the chosen direction
the surface evaluation functions are defined only for parameter values in
the returned range.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface which is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided, and the
parameter range in some direction is unbounded, then conventionally an
empty interval is returned.

public: SPAinterval spl_sur::param_range_u (
SPAbox const& // object space box

= * (SPAbox*) NULL_REF
) const;

Kernel R10

Return the principal parameter range of a parametric surface in the
u-parameter direction. For a nonparametric surface, the range is returned
as the empty interval or box. A periodic surface is defined for all
parameter values in the periodic direction, by reducing the given
parameter modulo the period into this principal range. For a surface open
or nonperiodic in the chosen direction the surface evaluation functions are
defined only for parameter values in the returned range.

public: SPAinterval spl_sur::param_range_v (
SPAbox const& // object space box

= * (SPAbox*) NULL_REF
) const;

Return the principal parameter range of a parametric surface in the
v-parameter direction. For a nonparametric surface, the range is returned
as the empty interval or box. A periodic surface is defined for all
parameter values in the periodic direction, by reducing the given
parameter modulo the period into this principal range. For a surface open
or nonperiodic in the chosen direction the surface evaluation functions are
defined only for parameter values in the returned range.

protected: virtual SPApar_vec spl_sur::param_unitvec
(

SPAunit_vector const&, // given unit offset
SPApar_pos const& // given parameter
) const;

Finds the change in the surface parameter corresponding to a unit offset in
a given direction at a given position. The position and direction must both
lie in the surface.

protected: SPApar_pos spl_sur::param_with_cache (
SPAposition const&, // given position
SPApar_pos const& // return parameter

= * (SPApar_pos*)NULL_REF
);

This non–virtual function looks in the cache for a given position. If found
it returns the parameter, otherwise it finds the parameter using param,
places it in the cache, and returns it. The param_with_cache method,
rather than param, should be called by classes derived from int_cur, so as
to get the benefit of caching.

Kernel R10

public: logical spl_sur::periodic_u () const;

Determines if a parametric surface is periodic in the u direction. (i.e. it is
smoothly closed, so faces can run over the seam).

public: logical spl_sur::periodic_v () const;

Determines if a parametric surface is periodic in the v direction. (i.e. it is
smoothly closed, so faces can run over the seam).

protected: virtual logical spl_sur::planar (
SPAposition&, // point on surface
SPAunit_vector& // axis direction
) const;

Reports whether a surface is planar.

protected: virtual double spl_sur::point_cross (
SPAposition const&, // given point
SPAunit_vector const&, // normal to plane
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface closest to the given point, iterating from the given parameter
values, if supplied. The cross-section is determined by the intersection of
the surface with a plane passing through the point on the surface and with
the given normal.

protected: virtual SPAunit_vector
spl_sur::point_normal (
SPAposition const&, // given point
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF
) const;

Finds the normal to the surface at the given point. This method returns
exactly 0 if the point is a singularity of the surface where there is no
well-defined normal.

Kernel R10

protected: virtual SPAunit_vector
spl_sur::point_outdir (
SPAposition const&, // given point
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF
) const;

Returns a direction that points outward from the surface. This should be
the outward normal if the point is not singular, otherwise a fairly arbitrary
outward direction.

protected: virtual void spl_sur::point_perp (
SPAposition const&, // given point
SPAposition&, // point returned
SPAunit_vector&, // normal returned
surf_princurv&, // principal curvature
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // parameter returned

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Finds the point on the surface nearest to the specified point, and
optionally, to the normal and the principal curvatures of the surface at that
point. If the surface is parametric, this method also returns the parameter
values at the found point.

protected: void spl_sur::point_perp_with_cache (
SPAposition const&, // given point
SPAposition&, // point returned
SPAunit_vector&, // normal returned
surf_princurv&, // principle curvature
SPApar_pos const& // guess parameter

= * (SPApar_pos*)NULL_REF,
SPApar_pos& // parameter returned

= * (SPApar_pos*)NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Kernel R10

This non-virtual function looks in the cache for point perpendicular at the
given parameter value. If found it returns them. Otherwise it computes
them, puts them in the cache, and returns them. The
point_perp_with_cache method, rather than point_perp, should be called
by classes derived from spl_sur, so as to get the benefit of caching.

protected: virtual void spl_sur::point_prin_curv (
SPAposition const&, // given point
SPAunit_vector&, // first axis direction
double&, // 1st curvature

// direction
SPAunit_vector&, // second axis direction
double&, // 2nd curvature

// direction
SPApar_pos const& // surface

= * (SPApar_pos*) NULL_REF
) const;

Finds the principle axes of curvature of the surface at a specified point,
and the curvatures in those directions.

protected: virtual void spl_sur::reparam (
double, // new start u parameter
double, // new end u parameter
double, // new start v parameter
double // new end v parameter
);

Reparameterizes the curve.

protected: virtual void spl_sur::reparam_u (
double, // new start u parameter
double // new end u parameter
);

Reparameterizes the curve in u.

protected: virtual void spl_sur::reparam_v (
double, // new start v parameter
double // new end v parameter
);

Kernel R10

Reparameterizes the curve in v.

protected: void spl_sur::restore_common_data ();

Restore the data for a spl_sur from a save file.

if (restore_version_number >= APPROX_SUMMARY_VERSION)
read_enum Restore enumeration for

save_approx_level.
if (level == save_approx_full)

bs3_surface_restore Restore the surface data
if (restore_version_number < SPLINE_VERSION)

// No fit tolerance to read
else

read_real Fit tolerance data
else if (level == save_approx_summary)

summary_bs3_surface::restore Restore the surface data
read_real Fit tolerance data
read_enum Restore enumeration for

closed_forms for u.
read_enum Restore enumeration for

closed_forms for v.
read_enum Restore enumeration for

singularity_type for u.
read_enum Restore enumeration for

singularity_type for v.
else

read_interval Restore u range
read_interval Restore v range
read_enum Restore enumeration for

closed_forms for u.
read_enum Restore enumeration for

closed_forms for v.
read_enum Restore enumeration for

singularity_type for u.
read_enum Restore enumeration for

singularity_type for v.
if (restore_version_number >= DISCONTINUITY_VERSION)

// Restore the discontinuity information
discontinuity_info::restore u discontinuities
discontinuity_info::restore v discontinuities

protected: void spl_sur::save_as_approx () const;

Kernel R10

Saves an approximation of the spl_sur.

protected: void spl_sur::save_common_data (
save_approx_level // level that spl_sur

// is to be stored
) const;

Saves data common to all spl_surs.

protected: virtual void spl_sur::save_data () const;

Save the information for the spl_sur to a save file.

protected: const eval_sscache_entry*
spl_sur::search_eval_cache (
const SPAposition& // position to evaluate
) const;

Searches the underlying cache for an entry at the given position. Returns
the matching eval entry if this is found, or NULL otherwise.

protected: void spl_sur::set_sur (
bs3_surface, // spline surface
double tol // fit tolerance

= –1.0
);

Sets the particular spline surface.

protected: virtual void spl_sur::shift_u (
double // shift value
);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void spl_sur::shift_v (
double // shift value
);

Kernel R10

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

public: logical spl_sur::singular_u (
double // constant u–parameter
) const;

Reports whether the surface parameterization is singular at the specified
u parameter value. The only singularity recognized is where every value of
the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: logical spl_sur::singular_v (
double // constant u–parameter
) const;

Reports whether the surface parameterization is singular at the specified
v parameter value. The only singularity recognized is where every value of
the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions

protected: virtual int spl_sur::split_at_kinks (
spl_sur**& pieces, // pieces
logical udir, // u direction or not
double curvature = 0.0 // curvature
) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non–G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the pieces argument. The function returns the
count of split pieces.

protected: logical spl_sur::split_spl_sur_u (
double approx_par, // approx. param. value
double real_par, // real param. value
spl_sur*, // spare spl_sur
spl_sur* [2] // resulting pieces
);

Kernel R10

Divides a surface into two pieces at the specified parameter value, except
that it provides an empty spl_sur in case it is needed. This method returns
TRUE if the spl_sur is used; otherwise, it returns FALSE. This method is
not externally called, but it is available for use by the derived class
implementation of split_u.

Typically, the derived class implementations of split_u/v call these
functions with a slightly different parameter to the one that they were
originally called with (the new parameter is obtained by relaxing from the
split point to the approximating surface, and so can be regarded as the
parameter on the approximating surface). This method takes both versions
of the parameter.

protected: logical spl_sur::split_spl_sur_v (
double approx_par, // approx. param. value
double real_par, // real param. value
spl_sur*, // spare spl_sur
spl_sur* [2] // resulting pieces
);

Divides a surface into two pieces at the specified parameter value, except
that it provides an empty spl_sur in case it is needed. This method returns
TRUE if the spl_sur is used; otherwise, it returns FALSE. This method is
not externally called, but it is available for use by the derived class
implementation of split_v.

Typically, the derived class implementations of split_u/v call these
functions with a slightly different parameter to the one that they were
originally called with (the new parameter is obtained by relaxing from the
split point to the approximating surface, and so can be regarded as the
parameter on the approximating surface). This method takes both versions
of the parameter.

protected: virtual void spl_sur::split_u (
double, // parameter value
spl_sur* [2] // resulting pieces
) = 0;

Divides a surface into two pieces at the specified parameter value. This
method returns a new surface for the low-parameter side, and changes the
old one to represent the high-parameter side.

Kernel R10

protected: virtual void spl_sur::split_v (
double, // parameter value
spl_sur* [2] // resulting pieces
) = 0;

Divides a surface into two pieces at the specified parameter value. This
method returns a new surface for the low-parameter side, and changes the
old one to represent the high-parameter side.

protected: virtual spl_sur* spl_sur::subset (
SPApar_box const& // parameter box
);

Constructs a new spline that is a copy of the part of the original within the
given parameter bounds, unless this is not a proper subset, when returning
the this pointer, or there is no overlap of the ranges, when returning NULL.
The ranges should not overlap at a single point in either parameter
direction—if they do, the whole parameter range in that direction is
assumed. This cannot be const because it sometimes returns this as a
non-const pointer.

protected: int spl_sur::summary_nuknots () const;

Provides read-only access to the nuknots summary_data for derived
classes.

protected: int spl_sur::summary_nvknots () const;

Provides read-only access to the nvknots summary_data for derived
classes.

protected: const double*
spl_sur::summary_uknots () const;

Provides read-only access to the uknots summary_data for derived
classes.

protected: const double*
spl_sur::summary_vknots () const;

Provides read-only access to the vknots summary_data for derived
classes.

Kernel R10

public: bs3_surface spl_sur::sur () const;

Returns the bs3_surface approximation.

protected: virtual logical spl_sur::test_point_tol (
SPAposition const&, // given point
double, // test tolerance
SPApar_pos const& // guess parameter

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // actual parameter

= * (SPApar_pos*) NULL_REF
) const;

Tests whether a point lies on the surface, within a user-defined tolerance.

protected: virtual char const*
spl_sur::type_name () const = 0;

Returns the string “spl_sur”.

protected: void spl_sur::update_data (
bs3_surface // surface for update
);

Updates the range, closure and singularity information from a
bs3_surface.

protected: virtual curve* spl_sur::u_param_line (
double, // constant v–parameter
spline const& // owning surface
) const;

Constructs an iso-parameter line on the surface. A u-parameter line runs in
the direction of increasing u-parameter, at constant v. The
parameterization in the nonconstant direction matches that of the surface,
and it has the range obtained by the use of param_range_u.

protected: virtual curve* spl_sur::v_param_line (
double, // constant v–parameter
spline const& // owning surface
) const;

Kernel R10

Constructs an isoparameter line on the surface. A v-parameter line runs in
the direction of increasing v-parameter, at constant u. The
parameterization in the nonconstant direction matches that of the surface,
and it has the range obtained by the use of param_range_v.

Internal Use: deep_copy_elements, full_size

Related Fncs:
None

