Chapter 36.
Classes Sa thru Sq

Topic: Ignore

SabFile

Class: SAT Save and Restore
Purpose: Performs save and restore to stream files.
Derivation: SabFile : BinaryFile : Filelnterface : ACIS_OBJECT : —

SAT ldentifier: None
Filename: kern/kernel/kernutil/fileio/sabfile.hxx

Description: This class performs ACIS save and restore to stream files using the new
binary format that supports unknowNTITY data.

Limitations: None
References: None
Data:
None
Constructor:
public: SabFile::SabFile (
FILE* /I file pointer
);
C++ constructor, creating &abFile using the specified parameters.
Destructor:
public: virtual SabFile::~SabFile ();
C++ destructor, deleting 8abFile.
Methods:
public: virtual FilePosition SabFile::goto_mark (
FilePosition /I file position
);

Kernel R10

Moves the file pointer to the specified position in SabFile.

protected: virtual size_t SabFile::read (

void* buf, /I buffer for data

size_t length, /I memory size

logical swap /I support byte swapping
);

Reads data from a stream file in binary format.

public: virtual FilePosition SabFile::set_mark ();

Returns the current file position within tBabFile.

protected: virtual void SabFile::write (

const void* data, /I pointer to data

size_t len, /I memory size

logical swap /I support byte swapping
);

Writes data to a stream file in binary format.

Related Fncs:

None
SatFile
Class: SAT Save and Restore
Purpose: Defines theSatFile class for doing ACIS save and restore to stream files in

text format.
Derivation: SatFile : Filelnterface : ACIS_OBJECT : —
SAT Identifier: None
Filename: kern/kernel/kernutil/fileio/satfile.hxx

Description: Defines theSatFile class for doing ACIS save and restore to stream files in
text format.

Limitations: None

References: None

Kernel R10

Data:

Constructor:

Destructor:

Methods:

Kernel R10

None

public: SatFile::SatFile (
FILE* /I filename

);

C++ constructor, creating @atFile using the specified parameters.

public: virtual SatFile::~SatFile ();

C++ destructor, deleting 8atFile.

public: virtual FilePosition SatFile::goto_mark (
FilePosition /I file position

);

Moves the file pointer to the specified pointer in SeFile.

public: virtual char SatFile::read_char ();

Reads a character. Written with C printf format “%c”.

public: virtual TaggedData* SatFile::read_data ();

Reads the data for an unkno®NTITY until the end of record terminator
is reached.

public: virtual double SatFile::read_double ();

Reads a double. Written with C printf format “%g ”.

public: virtual int SatFile::read_enum (
enum_table const& /I enumeration table

);

Read an enumeration table. The <identifier> specifies which enumeration
is active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format

“%s".

public: virtual float SatFile::read_float ();

Reads a float. Written with C printf format “%g .

public: virtual logical SatFile::read_header (

int&, /I first integer
int&, /I second integer
int&, /I third integer
int& /I fourth integer
);

Reads a header. The first record of the ACIS save file is a header, such as:
200010

First Integer: An encoded version number. In the example, this is “200".
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for thesat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

public: virtual int SatFile::read_id (
char*, /1 title
int I integer
=0
);

Reads an identifier. The save identifier written with C printf format “%s ”.

public: virtual logical SatFile::read_logical (

const char* f /1 title
= p

const char* t /1 title
=

)

Kernel R10

Kernel R10

Reads a logical. (false_string, true_string {or any_valid_stjing}
Appropriate string written with C printf format “%s ".

public: virtual long SatFile::read_long ();

Reads a long. Written with C printf format “%Ild".

public: virtual void* SatFile::read_pointer ();

Reads a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual int SatFile::read_sequence ();

Reads a sequence. Written as “—” followed by the entity index written as
long.

public: virtual short SatFile::read_short ();

Reads a short. Written with C printf format “%d".

public: virtual char* SatFile::read_string (
int& /I integer

);

Reads a string, allocates memory for it, and the argument returns the
length of the string. Length written as long followed by string written with
C printf format “%s".

public: virtual size_t SatFile::read_string (

char* buf, /I buffer

size_t maxlen /I maximum length
=0

);

Reads a string into a supplied buffer of a given simxlen.

public: virtual logical SatFile::read_subtype_end ();

Reads subtype end. Braces around the subtypes, written as “} .

public: virtual logical
SatFile::read_subtype_start ();

Reads subtype start. Braces around the subtypes, written as “{ ".

public: virtual FilePosition SatFile::set_mark ();

Returns the current file position within tBatFile.

public: virtual void SatFile::write_char (
char /I character

);

Writes a character. Written with C printf format “%c”.

public: virtual void SatFile::write_double (
double /I parameter

);

Writes a real. Written with C printf format “%g .

public: virtual void SatFile::write_enum (
int, /I number in
enum_table const& /I enumeration table

);

Writes enumeration table. The <identifier> specifies which enumeration is
active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format

“%s".

public: virtual void SatFile::write_float (
float /I float
);

Writes a float. Written with C printf format “%g ”.

Kernel R10

public: virtual void SatFile::write_header (

int, /I first integer

int, /I second integer
int, /[third integer
int /I fourth integer
);

Writes a header. The first record of the ACIS save file is a header, such as:
200010

First Integer: An encoded version number. In the example, this is “200”".
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated. Part
save data for thesat files is not affected by a point release (e.g., 105 for
ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate

whether or not history has been saved in this save file.

public: virtual void SatFile::write_id (
const char*, /I character
int I integer

);

Writes an identifier. The save identifier written with C printf format “%s ”.

public: virtual void SatFile::write_literal_string (

const char*, /I character

size_tlen /I length
=0

);

Writes a literal string.

Kernel R10

public: virtual void SatFile::write_logical (

logical, /' logical

const char* f /I character
= ”F"’

const char* t /I character
= "T"

);

Writes a logical(false_string, true_string, {or any_valid_string})
Appropriate string written with C printf format “%s ".

public: virtual void SatFile::write_long (
long /I long

)i
Writes a long. Written with C printf format “%ld”.

public: virtual void SatFile::write_newline (
int /I number of newlines

);

Writes a new line.

public: virtual void SatFile::write_pointer (
void* /I parameter

);

Writes a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long.

public: virtual void SatFile::write_sequence (
int /I integer

);

Writes a sequence. Written as “—” followed by the entity index written as
long.

public: virtual void SatFile::write_short (
short /I short

);

Kernel R10

Related Fncs:

SHELL

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

Kernel R10

Writes a short. Written with C printf format “%d”.

public: virtual void SatFile::write_string (

const char*, /I character

size_tlen /I length
=0

);

Writes a string. Length written as long followed by string written with C
printf format “%s”.

public: virtual void SatFile::write_subtype_end ();

Writes a subtype end. Braces around the subtypes, written as “} .

public: virtual void SatFile::write_subtype_start ();

Writes a subtype start. Braces around the subtypes, written as “{ ”.

public: virtual void SatFile::write_terminator ();

Writes a terminator. Written as “#".

None

Model Topology, SAT Save and Restore
Represents the external boundary ateMP, or the internal boundary of a
void (unoccupied space) withinLAJMP.

SHELL : ENTITY : ACIS_OBJECT : —
“shell”
kern/kernel/kerndata/top/shell.hxx

The shell is a connected portion of a lump’s boundary. It has no physical
or topological connection with any other shell. It is not possible to traverse
the topological structure of one shell and end up on another shell. If a
lump has no voids, then exactly one shell gives its overall extent. Any
other shells bound voids wholly within the lump. There is no distinction
made in the data structure between peripheral and void shells. In this
context a shell is closed and bounded.

Limitations:

References:

Data:

Constructor:

It is technically possible for a shell to be open and bounded or unbounded.
If bounded, the containing lump (and body) is consid@redmplete or

more accuratelyjncompletely boundedt interacts with other bodies only

so far as the defined portions of their shells interact. There are
configurations of that interaction that are disallowed. If the shell is
unbounded, it can be semi-infinite (e.g., a plane bounded by a single
infinite straight line) or infinite (e.g., two half-infinite planes joined at

their boundaries). If the shell is semi-infinite, the body is incomplete,

while an infinite shell is completely defined, though of infinite extent.

The concepts gberipheralandvoid shells, and otonnectedanddisjoint
bodies have no meaning when applied to incomplete lump or body.

A shell is constructed from a collection of “faces” and “wires.” Large
collections may be subdivided into a hierarchy of “subshells,” each
containing a proper subcollection. A shell subdivided into subshells may
also contain faces and wires directly; in this case, these entities are not
contained in any subshell.

None

KERN FACE, LUMP, SUBSHELL, WIRE
by KERN FACE, LUMP, pattern_holder

None

public: SHELL::SHELL ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloadsd

operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SHELL::SHELL (

FACE*, /I list of FACEs
SUBSHELL*, /I list of SUBSHELLSs
SHELL* /I sister SHELL

)

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloadedw operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Kernel R10

Destructor:

Methods:

Kernel R10

Creates &HELL, initializes all the class data, and records the creation in
the bulletin board. The first two arguments are the starts of li#8QES
andSUBSHELLSs contained, and the last is a list of SISHELLS already

in the currenLUMP. The calling routine must skimp_ptr and if desired,
bound_ptr, usingset_lump andset_bound.

public: virtual void SHELL::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. Tlhee methods for attached attributes
are also called.

protected: virtual SHELL::~SHELL ();

This G+ destructor should never be called directly. Instead, applications
should use the overloadé&mbe method inherited from thENTITY class,
because this supports history management. (For exarspiew

SHELL(...) then lateix—>lose.)

public: SPAbox* SHELL::bound () const;

Returns a pointer to a geometric bounding region (a box), within which the
entire SHELL lies (with respect to the internal coordinate system of the
BODY). The return may bBRULL if the bound was not calculated since

the SHELL was last changed.

protected: virtual logical
SHELL::bulletin_no_change_vf (

ENTITY const* other, /I other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data — called by
bulletin_no_change. For theidentical_comparator argument to b& RUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non—overridden subclasges) SE indicates
tolerant compares and retulR&LSE as a default.

public: logical SHELL::copy_pattern_down (
ENTITY* target /I target
) const;

Copies the pattern through all children of the target entity.

public: virtual void SHELL::debug_ent (
FILE* /I file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: FACE* SHELL::face () const;

Returns the firsEACE in a complete enumeration of all tRACES in the
SHELL, continued by repeated useF#CE::next_face. The undefined
order of SUBSHELLSs fluctuates with each change of ldBSHELL
subdivision.

public: FACE* SHELL::face_list () const;

Returns a pointer to the firBACE of a list of FACEs immediately
contained in thiSHELL.

public: void SHELL::get_all_patterns (
VOID_LIST& list 1 list

);

Returns all patterns in the list.

public: virtual int SHELL::identity (
int /I level
=0
) const;

If level is unspecified or 0, returns the type identi&fELL_TYPE. If
level is specified, returnSHELL_TYPE for that level of derivation from
ENTITY. The level of this class is defined SiELL_LEVEL.

public: logical SHELL::is_closed () const;

Determine if the shell is closed or not. This method considers only
single—sided faces. It ignores all double—sided faces and wires.

Kernel R10

Kernel R10

public: virtual logical SHELL::is_deepcopyable (
) const;

ReturnsTRUE if this can be deep copied.

public: LUMP* SHELL::lump () const;

Returns a pointer to the ownihg) MP (SHELLS in separateUMPs are
entirely separate).

public: SHELL* SHELL::next (
PAT_NEXT_TYPE next_type // shell type
= PAT_CAN_CREATE /I for patterns
) const;

Returns a pointer to the neéSHELL in the list of SHELLS contained in a
BODY.

The next_type argument controls how theext method treats patterns, and
can take any one of three values:

PAT_CAN_CREATE: if the next shell is to be generated from a pattern,
create it if it doesn’t yet exist and return its pointer.

PAT_NO_CREATE: if the next shell is to be generated from a pattern, but
hasn’t yet been created, bypass it and return the pointer of the next
already—created shell (if any).

PAT_IGNORE: behave as though there is no pattern on the shell.

public: ENTITY* SHELL::owner () const;

Returns a pointer to the ownihgMP.

public: logical SHELL::patternable () const;

ReturnsTRUE.

public: logical SHELL::remove_from_pattern ();

Removes the pattern element associated with this entity from the pattern.
ReturnsFALSE if this entity is not part of a pattern element, otherwise
TRUE.

Note The affected entities are not destroyed, but are merely made
independent of the pattern. The pattern itself is correspondingly
modified to “drop out” the newly disassociated element.

public: logical SHELL::remove_from_pattern_list ();

Removes this entity from the list of entities maintained by its pattern, if
any. Return&ALSE if no pattern is found, otherwiS&RUE.

public: logical SHELL::remove_pattern ();

Removes the pattern on this and all associated entities. REALSE if
no pattern is found, otherwig&RUE.

public: void SHELL::restore_common ();

The RESTORE_DEF macro expands to threstore_common method,

which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

In versions before 1.6, the next tag will be for a body, but put it in the
lump pointer for now anyway, and fix it up later (in fix_pointers).

Kernel R10

if (restore_version_number >= PATTERN_VERSION
read_ptr Pointer to record in save file for
APATTERN on loop
if (apat_idx != (APATTERN*)(-1)))
restore_cache();

read_ptr Pointer to record in save file for
nextSHELL in lump

read_ptr Pointer to record in save file for
first SUBSHELL in shell

read_ptr Pointer to record in save file for

first FACE in shell
if (restore_version_number >= WIREBOOL_VERSION)

read_ptr Pointer to record in save file for
first WIRE in shell
else Pointer for firstWIRE in shell is
set toNULL
read_ptr Pointer to record in save file for
body owning the UMP containing
shell

public: void SHELL::set_bound (
SPAbox* /I new bounding box

);

Sets theSHELL's boundingSPAbox pointer to the giveisPAbox. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method callackup to put an entry on the
bulletin board.

public: void SHELL::set_face (

FACE* /l new FACE
logical reset_pattern /I reset or not

= TRUE
)i

Sets theSHELL's FACE pointer to the givelfACE. Before performing a
change, it checks if the data structure is posted on the bulletin board. If
not, the method callsackup to put an entry on the bulletin board.

Kernel R10

public: void SHELL::set_lump (

LUMP* /I new owning LUMP
logical reset_pattern /I reset or not

= TRUE
)i

Sets theSHELL's LUMP pointer to the given owningUMP. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method callackup to put an entry on the
bulletin board.

public: void SHELL::set_next (

SHELL* /I new sister SHELL
logical reset_pattern /I reset or not

= TRUE
);

Sets theSHELL's next SHELL pointer to the given sist&HELL. Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method callackup to put an entry on the
bulletin board.

public: void SHELL::set_pattern (

pattern* in_pat 1

logical reset_pattern /I reset or not
= TRUE

)i

Set the current pattern.

public: void SHELL::set_subshell (

SUBSHELL* /l new SUBSHELL
logical reset_pattern /I reset or not

= TRUE
)i

Sets theSHELL's SUBSHELL pointer to the giveiSUBSHELL . Before
performing a change, it checks if the data structure is posted on the
bulletin board. If not, the method calblackup to put an entry on the
bulletin board.

Kernel R10

public: void SHELL::set_wire (

WIRE* Il wire

logical reset_pattern /I reset or not
= TRUE

)i

Sets theSHELL's WIRE pointer to the giveWwIRE. Before performing a
change, it checks if the data structure is posted on the bulletin board. If
not, the method callsackup to put an entry on the bulletin board.

public: SUBSHELL* SHELL::subshell () const;

Returns a pointer to the firSUBSHELL in a list of SUBSHELLS
immediately contained within thiSHELL.

public: virtual const char*
SHELL::type_name () const;

Returns the stringshell”.

public: WIRE* SHELL::wire () const;

Returns the firs?WIRE in a complete enumeration of all tAdRESs in the
SHELL, continued by repeated useWfRE::next. The undefined order of
SUBSHELLSs fluctuates with each change of $i@BSHELL subdivision.

public: WIRE* SHELL::wire_list () const;

Returns a pointer to the firg¢IRE of a list of WIRES immediately
contained in thiSHELL.

Internal Use: first_face, save, save_common

Related Fncs:

is_ SHELL
Class: - - Skinning and Lofting, Construction Geometry, SAT Save and Restore
Purpose: Defines a skin surface between a list of curves.

Kernel R10

Derivation:

SAT ldentifier:
Filename:

Description:

skin_spl_sur : spl_sur : subtrans_object : subtype_object :
ACIS_OBJECT : —

“skinsur”

kern/kernel/sg_husk/skin/skin_spl.hxx

This class defines a skin surface between a list of curves.
Surface Parameterization

The surface parameterization is teirection corresponds to the
parameterization of the curves to be skinned and-tiesction
corresponds to the cubic Bezier between the skin-curves.

The input to this surface class are the curves to be skinned (all the curves
are reparameterized to lie in [0.0 — 1.0] range), optional tangents (the
magnitude of the curves’ tangents have to match on the ends) in
u-direction, and the optional surfaces on which the curves lie. If surfaces
containing the curves are provided, these determine the tangent directions
inv.

Evaluation Process
The evaluation process is a three-step process, as described below.
Step 1

If any matching tangent magnitudes are given, the section curves (curves
to be skinned) are reparameterized as follows: paramisténe parameter

on the original curve. Parameteion the skin surface is determined such
that theu-partial at each end of the skin surface is equal to the matching
tangent magnitude.

t="f(uy= t s*Ho(u) +m o*Hq(u) + m 1*Ho(u) +
t e*Hz(u)

In the above expressioHl, are thecubic Hermite polynomials ant§ and
te are the start and end parameter values of the original curves to be
skinned, which here are 0 and 1, respectively.

So,dgdu on the ends are:
dc/du = dc/dt * dt/du
where thedt/du values on the ends amg andnmy.

So by choosing the valuegy andm such that thelc/du on the left surface
is equal tadc/du on the right surface (provided that the curves are G1), a
C1 continuous surface is achieved even when skinning G1 continuous
curves.

Kernel R10

Limitations:

References:

Data:

Kernel R10

Step 2

The tangent directions for theare determined by fitting a circle through

the points corresponding to the samealue on the adjacent section

curves to the left and right. The scheme followed is similar to the way
Bessel tangents are computed. If there are only two section curves, the
circle radius is chosen to be infinity. If the surfaces are given for any
section, the tangent directionvrnwhen on that curve is obtained by the

cross product of surface normal and the section curve tangent at that point.
The direction also has an optional scalar value that can be applied. The
surface is called a loft surface when such a surface is provided.

Step 3

Now the skin/loft surface is defined using cubic Hermite interpolants
between sections that join each other C1 continuously. To evaluate the
surfaces(u,V) at a particulaw-parameter, the first step is to find the
segment to which this parameter corresponds. Then a local parameter
computed, which ranges from 0 to 1. The section curvasdc+y, and
thev-tangentg; andti;1 are also obtained. The surface is defined as:

s(u,v) = C i(WH o(vi)+t j*Ha(vi)+t g *Ho(vi)+
Ci+1 *H3(v i)

The parametric derivatives of this surface are obtained by differentiating
the above equation algebraically.

None

KERN pcurve, surface
BASE SPAvector
LAW law

protected VOID_LIST curves;
The list of curves to be skinned.

protected VOID_LIST path_curves;
Array of curves used to define the path for skinning.

protected int no_path_crv;
Value specifies how many path curves are in entity list.

protected law **laws;
Array of laws used to define how skinning is performed.

protected double *deriv_cache;
Section mapping information.

Constructor:

protected double *matching_derivs;
Section mapping information.

protected double *tan_factors;
An array of factors applied to the cross boundary tangents.

protected double *v_knots;
An array of reals indicating the knot values at each section that is being
interpolated.

protected int no_crv;
The number of curves to be skinned.

protected pcurve **pcurves;
Pcurves corresponding to the curves and surfaces are stored.

protected logical arc_length_param;
Flag for using arc-length parameterization. When set, arc-length
parameterization is used. When clear, arc-wise parameterization is used.

protected logical perpendicular_option;
Flag for the loft direction. When set, it is perpendicular to the curve; when
clear, it is in the curve direction.

protected logical skin_2pl1_surface;
Flag to indicate this is an old skin surface.

protected surface **surfaces;

An array of pointers to the surface. The curves that are skinned lie on

these surfaces and the surfaces are used to obtain cross boundary tangents.
If this isNULL, the cross boundary tangents are calculated on the fly.

protected skin_data *surface_data;
Data cache for computing the optimal tangent factors for the skin surface.

protected SPAvector *tangents;
An array of cross-boundary tangents. If theseNeL, the tangents at
each point are calculated on the fly.

protected: skin_spl_sur::skin_spl_sur ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: skin_spl_sur::skin_spl_sur (
const skin_spl_sur& Il surface to copy

);

Kernel R10

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Destructor:
protected: virtual skin_spl_sur::~skin_spl_sur ();
C++ destructor, deleting skin_spl_sur.
Methods:
public: int skin_spl_sur::accurate_derivs (
SPApar_box const& /Il area for deriv
= * (SPApar_box*) NULL_REF
) const;

Calculates the derivatives within the given parameter box.

public: void skin_spl_sur::add_path_data (

int no_curves, /I number of curves in
/I path

curve** curves /I curve paths to add

);

Adds the path data to ths&in_spl_sur object.

protected: virtual void
skin_spl_sur::calculate_disc_info ();

Calculates the discontinuity information from the defining curves.

protected: virtual subtrans_object*
skin_spl_sur::copy () const;

Constructs a duplicatkin_spl_sur in free storage of this object, with a
zero use count.

protected: void
skin_spl_sur::curve_add_discontinuities ();

Calculates discontinuity information from the generating curves and adds
it to the skin surface.

protected: virtual void skin_spl_sur::debug (

char const*, /I leader string
logical, /I brief output OK?
FILE* // output pointer
) const;

Kernel R10

Prints out a class-specific identifying line to standard output or to the
specified file.

protected: void skin_spl_sur::debug_data (

char const*, /I leader string
logical, /I brief output ok?
FILE* // output pointer
) const;

Prints out the details. Thiebug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own versioneifug_data and may

use its parent’s instead. A string argument provides the introduction to
each displayed line after the first, and a logical sets brief output (normally
removing detailed subsidiary curve and surface definitions).

public: virtual spl_sur* skin_spl_sur::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In adeepcopy, all the information about the copied item is self-contained
in a new memory block. By comparisonstaallow copy stores only the

first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For exampléeep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

public: double
skin_spl_sur::estimate_min_rad_curv ();

This function estimates the minimum radius of curvature of the skin
surface for a given set of tangent factor values.

Kernel R10

Kernel R10

public: void skin_spl_sur::estimate_tanfacs_scale (
SPAinterval& tan_range /l range to use

);

Estimates the scaling factor range by which the tangent factors controlling
the skin surface should be scaled so as to get the surface with as large a
radius of curvature as possible.

protected: virtual void skin_spl_sur::eval (

SPApar_pos const& uv, /I param space location
SPAposition& pos, /I returned point
SPAvector* dpos, /I first derivatives
SPAvector* ddpos /I second derivatives
) const;

Finds the position and the first and second derivatives of the surface at a
specified pointdpos is of length 2ddpos is of length 3. Upon return,
dpos containsy, andx,. ddpos containSXuy, Xuv Xvv

protected: virtual int skin_spl_sur::evaluate (

SPApar_pos const&, /I parameter on
/I surface point

SPAposition&, // for deriv
SPAvector** /I first

= NULL, /I derivative
int /I second

=0, /I derivative
evaluate_surface_quadrant /I quadrant of

= evaluate_surface_unknown // discontinuity
/ to evaluate
) const;

The evaluate function calculates derivatives, of any order up to the
number requested, and stores them in vectors provided by the user. It
returns the number it was able to calculate; this will be equal to the
number requested in all but the most exceptional circumstances. A certain
number will be evaluated directly and (more or less) accurately; higher
derivatives will be automatically calculated by finite differencing; the
accuracy of these decreases with the order of the derivative, as the cost
increases.

protected: void skin_spl_sur::eval_2p1l_skin (

SPApar_pos const& uv, /I param space location
SPAposition& pos, /I returned point
SPAvector* dpos, /I first derivatives
SPAvector* ddpos /I second derivatives
) const;

Finds the position and first and second derivatives of the ACIS 2.1 skin
surface at a given point.

protected: void skin_spl_sur::eval_skin (

SPApar_pos const& uv, /I parameter on surface
SPAposition& pos, /I point for deriv
SPAvector* dpos, /I first deriv. array of
/I length 2 in order
/I xu, xXv
SPAvector* ddpos, /I second deriv. array of

/I length 3 in order
/I Xuu, xuv, Xvv

SPAvector* dddpos, /I third deriv. array of
/I length
evaluate_surface_quadrant /I which quadrant to
guadrant /I evaluate
) const;

Finds the position and first and second derivatives of the skin surface at
the given parameter position value.

public: void skin_spl_sur::get_curves (

int& no_crv, /I number of curves
curve** *curves // output array pointer
) const;

Returns the surface curves.

public: void skin_spl_sur::get_laws (

int& no_laws, /I number of laws
law**& laws /I list of laws pointer
) const;

Returns a list of laws used by thldn_spl_sur. The use count of the laws
is incremented by one.

Kernel R10

public: void skin_spl_sur::get_surfaces (

int& no_surfaces, /I number of surfaces
surface**& surf_arr /l surface array pointer
) const;

Returns the surfaces. The array of surfaces need to be deleted by the
calling routine.

public: void skin_spl_sur::get_tanfacs (
double* tangents /I tangent factors

);

Get the tangent factors to determine optimal values for them.

public: void skin_spl_sur::get_v_knots (

double u, /I 'u parameter

int& out_no_knots, /I number of knots
double** out_vknots /[output array pointer
) const;

Returns the v_knot sequence for a given parameter value.

public: static int skin_spl_sur::id ();

Returns the ID for thekin_spl_sur list.

protected: void skin_spl_sur::initialize ();

Initializes the member data for this class.

protected: virtual void skin_spl_sur::make_approx (

double fit, /I fit tolerance

const spline& spl /I pointer to output
= * (spline*) NULL_REF, // approximation

logical force /I flag for forcing
= FALSE

) const;

Makes or remakes an approximation of skin_spl_sur, within the given
tolerance.

Kernel R10

public: static spl_sur*
skin_spl_sur::make_skin_spl_sur (

logical, /I arc—length option
int, /I number of curves
curve**, /[array of curves
double*, /I array of knot values
double*, /I array of left tangents
double*, /I array of rt tangents
SPAvector* /I array of tangent dirs.
= (SPAvector*) NULL,
closed_forms /I Flag for periodicity
= OPEN, /I of surface in u
closed_forms /I Flag for periodicity
= OPEN /I of surface in v
)i

Constructs a skin surface from the given section curves and the optional
matching tangents.

public: static spl_sur*
skin_spl_sur::make_skin_spl_sur (

logical, /I arc—length flag
logical, /I perpendicular flag
int, /I # section curves
curve**, /[array of curves
double*, /I array of knot values
double*, /I array of left tangents
double*, /I right tangents array
surface**, /I array of surfaces
double*, /I cr—bnd tangents array
law**, /[array of laws
closed_forms /I Flag for periodicity

= OPEN, /I of surface in u
closed_forms /I Flag for periodicity

= OPEN /I of surface in v
);

Constructs a loft surface from the given section curves and the
corresponding surfaces on which the sections lie and the optional tangent
factors that should be applied to cross-boundary tangents. The surfaces are
passed in are owned by thlen_surface, so the user should pass in a

copy. All arrays are the size woft, the number of sections.

Kernel R10

Kernel R10

protected: virtual void skin_spl_sur::operator*= (
SPAtransf const& /I transformation

);

Transforms this surface by the specified transform.

protected: logical skin_spl_sur::operator==
subtype_object const& /I object sub-type
) const;

Tests for equality. This does not guarantee to find all effectively equal
surfaces, but it does guarantee that different surfaces are correctly
identified as different.

protected: virtual SPApar_pos skin_spl_sur::param (

SPAposition const&, /I given point

SPApar_pos const& /I guess value
= * (SPApar_pos*) NULL_REF

) const;

Finds the parameter values of a point on a 3D B—spline surface, iterating
from the given parameter values, if supplied.

protected: void skin_spl_sur::restore_data ();

Restore the data forskin_spl_sur from a save file.

if (restore_version_number >= ARCWISE_SKIN_VERSION)

read_logical
read_logical
read_logical
read_int
for(inti=0;i<no_crv;i++){
read_real
read_real
read_real
read_real
read_real
restore_curve
read_vector

restore_surface
read_real

/I skin_2p1_surface, "FALSE” or
"TRUE”

/I arc length parameter, "ISO” or
"ARC”

/I perpendicular option, "SKIN” or
"PERPENDICULAR”

/I number of curves

/I for each curve

/I tangent length at start of curve or
-1

/I tangent length at end of curve or
-1

/I matching tangent length at start
of curve or -1

/I matching tangent length at end
of curve or -1

/I v knots

/I restore the underlying curve

/I tangent vector

/I underlying surface

/I tangent factor

if (restore_version_number >= LOFT_LAW_VERSION)

restore_law

/I restore law definition if available

if (restore_version_number >= LOFT_PCURVE_VERSION)

restore_pcurve

/I restore pcurve definition if
available

if (restore_version_number >= LOFT_LAW_VERSION) {

read_int

/I number of path curves

for(int i = 0; i < no_path_crv; i ++) // for each path curve

restore_curve

spl_sur::restore_common_data

/Il restore path curve to be skinned
or lofted
Restore the rest of the surface

public: virtual void skin_spl_sur::save () const;

Saves thakin_spl_sur as an approximation if there is a need to

approximate.

public: virtual void

skin_spl_sur::save_data () const;

Saves the information fakin_spl_sur to the save file.

Kernel R10

Kernel R10

public: void skin_spl_sur::set_tanfacs (

double* tangents, /l tangent factors

logical remake_approx /I remake enabled
= TRUE /Il or not

)i

Set the tangent factors and get them for purposes of determining optimal
values for them.

protected: virtual void skin_spl_sur::shift_u (
double /1 shift value

);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void skin_spl_sur::shift_v (
double /1 shift value

);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void skin_spl_sur::split_u (

double, /I u—parameter value
spl_sur*[2] /l two spline surfaces
);

Divides a surface into two pieces at thparameter value.

protected: virtual void skin_spl_sur::split_v (

double, /I v—parameter value
spl_sur[2] /l two spline surfaces
);

Divides a surface into two pieces at the speciigéirameter value.

public: virtual int skin_spl_sur::type () const;

Internal Use:

Related Fncs:

SPHERE

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

Returns the type afkin_spl_sur.

public: virtual char const*
skin_spl_sur::type_name () const;

Returns the string of the given spline surface type, which is “skinsur” for a
skin_spl_surf.

arclength_index_end, arclength_index_general, arclength_index_start,
calculate_arcwise_data, calculate_iso_data,
compute_bernstein_polynomials, deep_copy_elements_skin, full_size,
remap_and_eval, sg_calculate_surface_normal_dervs,
sg_recalculate_vknots_and_dervs

restore_skin_spl_sur

Model Geometry, SAT Save and Restore
Defines a sphere as an object in the model.

SPHERE : SURFACE : ENTITY : ACIS_OBJECT : —
“sphere”
kern/kernel/kerndata/geom/sphere.hxx

SPHERE is a model geometry class that contains a pointer to a
(lowercase)phere, the corresponding construction geometry class. In
general, a model geometry class is derived fEMTITY and is used to
define a permanent model object. It provides model management
functionality, in addition to the geometry definition.

SPHERE is one of several classes derived filBWRFACE to define a
specific type of surface. Trephere class defines a sphere by its center
point and radius.

Along with the usuaBURFACE andENTITY class methodSPHERE

has member methods to provide access to specific implementations of the
geometry. For example, methods are available to set and retrieve the
center and radius of a sphere.

A use count allows multiple references tS8RHERE. The construction of

a newSPHERE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Kernel R10

Limitations:
References:

Data:

Constructor:

Destructor:

Kernel R10

None

KERN sphere

None

public: SPHERE::SPHERE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloadsd

operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SPHERE::SPHERE (

SPAposition const&, /I center point
double /I radius
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloadedw operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

public: SPHERE::SPHERE (
sphere const& /I sphere

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloadeew operator, because this

reserves the memory on the heap, a requirement to support roll back and
history management.

public: virtual void SPHERE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. Tlhee methods for attached attributes
are also called.

protected: virtual SPHERE::~SPHERE ();

Methods:

This G+ destructor should never be called directly. Instead, applications
should use the overloadé&mbe method inherited from thENTITY class,
because this supports history management. (For exarspiew

SPHERE(...) then lateix—>lose.)

protected: virtual logical
SPHERE::bulletin_no_change_vf (

ENTITY const* other, /I other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data — called by
bulletin_no_change. For theidentical_comparator argument to b& RUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non—overridden subclasges) SE indicates
tolerant compares and retulR&LSE as a default.

public: SPAposition const& SPHERE::centre () const;
Returns the center of tI&PHERE.
public: virtual void SPHERE::debug_ent (
FILE* /I file pointer
) const;
Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.
public: surface const& SPHERE::equation () const;

Returns thesurface equation of &SPHERE.

public: surface& SPHERE::equation_for_update ();

Returns a pointer tsurface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

Kernel R10

Kernel R10

public: virtual int SPHERE::identity (
int /I level
=0
) const;

If level is unspecified or 0, returns the type identi&8&HERE_TYPE. If
level is specified, returnSPHERE_TYPE for that level of derivation
from ENTITY. The level of this class is defined 8 BHERE_LEVEL .

public: virtual logical SPHERE::is_deepcopyable (
) const;

ReturnsTRUE if this can be deep copied.

public: SPAbox SPHERE::make_box (

LOOP*, /I list of LOOPs
SPAtransf const* t /I for future use
= NULL,
logical tight_box_switch // for future use
= FALSE,
SPAbox* untransformed_box// for future use
= NULL
) const;

Makes a boundingox for thissurface. Thebox contains the complete
underlyingsurface and ignores the boundifigDGES, unless the
tight_sphere_box option is on.

public: void SPHERE::operator*= (
SPAtransf const& /I transform

);

Transforms &8PHERE. Before performing a change it checks whether the
data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: double SPHERE::radius () const;

Returns the radius of tt#PHERE.

public: void SPHERE::restore_common ();

The RESTORE_DEF macro expands to threstore_common method,

which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

sphere::restore_data low-level geometry definition for
sphere data.

public: void SPHERE::set_centre (
SPAposition const& /I center point

);

Sets theSPHERE's center point to the giveBPAposition. Before

performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

public: void SPHERE::set_radius (
double /I radius

);

Sets theSPHERE s radius to the given value. Before performing a change
it checks whether the data structure is posted on the bulletin board. If not,
the routine calldackup to put an entry on the bulletin board.

public: surface* SPHERE::trans_surface (

SPAtransf const& /I transform
= * (SPAtransf*) NULL_REF,
logical Il reversed

= FALSE
) const;

Returns the transformesdirface equation. If the logical iSRUE, the
surface is reversed.

public: virtual const char*
SPHERE::type_name () const;

Returns the stringsphere”.

Kernel R10

Internal Use:

Related Fncs:

sphere

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

Kernel R10

full_size

is_ SPHERE

Construction Geometry, SAT Save and Restore
Defines a spherical surface.

sphere : surface : ACIS_OBJECT : —
“sphere”
kern/kernel/kerngeom/surface/sphdef.hxx

A sphere is defined by a center point and radius. A positive radius
indicates an outward pointing surface normal. A negative radius indicates
an inward pointing surface normal.

Five data members define the parameterization of the sphere and they are
described in “Data.”

The u-parameter is the latitude metric, running fropi/2at the south
pole through 0 at the equatorfid2 at the north pole. Theparameter is
the longitude metric, running frompi-o pi, with 0 on the meridian
containingori_dir, and increasing in a clockwise direction aropote_dir,
unlessreverse_v is TRUE.

Let P bepole_dir andQ ori_dir, and letR beP x Q, negated ifeverse_v
is TRUE. Letr be the absolute value of the sphere radius. Then:

pos = center + r* sin(u)* P + r* cos(u)*
(cos(v)* Q + sin(v) R)

This parameterization is left-handed for a convex sphere and right-handed
for a hollow one, ifreverse_v is FALSE, and reversed if it iSRUE.

When the sphere is transformed, the sensewefse_v is inverted if the
transform includes a reflection. No special action is required for a
negation.

In summary, spheres are:

— Not true parametric surfaces.

— Periodic inv (—pi to pi with period 2 *pi) but not inu.

— Closed inv but not inu.

— Singular inu at the poles; nonsingular everywhere else.

Limitations:

References:

Data:

Constructor:

None

by KERN SPHERE
BASE SPAposition, SPAunit_vector

public logical reverse_v;
Constantu-parameter lines are circles aroymale_dir, normally
clockwise, but counterclockwise if this TRUE.

public SPAposition centre;
The center of the sphere.

public double radius;
The radius of a sphere. If negative, the surface normal points inward to the
center of the sphere.

public SPAunit_vector pole_dir;
Direction normal taiv_oridir that points from the center to the “north
pole” of the sphere; i.e., the maximumsingularity.

public SPAunit_vector uv_oridir;
Direction from the center of the sphere to the origin of parameter space.

public: sphere::sphere ();
C++ allocation constructor requests memory for this object but does not

populate it.

public: sphere::sphere (

SPAposition const&, /I position
double /I radius
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: sphere::sphere (
sphere const& /I given sphere

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

Destructor:

Methods:

Kernel R10

public: sphere::~sphere ();

C++ destructor, deleting sphere.

public: virtual int sphere::accurate_derivs (
SPApar_box const& /| parameter box name
= * (SPApar_box*) NULL_REF
) const;

Returns the number of derivatives teaaluate can find accurately (and
directly), rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, returns the
valueALL_SURFACE_DERIVATIVES. This is the case with a sphere.

public: virtual SPAbox sphere::bound (

SPAbox consté&, /I box

SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF

) const;

Returns a box that encloses the surface in object space.

public: virtual SPAbox sphere::bound (
SPApar_box const& /I parameter space box
= * (SPApar_box*) NULL_REF,
SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF
) const;

Returns a box that encloses the surface in parameter space.

public: virtual logical sphere::closed_u () const;

Reports whether the surface is closed, smoothly or not, in-plagameter
direction. A sphere is open in thedirection.

public: virtual logical sphere::closed_v () const;

Reports whether the surface is closed, smoothly or not, inpaeameter
direction. A sphere is closed in thalirection

public: virtual void sphere::debug (

char const*, /I leader string

FILE* /I file pointer
= debug_file_ptr

) const;

Prints out details of sphere.

public: virtual surface* sphere::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual void sphere::eval (

SPApar_pos const&, /I parameter position
SPAposition&, /I position
SPAvector* /I 1st derivatives array
= NULL, /I length 2, in order xu,
Il xv
SPAvector* /I second derivatives —
= NULL /I array of length 3, in

/I order xuu, xuv, Xvv
) const;

Finds the point on a parametric surface with given parameter values, and
optionally the first and second derivatives as well or instead.

Kernel R10

Kernel R10

public: virtual int sphere::evaluate (
SPApar_pos const&, /I param position
SPAposition&, /I pt on surface
/I at given
/I param position
SPAvector** Il array of ptrs
= NULL, /l to arrays of
/Il vectors
int /I number of
=0, /I derivatives
Il required
evaluate_surface_quadrant /I the evaluation
/I location
/I above, below
/I for each
/I parameter
/I dir., or don’t
= evaluate_surface_unknown // care.
) const;

Calculates derivatives, of any order up to the number requested, and stores
them in vectors provided by the user. The function returns the number of
derivatives calculated. Any of the pointers mayNad L, in which case

the corresponding derivatives will not be returned. Otherwise they must
point to arrays long enough for all the derivatives of that order - i.e., 2 for
the first derivatives, 3 for the second, etc.

public: virtual double sphere::eval_cross (

SPApar_pos const&, /I parameter position
SPAunit_vector const& /I direction
) const;

Finds the curvature of a cross-section curve of the parametric surface at
the point with given parameter values. The cross-section curve is given by
the intersection of the surface with a plane passing through the point and
with given normal.

public: virtual SPAunit_vector sphere::eval_normal (
SPApar_pos const& /| parameter position
) const;

Finds the normal to a parametric surface at a point with given parameter
values.

public: surf_princurv sphere::eval_prin_curv (
SPApar_pos const& param // parameter position
) const;

Finds the principle axes of curvature and the curvatures in those directions
of the surface at a point with given parameter values. For a sphere, the
curvature in every direction is a constant, so the direction of the principle
axes is arbitrary.

public: virtual void sphere::eval_prin_curv (

SPApar_pos const&, /I parameter

SPAunit_vector&, /I first axis direction

double&, /I curvature in the first
/I direction

SPAunit_vector&, /l second axis direction

double& /I curvature in the 2nd
/I direction

) const;

Finds the principle axes of curvature and the curvatures in those directions
of the surface at a point with given parameter values. For a sphere, the
curvature in every direction is a constant, so the direction of the principle
axes is arbitrary.

public: logical sphere::hollow () const;

Determines if a sphere is hollow.

public: virtual logical
sphere::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is
right-handed or left-handed.

With a right-handed system, at any point the outward normal is given by
the cross product of the increasimglirection with the increasing

v-direction, in that order. With a left-handed system the outward normal is
in the opposite direction from this cross product.

public: virtual surface* sphere::make_copy () const;

Makes a copy of thisphere on the heap, and returns a pointer to it.

Kernel R10

Kernel R10

public: virtual surface& sphere::negate ();

Negates this sphere.

public: virtual surf_normcone sphere::normal_cone (

SPApar_box const&, /I parameter bounds
logical /I approx. results OK?
= FALSE,
SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF
) const;

Returns a cone bounding the normal direction of a curve.

The cone is deemed to have its apex at the origin, and has a given axis
direction and (positive) half-angle. If the logical argumerfR&JE, then a
quick approximation may be found. The approximate result may lie
completely inside or outside the guaranteed bound (obtained with a
FALSE argument), but may not cross from inside to outside. Flags in the
returned object indicate whether the cone is in fact the best available, and
if not whether this result is inside or outside the best cone.

public: virtual surface& sphere::operator*= (
SPAtransf const& /I transformation

);

Transforms this sphere by the given transform.

public: sphere sphere::operator— () const;

Returns a copy of this sphere negated,; i.e., with normal reversed.

public: virtual logical sphere::operator==
surface const& /I surface name
) const;

Tests two surfaces for equality.

This, like testing floating point numbers for equality, is not guaranteed to
say equal for effectively equal surfaces, but is guaranteed to say not equal
if they are indeed not equal. The result can be used for optimization, but
not where it really matters.

public: virtual SPApar_pos sphere::param (

SPAposition const&, /I position

SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF

) const;

Finds the parameter values of a point on a surface, given an optional first
guess.

public: virtual logical sphere::parametric () const;

Determines if a sphere is parametric. A sphere is not considered to be
parametric.

public: virtual double
sphere::param_period_u () const;

Return the period of a periodic parametric surface, or O if the surface is not
periodic in theu-parameter or not parametric. A sphere is not periodic in
the u-direction.

public: virtual double
sphere::param_period_v () const;

Return the period of a periodic parametric surface, or O if the surface is not
periodic in thev-parameter or not parametric. A sphere has a period of 2 *
pi in thev-direction.

public: virtual SPApar_box sphere::param_range (
SPAbox const& /I box nhame
=* (SPAbox*) NULL_REF
) const;

Returns the parameter ranges of the portion of a surface lying within the
given box.

public: virtual SPAinterval sphere::param_range_u (
SPAbox const& /I box name
=* (SPAbox*) NULL_REF
) const;

Kernel R10

Returns the parameter ranges of the portion of a surface that lies within the
given box in au-parameter direction.

public: virtual SPAinterval sphere::param_range_v (
SPAbox const& /I box name
=* (SPAbox*) NULL_REF
) const;

Returns the parameter ranges of the portion of a surface that lies within the
given box in as-parameter direction.

public: virtual SPApar_vec sphere::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& /| parameter position
) const;

Finds the rate of change in surface parameter corresponding to a unit
velocity in a given object-space direction at a given position in parameter
space.

public: virtual logical sphere::periodic_u () const;

Reports whether the surface is periodic inukgarameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A sphere is not
periodic in theu-direction.

public: virtual logical sphere::periodic_v () const;

Reports whether the surface is periodic invkgarameter direction; i.e., it
is smoothly closed, so faces can run over the seam. A sphere is not
periodic in thev-direction.

public: virtual double sphere::point_cross (

SPAposition const&, /I position

SPAunit_vector const&, // direction

SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF

) const;

Returns the curvature of a curve in the surface through a given point
normal to a given direction in the surface. The curvature of a sphere is
1/radius in all directions, at all locations.

Kernel R10

public: virtual SPAunit_vector sphere::point_normal (

SPAposition const&, /I position

SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF

) const;

Returns the surface normal at a given point on the surface.

public: virtual void sphere::point_perp (

SPAposition const&, /I first position
SPAposition&, /l second position
SPAunit_vector&, /I direction
surf_princurv&, /I surf. principle curve
SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF,
SPApar_pos& /| parameter position
= * (SPApar_pos*) NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Finds the point on the surface nearest to the given point. Optionally, the
function may determine the normal to and principal curvatures of the
surface at that point. If the surface is parametric, also return the parameter
values at the found point.

public: void sphere::point_perp (
SPAposition const& pos, /I position
SPAposition& foot, /I foot position
SPApar_pos const& param_guess // possible param
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual /[actual param
= * (SPApar_pos*) NULL_REF,

logical f_weak /I weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

Kernel R10

public: void sphere::point_perp (

SPAposition const& pos, /I position
SPAposition& foot, /I foot position
SPAunit_vector& norm, /I direction

SPApar_pos const& param_guess // possible param
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual /I actual param
= * (SPApar_pos*) NULL_REF,

logical f_weak /I weak flag
= FALSE

) const;

Finds the point on the surface nearest to the given point. Optionally, the
function may determine the normal to the surface at that point. If the
surface is parametric, also return the parameter values at the found point.

public: surf_princurv sphere::point_prin_curv (
SPAposition const& pos, /I position
SPApar_pos const& param_guess// parameter
= * (SPApar_pos*) NULL_REF// position
) const;

Finds the principal axes of curvature of the surface at a given point, and
the curvatures in those directions.

public: virtual void sphere::point_prin_curv (

SPAposition const&, /I position
SPAunit_vector&, /I first axis direction
double&, /I curvature in first
/I direction
SPAunit_vector&, /l second axis direction
double&, /I curvature in second
/I direction
SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF
) const;

Finds the principal axes of curvature of the surface at a given point, and
the curvatures in those directions.

public: void sphere::restore_data ();

Kernel R10

Restore the data forsphere from a save file.

read_position Center of sphere
read_real Radius of sphere
if (restore_version_number < SURFACE_VERSION)

/I Old style — that is all to read.

else
read_unit_vector uv xaxis
read_unti_vector pole direction f-axis)
read_logical Reverse v; either “forward_v” or
“reversed_v”
surface::restore_data Restore remainder of surface data

public: virtual void sphere::save () const;

Saves the type or id, then cadbve_data.

public: void sphere::save_data () const;

Saves the information faphere in the save file.

public: virtual logical sphere::singular_u (
double /I constant u-parameter
) const;

Reports whether the surface parameterization is singular at the specified
u-parameter value. A sphere is singulauiat both poles.

public: virtual logical sphere::singular_v (
double /I constant v-parameter
) const;

Reports whether the surface parameterization is singular at the specified
v-parameter value. A sphere is not singulav emywhere.

public: virtual logical sphere::test_point_tol (

SPAposition const&, /I position
double /I parameter
= O’
SPApar_pos const& /| parameter position
= * (SPApar_pos*) NULL_REF,
SPApar_pos& /I parameter
= * (SPApar_pos*) NULL_REF
) const;

Kernel R10

Internal Use:

Related Fncs:

Kernel R10

Tests whether a point lies on the surface, to user-supplied precision.

public: virtual int sphere::type () const;

Returns the type afphere.

public: virtual char const*
sphere::type_name () const;

Returns the stringsphere”.

public: virtual logical sphere::undef () const;

Verifies if the sphere is properly defined.

public: virtual curve* sphere::u_param_line (
double /I constant v-parameter
) const;

Constructs a parameter line on the surface.

A u-parameter line runs in the direction of increasiquarameter, at

constant v. The parameterization in the nonconstant direction matches that
of the surface, and has the range obtained by useraf_range_u. The

new curve is constructed in free store, so it is the responsibility of the
caller to ensure that it is correctly deleted.

public: virtual curve* sphere::v_param_line (
double /[constant u-parameter
) const;

Constructs a parameter line on the surface.

A v-parameter line runs in the direction of increasing v, at constant u. The
parameterization in the nonconstant direction matches that of the surface,
and has the range obtained by uspashm_range_v. The new curve is
constructed in free store, so it is the responsibility of the caller to ensure
that it is correctly deleted.

full_size

restore_cone

SPLINE

Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

Limitations:
References:

Data:

friend: sphere operator* (

sphere const&, /I sphere name
SPAtransf const& /I transform to use
);

Transforms a sphere surface.

Model Geometry, SAT Save and Restore
Defines a parametric surface as an object in the model.

SPLINE : SURFACE : ENTITY : ACIS_OBJECT : —
“spline”
kern/kernel/kerndata/geom/spline.hxx

SPLINE is a model geometry class that contains a pointer to a (lowercase)
spline, the corresponding construction geometry class. In general, a model
geometry class is derived froBNTITY and is used to define a permanent
model object. It provides model management functionality, in addition to
the geometry definition.

SPLINE is one of several classes derived frBWRFACE to define a
specific type of surface. Thspline class holds a pointer tosal_sur and a
logical denoting the sense of the stored surfaceplAsur also contains a
use count and a detailed parametric surface description.

Along with the usuaBURFACE andENTITY class methodsSPLINE has
member methods to provide access to specific implementations of the
geometry. For example, a spline can be transformed, resulting in another
surface. All access to the surface data is through methods feplife

class.

A use count allows multiple references tSRLINE. The construction of a

new SPLINE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

None

KERN spline

None

Kernel R10

Constructor:

Destructor:

Methods:

Kernel R10

public: SPLINE::SPLINE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloadsd

operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SPLINE::SPLINE (
spline const& /I spline object

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloadeew operator, because this

reserves the memory on the heap, a requirement to support roll back and
history management.

public: virtual void SPLINE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. Tlhee methods for attached attributes
are also called.

protected: virtual SPLINE::~SPLINE ();

This G+ destructor should never be called directly. Instead, applications
should use the overloadé&mbe method inherited from thENTITY class,
because this supports history management. (For exarspieyw

SPLINE(...) then lateix—>lose.)

protected: virtual logical
SPLINE::bulletin_no_change_vf (

ENTITY const* other, /I other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data — called by
bulletin_no_change. For theidentical_comparator argument to b& RUE
requires an exact match when comparing doubles and returns the result of
memcmp as a default (for non—overridden subclasges) SE indicates
tolerant compares and retulR&LSE as a default.

public: virtual void SPLINE::debug_ent (
FILE* /I file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: surface const& SPLINE::equation () const;

Returns thesurface equation if theSPLINE for reading only.

public: surface& SPLINE::equation_for_update ();

Returns a pointer tsurface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calimckup to put an entry on the

bulletin board.

public: virtual int SPLINE::identity (
int /I level
=0
) const;

If level is unspecified or 0, returns the type identi®&&LINE_TYPE. If
level is specified, returnSPLINE_TYPE for that level of derivation from
ENTITY. The level of this class is defined SBLINE_LEVEL .

public: virtual logical SPLNE::is_deepcopyable (
) const;

ReturnsTRUE if this can be deep copied.

public: SPAbox SPLINE::make_box (

LOOP*, /I list of LOOPs
SPAtransf const* t /[for future use
= NULL,
logical tight_box /I for future use
= FALSE,
SPAbox* untransformed_box// for future use
= NULL
) const;

Kernel R10

Kernel R10

Creates a boundingpx for thissurface that is surrounded by a loop of
EDGESs. Thebox contains the complete underlyisgrface, and ignores
the boundingEDGES. If thesurface is kept minimal, this is sufficient.

public: void SPLINE::operator*= (
SPAtransf const& /I transform

);

Transforms th&PLINE in place. Before performing a change it checks
whether the data structure is posted on the bulletin board. If not, the
routine callshackup to put an entry on the bulletin board.

public: void SPLINE::restore_common ();

The RESTORE_DEF macro expands to threstore_common method,

which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

if (restore_version_number < SURFACE_VERSION)
/I Old style — the reverse bit was read explicitly, and
/I forgotten when reading a lower—case spline normally.

read_int Reverse bit
spline::restore_data Low-level spline surface geometry
definition.
if (reverse bit)
spline::negate Change definition of underlying
spline.

public: void SPLINE::set_def (
spline const& /I spline

);

Sets the definition spline to the given spline. Before performing a change
it checks whether the data structure is posted on the bulletin board. If not,
the routine calldbackup to put an entry on the bulletin board.

Internal Use:

Related Fncs:

spline
Class:
Purpose:

Derivation:

SAT ldentifier:

Filename:

Description:

public: surface* SPLINE::trans_surface (

SPAtransf const& /I transform
= * (SPAtransf*) NULL_REF,
logical Il reversed

= FALSE
) const;

Returns a newurface that is the spline of thBPLINE. If the SPAtransf is
nonNULL, it is transformed. Ifogical is TRUE, it is reversed isense.

public: virtual const char*
SPLINE::type_name () const;

Returns the stringspline”.

full_size

is_SPLINE

Construction Geometry, SAT Save and Restore
Records a B—spline surface.

spline : surface : ACIS_OBJECT : —
“spline”
kern/kernel/kerngeom/surface/spldef.hxx

The spline class represents a parametric surface that maps a rectangle
within a 2D real vector space (parameter space) into a 3D real vector
space (object space). This mapping must be continuous, and one-to-one
except possibly at the boundary of the rectangle in parameter space. It is
differentiable twice, and the normal direction is continuous, though the
derivatives need not be. The positive direction of the normal is in the
sense of the cross product of the partial derivatives with respeenidyv

in that order. The portion of the neighborhood of any point on the surface
that the normal points to is outside the surface, and the other part is inside.

Opposite sides of the rectangle can map into identical lines in object
space, in which case the surface is closed in the parameter direction
normal to those boundaries. If the parameterization and derivatives also
match at these boundaries, the surface is periodic in this parameter
direction. The line in object space corresponding to the coincident
boundaries is known as the seam of a periodic surface.

Kernel R10

If a surface is periodic in one parameter direction, it is defined for all
values of that parameter. A parameter value outside the domain rectangle
is brought within the rectangle by adding a multiple of the rectangle’s
width in that parameter direction, and the surface evaluated at that value.
If the surface is periodic in both parameters, it is defined for all parameter
pairs (,V), with reduction to standard range happening with both
parameters.

One side of the rectangle can map into a single point in object space. This
point is a parametric singularity of the surface. If the surface normal is not
continuous at this point, it is a surface singularity.

The spline contains a “reversed” bit together with a pointer to another
structure, aspl_sur or something derived from it, that contains the bulk of
the information about the surface.

Providing this indirection serves two purposes. First, when a spline is
duplicated, the copy simply points to the saspk sur and does not copy
the bulk of the data. The system maintains a use count inspacir.
This allows automatic duplication if a shargd_sur is to be modified,
and deletes angpl_sur no longer accessible.

Second, thepl_sur contains virtual functions to perform all spline
operations defined that depend on the method of definition of the true
surface. Therefore, new surface types can be defined by declaring and
implementing derived classes. The spline and everything using it require
no changes to make use of the new definition.

Limitations: None

References: KERN discontinuity_info, spl_sur
by KERN SPLINE, spl_sur, sub_spl_sur

Data:
None

Constructor:
public: spline::spline ();

C++ allocation constructor requests memory for this object but does not

populate it.

public: spline::spline (
bs3_surface /I bs3 surface

);

Kernel R10

Destructor:

Methods:

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Construct a spline from las3_surface, which is the type that represents

the fundamental parametric surface. The resulting spline surface is taken
to be exactly thds3_surface supplied. After construction, the

bs3_surface is owned by the spline object, so should not be reused or
deleted by the caller.

public: spline::spline (
spline const& /lgiven spline

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: spline::spline (
spl_sur* /I spline surface

);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Construct a spline from a pointer to an underlydpt sur (usually in fact
a class derived from it). This adds one new reference tspthsur, for
the purposes of eventual deletion.

public: virtual spline::~spline ();

C++ destructor, deleting spline.

public: virtual int spline::accurate_derivs (
SPApar_box const& /I default to the surface
= * (SPApar_box*) NULL_REF
) const;

Return the number of derivatives tleagluate can find accurately and
fairly directly, rather than by finite differencing, over the given portion of
the surface. If there is no limit to the number of accurate derivatives,
returns the valudLL_SURFACE_DERIVATIVES.

Kernel R10

Kernel R10

public: virtual const double*
spline::all_discontinuities_u (
int& n_discont, /I number of disc
int order /I order

);

Returns in a read-only array the number and parameter values of
discontinuities of the surface, up to the given order (maximum three).

public: virtual const double*
spline::all_discontinuities_v (
int& n_discont, /I number of disc
int order /I order

);

Returns in a read-only array the number and parameter values of
discontinuities of the surface, up to the given order (maximum three).

public: SPAbox spline::bound (

SPAtransf const&, /I transform

SPApar_box const& /I parameter range
= * (SPApar_box*) NULL_REF

) const;

Return a box around the spline. This is retained for historical reasons—it
exactly parallels the previous virtual function.

public: virtual SPAbox spline::bound (

SPAbox const&, /I object space box
SPAtransf const& /I transform

= * (SPAtransf*) NULL_REF
) const;

Return a box that encloses the portion of the surface that lies within the
given box after transformation.

public: virtual SPAbox spline::bound (
SPApar_box const& /I parameter range
= * (SPApar_box*) NULL_REF,
SPAtransf const& /I transform
= * (SPAtransf*) NULL_REF
) const;

Return a box that encloses the portion of the surface within the given
range after transformation.

public: virtual void spline::change_event ();
Notifies the derived type that the surface has been changed (e.g. the

subset_range has changed) so that it can update itself.

public: virtual check_status_list* spline::check (

const check_fix& input /I flags for
= * (const check_fix*) /I allowed
NULL_REF, [lfixes
check_fix& result /I fixes applied
= * (check_fix*) NULL_REF,
const check_status_list* /I checks to be
= (const check_status_list*)// made, default
NULL_REF Il is none
)i

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: virtual logical spline::closed_u () const;

Report whether the surface is closed, smoothly or not, in-fle@ameter
direction.

public: virtual logical spline::closed_v () const;
Report whether the surface is closed, smoothly or not, in-gfaameter

direction.

public: logical spline::contains_pipe () const;

Kernel R10

ReturnsTRUE if this spline depends on a pipe surface.

public: virtual void spline::debug (

char const*, /I title line

FILE* /I file
= debug_file_ptr

) const;

Print out details of a spline.

public: virtual surface* spline::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual const double*
spline::discontinuities_u (

int& n_discont, /I number of discont
int order /I spline order
) const;

Returns the number and parameter values of discontinuities of the surface
of the given order (maximum three) in a read-only array.

public: virtual const double*
spline::discontinuities_v (

int& n_discont, /I number of discont
int order /I spline order
) const;

Returns the number and parameter values of discontinuities of the surface
of the given order (maximum three) in a read-only array.

public: virtual int spline::discontinuous_at_u (
double u /I location
) const;

Kernel R10

Returns whether a particular parameter value is a discontinuity.

public: virtual int spline::discontinuous_at_v (

double v
) const;

/I location

Returns whether a particular parameter value is a discontinuity.

public: virtual void spline::eval (
SPApar_pos const& uv,
SPAposition& pos,
SPAvector* dpos
= NULL,

SPAvector* ddpos
= NULL

) const;

/| parameter
/I position
/I 1st derivatives array
/I length 2 in order xu,
Il xv
/I second derivatives -
/I array of length 3 in
/I order xuu, xuv, Xvv

Find the position and first and second derivatives of the surface at given

parameter values.

public: virtual int spline::evaluate (

SPApar_pos const&,
SPAposition&,

SPAvector**
= NULL,
int
= O’

evaluate_surface_quadrant

= evaluate_surface_unknown

) const;

/I param value
/I pt on surface
/I at given
/I parameter
/Il array of ptrs
/I to arrays
/I of vectors.
/I # derivatives
/Il required (nd)
/I the evaluation
/I loc. above,
/I below for each
/I parameter
/I direction,
/l or don't care.

Kernel R10

Kernel R10

Calculates derivatives, of any order up to the number requested, and stores
them in vectors provided by the user. Any of the pointers mayuie , in

which case the corresponding derivatives will not be returned. Otherwise
they must point to arrays long enough for all the derivatives of that order;
i.e., 2 for the first derivatives, 3 for the second, etc.

public: virtual int spline::evaluate_iter (
SPApar_pos const&, /I parameter position
surface_evaldata*, /I data supplying
/I initial values,
/I and set to reflect
/I the results of
/I this evaluation

SPAposition&, /I point on curve at
/I given parameter
SPAvector** /I array of pointers
= NULL, /I to vectors, of

/I size nd. Any of
/I the pointers may
/I be null, in which
/I case the
/I corresponding
/I derivative will
/I not be returned
int /I number of
=0, /I derivatives
Il required (nd)
evaluate_surface_quadrant /I evaluation
/I location — above,
/I below, don’t care
= evaluate_surface_unknown
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation, for use as
initial values for any iteration involved.

public: virtual double spline::eval_cross (

SPApar_pos const&, /I parameter
SPAunit_vector const& /I curve normal
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface with given parameter values. The cross-section curve is
determined by the intersection of the surface with a plane passing through
the point on the surface and with given normal.

public: virtual SPAunit_vector spline::eval_normal (
SPApar_pos const& /I parameter value
) const;

Finds the normal to the spline at the point with given parameter values.

public: virtual SPAunit_vector spline::eval_outdir (
SPApar_pos const& /I parameter value
) const;

Find an outward direction from the surface at a point with given parameter
values.

public: virtual SPAposition spline::eval_position (
SPApar_pos const& /| parameter values
) const;

Finds the point on the spline with given parameter values.

public: surf_princurv spline::eval_prin_curv (
SPApar_pos const& param // parameter value
) const;

Finds the principal axes of curvature of the surface at a point.

public: virtual void spline::eval_prin_curv (

SPApar_pos const&, /I parameter value
SPAunit_vector&, /I first axis direction
double&, /I 1st direction

/I curvature

/I direction
SPAunit_vector&, /l second axis direction
double& /I second direction

/I curvature
) const;

Finds the principal axes of curvature of the surface at a point with given
parameter values, and the curvatures in those directions.

Kernel R10

public: double spline::fitol () const;

Returns the fit tolerance of ths3_curve to the true spline surface.

public: virtual const discontinuity_info&
spline::get_disc_info_u() const;

Returns read—-only access to thisc_info objects.

public: virtual const discontinuity_info&
spline::get_disc_info_v() const;

Returns read-only access to thisc_info objects.

public: virtual curve* spline::get_path () const;

Returns the sweep path curve for thpdine.

public: virtual sweep_path_type
spline::get_path_type () const;

Returns the sweep path type for thidine.

public: virtual curve* spline::get_profile (
double /I parameter
) const;

Returns the sweep profile curve for thine.

public: virtual law* spline::get_rail () const;

Returns the sweep rail law for ttgpline.

public: spl_sur const& spline::get_spl_sur () const;

Returns defining spline surface and should only be used when absolutely

necessary.

public: virtual logical
spline::left_handed_uv () const;

Kernel R10

Indicates whether the parameter coordinate system of the surface is right
or left-handed. With a right-handed system, at any point the outward
normal is given by the cross product of the increashdgection with the
increasingv-direction, in that order. With a left-handed system the
outward normal is in the opposite direction from this cross product.

public: virtual surface* spline::make_copy () const;

Makes a copy of thispline on the heap, and returns a pointer to it.

public: virtual surface_evaldata*
spline::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

public: void spline::make_single_ref ();

Makes a single reference to tisigine.

public: virtual surface& spline::negate ();

Negates thispline.

public: virtual surf_normcone spline::normal_cone (

SPApar_box const&, /I parameter bounds
logical /I approx. ok?
= FALSE,
SPAtransf const& /I transformation
= * (SPAtransf*) NULL_REF
) const;

Return a cone bounding the normal direction of the surface. The cone is
deemed to have its apex at the origin, and has a given axis direction and
(positive) half-angle. If the logical argumentTiRUE, then a quick
approximation may be found. The approximate result may lie wholly
within or wholly outside the guaranteed bound (obtained wiRAL:SE
argument), but may not cross from inside to outside. Flags in the returned
object indicate whether the cone is in fact the best available, and if not
whether this result is inside or outside the best cone.

Kernel R10

Kernel R10

public: virtual surface& spline::operator*= (
SPAtransf const& /I transformation

);

Transforms this spline by the given transformation.

public: spline spline::operator— () const;

Returns a surface with a reversed sense.

public: spline& spline::operator= (
spline const& /I spline name

);

Copies the spline record, and adjust the use counts of the underlying
information to suit.

public: virtual logical spline::operator==
surface const& /I surface to be compared
) const;

This, like testing floating point numbers for equality, is not guaranteed to
sayequalfor effectively equal surfaces, but is guaranteed tonsayequal

if they are indeed not equal. The result can be used for optimization, but
not where it really matters. The default always saytsequal for safety.

public: virtual SPApar_pos spline::param (

SPAposition const&, /I position

SPApar_pos const& /I initial guess
= * (SPApar_pos*) NULL_REF

) const;

Finds the parameter values of a point on a 3D B—spline surface, iterating
from the given parameter values (if supplied).

public: virtual logical spline::parametric () const;

Indicates if the surface is parametric. AlWaRUE for splines.

public: virtual double
spline::param_period_u () const;

Returns the period of a periodic parametric surface, 0 if the surface is not
periodic in theu-parameter or not parametric.

public: virtual double
spline::param_period_v () const;

Returns the period of a periodic parametric surface, 0 if the surface is not
periodic in thev-parameter or not parametric.

public: virtual SPApar_box spline::;param_range (
SPAbox const& /I region of interest
=* (SPAbox*) NULL_REF
) const;

Returns the principal parameter range of a parametric surface in a chosen
parameter direction. For a nonparametric surface, the range is returned as
the empty interval or box. A periodic surface is defined for all parameter
values in the periodic direction, by reducing the given parameter modulo
the period into this principal range. For a surface open or nonperiodic in
the chosen direction the surface evaluation functions are defined only for
parameter values in the returned range. If a box is provided, the parameter
range returned may be restricted to a portion of the surface that is
guaranteed to contain all portions of the surface that lie within the region
of interest. If none is provided, and the parameter range in some direction
is unbounded, then conventionally an empty interval is returned.

public: virtual SPAinterval spline::;param_range_u (
SPAbox const& /I region of interest
=* (SPAbox*) NULL_REF
) const;

Refer to previous description.
public: virtual SPAinterval spline::;param_range_v (
SPAbox const& /I region of interest

= * (SPAbox*) NULL_REF
) const;

Refer to previous description.

Kernel R10

Kernel R10

public: virtual SPApar_vec spline::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& /| parameter
) const;

Finds the change in surface parameter corresponding to a unit offset in a
given direction at a given position.

public: virtual logical spline::periodic_u () const;

Reports whether a parametric surface is periodic iutharameter
direction; i.e., it is smoothly closed, so faces can run over the seam.

public: virtual logical spline::periodic_v () const;
Reports whether a parametric surface is periodic irv-jmerameter

direction; i.e., it is smoothly closed, so faces can run over the seam.

public: virtual logical spline::planar (

SPAposition&, /I location
SPAunit_vector& /I unit vector
) const;

Determines whether spline is planar.

public: virtual double spline::point_cross (

SPAposition const&, /I position

SPAunit_vector const&, // direction

SPApar_pos const& /[initial param guess
= * (SPApar_pos*) NULL_REF

) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface closest to the given point, iterating from the given parameter
values (if supplied). The cross-section curve is determined by the
intersection of the surface with a plane passing through the point on the
surface and with given normal.

public: virtual SPAunit_vector spline::point_normal (

SPAposition const&, /I position

SPApar_pos const& /I parameter guess
= * (SPApar_pos*) NULL_REF

) const;

Finds the normal to the surface at the given point.

public: virtual SPAunit_vector spline::point_outdir (

SPAposition const&, /I position

SPApar_pos const& /| parameter guess
= * (SPApar_pos*) NULL_REF

) const;

Finds an outward direction from the surface at a point on the surface
nearest to the given point. Normally just the normal, but nonzero at a
singularity.

public: virtual void spline::point_perp (

SPAposition const&, /I given position
SPAposition&, // position on a surface
SPAunit_vector&, /I surface normal
surf_princurv&, Il principal curvature
SPApar_pos const& /I parameter guess
= * (SPApar_pos*) NULL_REF,
SPApar_pos& /I actual parameter
= * (SPApar_pos*) NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Finds the point on the surface nearest to the given point and the normal to
and principal curvatures of the surface at that point. If the surface is
parametric, also return the parameter values at the found point.

public: void spline::point_perp (
SPAposition const& pos, // given position

SPAposition& foot, /Il position on a surface
SPApar_pos const& /| parameter position
param_guess /| parameter guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& param_actual// actual parameter
= * (SPApar_pos*) NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

Kernel R10

public: void spline::point_perp (
SPAposition const& pos, // given position

SPAposition& foot, /l position on a surface

SPAunit_vector& norm, /I surface normal

SPApar_pos const& /| parameter position
param_guess /I parameter guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& param_actual// actual parameter
= * (SPApar_pos*) NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Finds the point on the surface nearest to the given point. If the surface is
parametric, also return the parameter values at the found point.

public: surf_princurv spline::point_prin_curv (
SPAposition const& pos, // position

SPApar_pos const& /| parameter position
param_guess /I possible parameter
= * (SPApar_pos*) NULL_REF

) const;

Find the principal curvatures at a given point, returning the values in a
struct. Just uses the other (virtual) principal curvature function.

public: virtual void spline::point_prin_curv (

SPAposition const&, /I position
SPAunit_vector&, /I first axis direction
double&, /I curvature in first
/I direction
SPAunit_vector&, /l second axis direction
double&, /I curvature in second
/I direction
SPApar_pos const& /| parameter guess
= * (SPApar_pos*) NULL_REF
) const;

Find the principal axes of curvature of the surface at a given point, and the
curvatures in those directions.

Kernel R10

public: void spline::reparam (

double, /I new start u parameter
double, /I new end u parameter
double, /I new start v parameter
double /I new end v parameter
);

Reparameterizes the curve.

public: void spline::reparam_u (

double, /I new start u parameter
double /l new end u parameter
);

Reparameterizes the curveun

public: void spline::reparam_v (

double, /I new start v parameter
double /I new end v parameter
);

Reparameterizes the curvevin

public: void spline::restore_data ();
Restore the data forspline from a save file.

if (restore_version_number < SPLINE_VERSION)
/I Just restore as an exact spline.
(spl_sur *)dispatch_restore_subtype("sur”, "exactsur”)
else
read_logical Reverse flag; either “forward” or
“reversed”
/I Switch to the right restore routine, using the standard
/I system mechanism. Note that the argument is to enable
/l the reader to distinguish old—style types where "exact”
/I was both an int_cur and a spl_sur. They are now "exactcur”
/I and "exactsur”.
(spl_sur *)dispatch_restore_subtype("sur”
surface::restore_data Fix the underlying surface

public: logical spline::reversed () const;

Kernel R10

Kernel R10

Determines if the underlying sculptured (spline) surface is in the opposite
direction of the ACIS spline surface. This function returRYJE if spline
surface is opposite.

public: virtual void spline::save () const;

Saves the type or id, then cadlve_data.

public: void spline::save_data () const;

Saves the information for thepline in the save file.

public: const eval_sscache_entry*
spline::search_eval_cache (
const SPAposition& pos // position to evaluate
) const;

Searches the underlying cache for an entry at the given position. Returns
the matching eval entry if this is found, ULL otherwise.

public: void spline::set_sur (

bs3_surface, /I surface data

double fitol /I fit tolerance
=-1.0

);

Sets the surface information.

public: virtual logical spline::singular_u (
double /I constant u—parameter
) const;

Reports whether the surface parameterization is singular at the specified
u-parameter value. The only singularity recognized is where every value

of the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: virtual logical spline::singular_v (
double /I constant v—parameter
) const;

Reports whether the surface parameterization is singular at the specified
v-parameter value. The only singularity recognized is where every value

of the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: spline* spline::split_u (
double /I parameter

);

Divide a surface into two pieces atigparameter value. Returns a new
surface for the low-parameter side, and change the old one to represent the
high-parameter side.

public: spline* spline::split_v (
double /I parameter
)i
Divide a surface into two pieces av-gparameter value. Returns a new

surface for the low-parameter side, and change the old one to represent the
high-parameter side.

public: int spline::split_at_kinks_u (

spline**& pieces, /I pieces
double curvature = 0.0 // curvature
) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non—-G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the the pieces argument. The function returns the
count of split pieces.

public: int spline::split_at_kinks_v (

spline**& pieces, /I pieces
double curvature = 0.0 // curvature
) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non—-G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the the pieces argument. The function returns the
count of split pieces.

Kernel R10

public: spline* spline::subset (
SPApar_box const& /I parameter range
) const;

Constructs a new spline that is a copy of the part of the given one within
given parameter bounds.

public: bs3_surface spline::sur (
double tol /I tolerance
=-1.0
) const;

Returns (a pointer to) the underlying surfacelNOLL if none.

public: logical spline::sur_present () const;

ReturnsTRUE if there is underlying surface data.

public: virtual logical spline::test_point_tol (

SPAposition const&, /I position

double /I parameter
= O’

SPApar_pos const& /| parameter guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& /I actual parameter
= * (SPApar_pos*) NULL_REF

) const;

Tests whether a point lies on the surface, to user-defined tolerance.

public: virtual int spline::type () const;
Returns the type afpline.
public: virtual char const*
spline::type_name () const;
Returns string $pline_xxx” wherexxx is replaced witliype_names of the
underlyingspl_sur.

public: virtual logical spline::undef () const;

Kernel R10

Internal Use:

Related Fncs:

spl_sur
Class:
Purpose:

Indicates if the spline is improperly defined.

public: virtual curve* spline::u_param_line (
double /I u—parameter
) const;

Constructs ai-parameter line on the surface.ufparameter line runs in

the direction of increasing-parameter, at constantThe

parameterization in the nonconstant direction matches that of the surface,
and has the range obtained by uspashm_range _u. The new curve is
constructed in free store, so it is the responsibility of the caller to ensure
that it is correctly deleted.

public: virtual curve* spline::v_param_line (
double /I v—parameter
) const;

Constructs a-parameter line on the surface vAparameter line runs in
the direction of increasing at constanti. The parameterization in the
nonconstant direction matches that of the surface, and has the range
obtained by use gfaram_range_v. The new curve is constructed in free
store, so it is the responsibility of the caller to ensure that it is correctly
deleted.

full_size

restore_spline

friend: spline operator* (

spline const&, Il spline name
SPAtransf const& /I transformation
);

Transforms a spline surface.

Construction Geometry, SAT Save and Restore
Defines an abstract base class from which spline surface definitions are
derived.

Kernel R10

Derivation:
SAT ldentifier:
Filename:

Description:

Limitations:

References:

Data:

Kernel R10

spl_sur : subtrans_object : subtype_object : ACIS_OBJECT : —
spl_sur
kern/kernel/kerngeom/surface/spldef.hxx

In ACIS a sculptured surface is represented by the class spline, which
contains a pointer to an internal description cadlgldsur. Thespl_sur
further contains &s3_surface that is a pointer to a rational or nonrational,
nonuniform B—spline surface in the underlying surface package.

To support various types of surface construction, ACIS uses classes
derived from the internal representatigpi_sur. Also, surface classes can

be derived from the derived class to construct more complicated surfaces.
This section covers the base clagk sur along with the methods used to
create derived classes, rewritten per their specifications. The section also
presents the classes derived frgph sur and the construction method for
them.

This class contains the mathematical definition for a spline surface. It uses
use counts to limit copying, and it allows derivation to construct surfaces
that are only approximated by the3_surface. The base classpl_sur

contains the following information for defining the surface:

— A use count indicating the number of times #k sur is used.

— A pointer to &s3_surface, that represents the spline surface.

— Afitting tolerance representing the precision of the spline
approximation to the true surface.

Classes derived frompl_sur can contain additional information, and can
record the creation method of the true spline surface.

All functions defined for the spline class are supported by virtual functions
that depend on the true definition of the surface. The functionality is made
virtual to allow the derived surfaces to implement the functionality on

their own. For surfaces that have an exa& surface, there is no need to
implement the functionality because the methods written for the base class
are sufficient.

None

KERN discontinuity_info, summary_bs3_surface
by KERN spline, summary_bs3_surface

BASE SPAinterval

protected bs3_surface sur_data;
Object-space approximation to true surface.

protected closed_forms closed_in_u;

Takes the value®PEN, CLOSED or PERIODIC (or unset if thespl_sur
is undefined). If an approximating surface is presensyindata), the
closure of the approximating surface will be consistent.

protected closed_forms closed_in_v;

Takes the value®PEN, CLOSED or PERIODIC (or unset if thespl_sur
is undefined). If an approximating surface is presensyindata), the
closure of the approximating surface will be consistent.

protected discontinuity_info u_disc_info;
Storage for the discontinuities, if there are any.

protected discontinuity_info v_disc_info;
Storage for the discontinuities, if there are any.

protected double fitol_data;
The precision that the spline approximates the true surface.

protected SPAinterval u_range;

The full range of thepl_sur, as returned bparam_range_u. If an
approximating surface is present ¢ur_data), this range should be
identical to that of the approximating surface.

protected SPAinterval v_range;

The full range of thepl_sur, as returned bparam_range_u. If an
approximating surface is present ¢ur_data), this range should be
identical to that of the approximating surface.

protected logical calling_make_approx;
Prevents recursive calls to the mettmoake_approx.

protected singularity_type u_singularity;

Records whether the surface is singulav.ilf an approximating surface is
present (irsur_data), the singularities of the approximating surface will
be consistent.

protected singularity_type v_singularity;

Records whether the surface is singulaun.itf an approximating surface is
present (irsur_data), the singularities of the approximating surface will
be consistent.

protected summary_bs3_surface* summary_data;

bs3_surface data in summary form. This field may be set on restore, if the
full surface is not available. It may be used to make the actual
bs3_surface.

Kernel R10

Constructor:

Destructor:

Methods:

Kernel R10

protected: spl_sur::spl_sur ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: spl_sur::spl_sur (

bs3_surface, /I approximation surface
double /I fit tolerance

=0
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: spl_sur::spl_sur (
const spl_sur& /I spline surface

);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

public: spl_sur::spl_sur (

SPAinterval, /I u range
SPAinterval, /I v range
closed_forms, /I type of closure in u
closed_forms, /I type of closure in v
singularity_type, /I singularity type for u
singularity_type /I singularity type for v
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as arguments.

protected: virtual spl_sur::~spl_sur ();

C++ destructor, deleting spl_sur.

protected: virtual int spl_sur::accurate_derivs (
SPApar_box const& /I parameter box
= * (SPApar_box*) NULL_REF
) const;

Returns the number of derivatives tleatluate can find accurately and
directly, rather than by finite differencing, over the given portion of the
curve. If there is no limit to the number of accurate derivatives, this
method returns the valualLL_SURFACE_DERIVATIVES.

protected: virtual void spl_sur::append_u (
spl_sur& /I given surface

);

Concatenates the contents of two surfaces into one. the given surface
appends to the existing one alamgThe surfaces are guaranteed to be the
same base or derived type and to have contiguous parameter ranges (“this”
is the beginning part of the combined surface; i.e., lower parameter values,
the argument gives the end part).

protected: virtual void spl_sur::append_v (
spl_sur& /I given surface

);

Concatenates the contents of two surfaces into one. the given surface
appends to the existing one alongThe surfaces are guaranteed to be the
same base or derived type and to have contiguous parameter ranges (“this”
is the beginning part of the combined surface; i.e., lower parameter values,
the argument gives the end part).

protected: virtual SPAbox spl_sur::bound (
SPApar_box const& /I parameter box
= * (SPApar_box*) NULL_REF
)i

Returns a box around the surface. This need not be the smallest box which
contains the specified portion of the surface, but needs to balance the
tightness of the bound against the cost of evaluation.

protected: virtual void
spl_sur::calculate_disc_info ();

Calculates the discontinuity information for the surface.

Kernel R10

Kernel R10

protected: virtual check_status_list*
spl_sur::check (

const check_fix& input /I flags for

= * (const check_fix*) /I allowed

NULL_REF, /I fixes
check_fix& result /I fixes

= * (check_fix*) NULL_REF, // applied
const check_status_list* /I checks to

= (const check_status_list*)// be made

NULL_REF /I default none
)i

Check for any data errors in the curve, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the curve on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: logical
spl_sur::closed_u () const;

Determines if the surface is closed, smoothly or not, irutharameter
direction.

public: logical
spl_sur::closed_v () const;

Determines if the surface is closed, smoothly or not, irvgharameter
direction.

protected: virtual logical
spl_sur::contains_pipe () const;

ReturnsTRUE if this spl_sur depends on a pipe surface.

public: virtual subtrans_object*
spl_sur::copy () const = 0;

Constructs a duplicatpl_sur in free storage of this object, with a zero
use count.

protected: virtual void spl_sur::debug (

char const*, /I leader
logical, /I brief

FILE* /l output file
) const = 0;

Prints the definition of a spline surface to standard output or to the
specified file. As for save and restore the operation is split into two parts:
the virtual functiondebug prints a class-specific identifying line, then

calls the ordinary functiodebug_data to put out the details.

protected: void spl_sur::debug_data (

char const*, /I leader
logical, /I brief

FILE* /I output file
) const;

Prints out the details. Thiebug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own versiodeifug_data and may
use its parent’s instead. A string argument provides the introduction to
each displayed line and a logical sets brief output (normally removing
detailed subsidiary curve and surface definitions).

public: virtual spl_sur* spl_sur::deep_copy (
pointer_map* pm /I list of items within
= NULL /I the entity that are
/I already deep copied
) const = 0;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In adeepcopy, all the information about the copied item is self-contained
in a new memory block. By comparisonstaallow copy stores only the

first instance of the item in memory, and increments the reference count
for each copy.

Kernel R10

Kernel R10

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For exampléeep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.
protected: void spl_sur::delete_summary_data ();
Allows derived classes to deletemmary_data when it goes out of date.
protected: save_approx_level

spl_sur::enquire_save_approx_level () const;
Returns the default level at which the approximating surface should be

stored.

public: virtual void spl_sur::eval (

SPApar_pos const& uv, /I given parameter
SPAposition& pos, /I returned point
SPAvector* dpos, /I first derivative
SPAvector* ddpos /I second derivative
) const;

Finds the position and the first and second derivatives of the surface at a
specified point.

protected: virtual int spl_sur::evaluate (

SPApar_pos const&, /I parameter
SPAposition&, /I pt on surface
/I at a given
/I parameter
SPAvector** Il Array of ptrs
= NULL, /l to arrays of
/I vectors size
/I nd
int /I number of
=0, /I derivatives
/I required (nd)
evaluate_surface_quadrant /I eval. location
= evaluate_surface_unknown
) const;

Calculates position and derivatives. Once calculated the derivatives are
stored in vectors provided by the user. This method returns the number it
was able to calculate; this equals the number requested in all but the most
exceptional circumstances. A certain number are evaluated directly and
accurately; higher derivatives are automatically calculated by finite
differencing; the accuracy of these decreases with the order of the
derivative, as the cost increases. Any of the pointers majube, in

which case the corresponding derivatives will not be returned. Otherwise
they must point to arrays long enough for all the derivatives of that order;
i.e., 2 for the first derivatives, 3 for the second, etc.

protected: virtual int spl_sur::evaluate_iter (
SPApar_pos const&, /I parameter position
surface_evaldata*, /I data supplying
/I initial values,
/I and set to reflect
/I the results of
/I this evaluation

SPAposition&, /I point on surface
/I at given parameter
SPAvector** /I array of pointers
= NULL, /I to vectors, of

/I size nd. Any of
/I the pointers may
/I be null, in which
/I case the
/I corresponding
/I derivative will
/I not be returned
int /I number of
=0, /I derivatives
/I required (nd)
evaluate_surface_quadrant /I evaluation
/I location — above,
/I below, don’t care
= evaluate_surface_unknown
) const;

The evaluate_iter function is just likeevaluate, but is supplied with a data
object which contains results from a previous close evaluation for use as
initial values for any iteration involved.

Kernel R10

protected: int spl_sur::evaluate_iter_with_cache (
SPApar_pos const&, /I parameter
surface_evaldata*, /I data supplying initial
/l values, and set to
/I reflect results

SPAposition&, /I point on curve at
/I parameter
SPAvector** Il size nd array of
/I pointers to arrays of
/I vectors.
= NULL,
int /I Number of deriv’s req.
= O’

evaluate_surface_quadrant /I evaluation
/I location — above,
/I below, don’t care
= evaluate_surface_unknown
) const;

This non-virtual function looks in the cache for position and nd derivatives
at the given parameter value. If found it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_iter_with_cache method, rather thaevaluate_iter, should be

called by classes derived fraspl_sur, so as to get the benefit of caching.

protected: int spl_sur::evaluate_with_cache (

SPApar_pos const&, /I parameter

SPAposition&, /Il position at parameter

SPAvector** /I derivates at position
= NULL,

int /I nd number of deriv's
= O’

evaluate_surface_quadrant /I evaluation
/I location above, below
Il for each parameter
/I direction
= evaluate_surface_unknown
) const;

Kernel R10

This non-virtual function looks in the cache for position and nd derivatives
at the given parameter value. If found it returns them. Otherwise it
computes them, puts them in the cache, and returns them. The
evaluate_with_cache method, rather thasvaluate, should be called by
classes derived frompl_sur, so as to get the benefit of caching.

protected: virtual double spl_sur::eval_cross (

SPApar_pos const&, /I given parameter
SPAunit_vector const& /I given plane normal
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface with the given parameter values. The cross-section is defined
as the intersection of the surface with a plane passing through the point on
the surface and normal to the given direction, which must lie in the
surface.

protected: virtual SPAunit_vector
spl_sur::eval_normal (
SPApar_pos const& /I given parameter
) const;

Finds the normal to the surface at a given parameter.

protected: virtual SPAunit_vector

spl_sur::eval_outdir (
SPApar_pos const& /I given parameter
) const;

Return a direction which points outward from the surface. This should be
the outward normal if the point is not singular, otherwise a fairly arbitrary
outward direction.

public: virtual SPAposition spl_sur::eval_position (
SPApar_pos const& /I given parameter
) const;

Finds the point on the spline with the given parameter value.

Kernel R10

Kernel R10

protected: virtual void spl_sur::eval_prin_curv (

SPApar_pos const&, /I given parameter
SPAunit_vector&, /I first axis direction
double&, /I 1st direction

/I curvature
SPAunit_vector&, /l second axis direction
double& /I 2nd direction

/I curvature
) const;

Finds the principle axes of curvature of the surface at a point with given
parameter values and the curvatures in those directions.

protected: void spl_sur::eval_with_cache (

SPApar_pos const&, /I parameter
SPAposition&, /Il position at parameter
SPAvector*, /I 1st deriv
SPAvector* /I 2nd deriv

) const;

This non-virtual function looks in the cache for point perpendicular at the
given parameter value. If found it returns them. Otherwise it computes
them, puts them in the cache, and returns themeValewith_cache

method, rather thaeval, should be called by classes derived frgph sur,

SO as to get the benefit of caching.

public: double spl_sur::fitol () const;

Returns the fit tolerance for the approximatb®3_surface.

public: virtual curve* spl_sur::get_path () const;

Returns the sweep path curve for thp$ sur.

public: virtual sweep_path_type
spl_sur::get_path_type () const;

Returns the sweep path type for thig sur.
public: virtual curve* spl_sur::get_profile (

double /I parameter
) const;

Returns the sweep profile curve for thg_sur.

public: virtual law* spl_sur::get_rail () const;

Returns the sweep rail law for tgpl_sur.

protected: virtual void
spl_sur::incremental_make_approx (
double fit /I tolerance value for
/I approx. surface
/l to be made

);

Makes an approximating surface for an extergf@dsur incrementally
given an approximating surface for the origigpl_sur. The extension is
done first for the u/v direction, which is a smaller percentage of the
original range.

public: void spl_sur::invalidate_cache ();
Method to be called by any user who modifies the surface in an external

process, to ensure that stale evaluation results are discarded.

protected: logical spl_sur::iterate_perp (

SPAposition const&, /I given position
surface_evaldata*, /I surface

SPAposition&, /Il position on surface
SPAunit_vector&, /I normal to surface
surf_princurv&, Il principle curvature
SPApar_pos const&, /I guess parameter
SPApar_posé&, /I actual parameter
logical /I TRUE to iterate to a

/I (local) near—point
/I rather than any
/I perpendicular.

) const;

Support function fopoint_perp (andbs3_surface_perp). This method

finds a true perpendicular given an initial parameter guess, and avoiding
oscillations. It may be set to iterate to the nearest perpendicular of any sort
(minimum or maximum distance, or inflexion), or to find only minima
(which is sometimes more reliable when there are inflexions), and it
returns a success or failure indication.

Kernel R10

Kernel R10

public: logical spl_sur:iterate_perp (

SPAposition const&, /I given position
SPAposition&, /Il position on surface
SPAunit_vector&, /I normal to surface
surf_princurv&, /I principle curvature
SPApar_pos const&, /I guess parameter
SPApar_posé&, /I actual parameter
logical /I TRUE to iterate to a

/I (local) near—point
/I rather than any
/I perpendicular.

) const;

Support function fopoint_perp (andbs3_surface_perp). This method

finds a true perpendicular given an initial parameter guess, and avoiding
oscillations. It may be set to iterate to the nearest perpendicular of any sort
(minimum or maximum distance, or inflexion), or to find only minima
(which is sometimes more reliable when there are inflexions), and it
returns a success or failure indication.

protected: virtual logical
spl_sur::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is
right-handed or left-handed. With a right-handed system, at any point the
outward normal is given by the cross product of the increasitigection

with the increasing direction, in that order. With a left-handed system the
outward normal is in the opposite direction from this cross product

protected: virtual void spl_sur::make_approx (

double fit, /I fit tolerance

const spline& spl /I pointer to output
= * (spline*) NULL_REF,// spline approx.

logical force /I flag for forcing
= FALSE

) const;

Makes or remakes an approximation of the surface, within the given
tolerance.

protected: virtual surface_evaldata*
spl_sur::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

protected: virtual surf_normcone
spl_sur::normal_cone (

SPApar_box const& /I parameter box
= * (SPApar_box*) NULL_REF,

logical /I approx. results OK
= FALSE

)i

Returns a cone bounding the normal direction of the surface. The cone has
its apex at the origin, and it has a specified axis direction and
(positive)half-angle. Ifogical is TRUE, then an approximation is found.

The approximate result may lie wholly within or wholly outside the
guaranteed bound (obtained witALSE), but it may not cross from the

inside to the outside. Flags in the returned object indicate whether the cone
is in face the best available, and if the result is inside or outside the best
cone.

protected: virtual void spl_sur::operator*= (
SPAtransf const& /I transform

);

Transforms this spline by the specified transform.

protected: virtual logical spl_sur::operator==
subtype_object const& /I object sub-type
) const;

Tests two surfaces for equality. This does not guarantee to find all
effectively equal surfaces, but it does guarantee that different surfaces are
correctly identified as different.

protected: virtual SPApar_pos spl_sur::param (

SPAposition const&, /I given point

SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF

) const = 0;

Kernel R10

Kernel R10

Finds the parameter values of a point on a 3D B—spline surface, iterating
from the given parameter values, if supplied.

public: double
spl_sur::param_period_u () const;

Returns thei period of a periodic parametric surface, zero if the surface is
not periodic in thau direction.

public: double
spl_sur::param_period_v () const;

Returns they period of a periodic parametric surface, zero if the surface is
not periodic in they direction.

public: SPApar_box spl_sur::param_range (
SPAbox const& /I object space box
=* (SPAbox*) NULL_REF
) const;

Return the principal parameter range of a parametric surface i bath
v-parameter directions. For a nonparametric surface, the range is returned
as the empty interval or box.

A periodic surface is defined for all parameter values in the periodic
direction, by reducing the given parameter modulo the period into this
principal range. For a surface open or nonperiodic in the chosen direction
the surface evaluation functions are defined only for parameter values in
the returned range.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface which is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided, and the
parameter range in some direction is unbounded, then conventionally an
empty interval is returned.

public: SPAinterval spl_sur::param_range_u (
SPAbox const& /I object space box
=* (SPAbox*) NULL_REF
) const;

Return the principal parameter range of a parametric surface in the
u-parameter direction. For a nonparametric surface, the range is returned
as the empty interval or box. A periodic surface is defined for all
parameter values in the periodic direction, by reducing the given
parameter modulo the period into this principal range. For a surface open
or nonperiodic in the chosen direction the surface evaluation functions are
defined only for parameter values in the returned range.

public: SPAinterval spl_sur::param_range_v (
SPAbox const& /I object space box
=* (SPAbox*) NULL_REF
) const;

Return the principal parameter range of a parametric surface in the
v-parameter direction. For a nonparametric surface, the range is returned
as the empty interval or box. A periodic surface is defined for all
parameter values in the periodic direction, by reducing the given
parameter modulo the period into this principal range. For a surface open
or nonperiodic in the chosen direction the surface evaluation functions are
defined only for parameter values in the returned range.

protected: virtual SPApar_vec spl_sur::;param_unitvec

(
SPAunit_vector const&, // given unit offset
SPApar_pos const& /I given parameter
) const;

Finds the change in the surface parameter corresponding to a unit offset in
a given direction at a given position. The position and direction must both
lie in the surface.

protected: SPApar_pos spl_sur::param_with_cache (
SPAposition const&, /I given position
SPApar_pos const& /I return parameter
= * (SPApar_pos*)NULL_REF
)i

This non—virtual function looks in the cache for a given position. If found
it returns the parameter, otherwise it finds the parameter panag,

places it in the cache, and returns it. Paeam_with_cache method,

rather tharparam, should be called by classes derived fiamcur, so as

to get the benefit of caching.

Kernel R10

Kernel R10

public: logical spl_sur::periodic_u () const;

Determines if a parametric surface is periodic inuftrection. (i.e. it is
smoothly closed, so faces can run over the seam).

public: logical spl_sur::periodic_v () const;

Determines if a parametric surface is periodic invhgrection. (i.e. it is

smoothly closed, so faces can run over the seam).

protected: virtual logical spl_sur::planar (

SPAposition&, // point on surface
SPAunit_vector& /I axis direction
) const;

Reports whether a surface is planar.

protected: virtual double spl_sur::point_cross (

SPAposition const&, /I given point

SPAunit_vector const&, // normal to plane

SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF

) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface closest to the given point, iterating from the given parameter
values, if supplied. The cross-section is determined by the intersection of
the surface with a plane passing through the point on the surface and with
the given normal.

protected: virtual SPAunit_vector
spl_sur::point_normal (

SPAposition const&, /I given point

SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF

) const;

Finds the normal to the surface at the given point. This method returns
exactly 0 if the point is a singularity of the surface where there is no
well-defined normal.

protected: virtual SPAunit_vector
spl_sur::point_outdir (

SPAposition const&, /I given point

SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF

) const;

Returns a direction that points outward from the surface. This should be
the outward normal if the point is not singular, otherwise a fairly arbitrary
outward direction.

protected: virtual void spl_sur::point_perp (

SPAposition const&, /I given point
SPAposition&, // point returned
SPAunit_vector&, /I normal returned
surf_princurv&, Il principal curvature
SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF,
SPApar_pos& /I parameter returned
= * (SPApar_pos*) NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Finds the point on the surface nearest to the specified point, and
optionally, to the normal and the principal curvatures of the surface at that
point. If the surface is parametric, this method also returns the parameter
values at the found point.

protected: void spl_sur::point_perp_with_cache (

SPAposition const&, /I given point
SPAposition&, // point returned
SPAunit_vector&, /I normal returned
surf_princurv&, Il principle curvature
SPApar_pos const& /I guess parameter
= * (SPApar_pos*)NULL_REF,
SPApar_pos& /I parameter returned
= * (SPApar_pos*)NULL_REF,
logical f_weak /I weak flag
= FALSE
) const;

Kernel R10

Kernel R10

This non-virtual function looks in the cache for point perpendicular at the
given parameter value. If found it returns them. Otherwise it computes
them, puts them in the cache, and returns them. The
point_perp_with_cache method, rather thapoint_perp, should be called

by classes derived frospl_sur, so as to get the benefit of caching.

protected: virtual void spl_sur::point_prin_curv (

SPAposition const&, /I given point
SPAunit_vector&, /I first axis direction
double&, /I 1st curvature

/I direction
SPAunit_vector&, /l second axis direction
double&, /l 2nd curvature

/I direction
SPApar_pos const& /I surface

= * (SPApar_pos*) NULL_REF

) const;

Finds the principle axes of curvature of the surface at a specified point,
and the curvatures in those directions.

protected: virtual void spl_sur::reparam (

double, /I new start u parameter
double, /I new end u parameter
double, /I new start v parameter
double /I new end v parameter
);

Reparameterizes the curve.

protected: virtual void spl_sur::reparam_u (

double, /I new start u parameter
double /l new end u parameter
);

Reparameterizes the curve in u.

protected: virtual void spl_sur::reparam_v (

double, /I new start v parameter
double /I new end v parameter
);

Reparameterizes the curve in v.

protected: void spl_sur::restore_common_data ();
Restore the data forspl_sur from a save file.

if (restore_version_number >= APPROX_SUMMARY_VERSION)
read_enum Restore enumeration for
save_approx_level.
if (level == save_approx_full)
bs3_surface_restore Restore the surface data
if (restore_version_number < SPLINE_VERSION)
/I No fit tolerance to read
else
read_real Fit tolerance data
else if (level == save_approx_summary)
summary_bs3_surface:restore Restore the surface data

read_real Fit tolerance data
read_enum Restore enumeration for
closed_forms for u.
read_enum Restore enumeration for
closed_forms for v.
read_enum Restore enumeration for
singularity type for u.
read_enum Restore enumeration for
singularity _type for v.
else
read_interval Restore u range
read_interval Restore v range
read_enum Restore enumeration for
closed_forms for u.
read_enum Restore enumeration for
closed_forms for v.
read_enum Restore enumeration for
singularity type for u.
read_enum Restore enumeration for

singularity _type for v.
if (restore_version_number >= DISCONTINUITY_VERSION)
/I Restore the discontinuity information
discontinuity_info::restore u discontinuities
discontinuity_info::restore v discontinuities

protected: void spl_sur::save_as_approx () const;

Kernel R10

Saves an approximation of thpl_sur.

protected: void spl_sur::save_common_data (
save_approx_level /I level that spl_sur
/I is to be stored
) const;

Saves data common to apl_surs.

protected: virtual void spl_sur::save_data () const;

Save the information for thepl_sur to a save file.

protected: const eval_sscache_entry*
spl_sur::search_eval_cache (
const SPAposition& /Il position to evaluate
) const;

Searches the underlying cache for an entry at the given position. Returns
the matching eval entry if this is found, ULL otherwise.

protected: void spl_sur::set_sur (

bs3_surface, Il spline surface

double tol /I fit tolerance
=-1.0

);

Sets the particular spline surface.

protected: virtual void spl_sur::shift_u (
double /1 shift value

);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

protected: virtual void spl_sur::shift_v (
double /1 shift value

);

Kernel R10

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period.

public: logical spl_sur::singular_u (
double /I constant u—parameter
) const;

Reports whether the surface parameterization is singular at the specified

u parameter value. The only singularity recognized is where every value of
the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions.

public: logical spl_sur::singular_v (
double /I constant u—parameter
) const;

Reports whether the surface parameterization is singular at the specified

v parameter value. The only singularity recognized is where every value of
the nonconstant parameter generates the same object-space point, and
these can only occur at the ends of the parameter range as returned by the
functions above. A plane is nonsingular in both directions

protected: virtual int spl_sur::split_at_kinks (

spl_sur**& pieces, /I pieces

logical udir, /I u direction or not
double curvature = 0.0 // curvature

) const;

Divide a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split at its non—-G1
discontinuities, and if it is closed after this, it is then split into two. The
split pieces are stored in the pieces argument. The function returns the
count of split pieces.

protected: logical spl_sur::split_spl_sur_u (

double approx_par, /[approx. param. value
double real_par, /I real param. value
spl_sur*, /I spare spl_sur
spl_sur[2] /I resulting pieces

)i

Kernel R10

Kernel R10

Divides a surface into two pieces at the specified parameter value, except
that it provides an emptpl_sur in case it is needed. This method returns
TRUE if the spl_sur is used; otherwise, it returLSE. This method is

not externally called, but it is available for use by the derived class
implementation osplit_u.

Typically, the derived class implementationssplit_u/v call these

functions with a slightly different parameter to the one that they were
originally called with (the new parameter is obtained by relaxing from the
split point to the approximating surface, and so can be regarded as the
parameter on the approximating surface). This method takes both versions
of the parameter.

protected: logical spl_sur::split_spl_sur_v (

double approx_par, I/l approx. param. value
double real_par, /Il real param. value
spl_sur*, /I spare spl_sur
spl_sur[2] /I resulting pieces

)i

Divides a surface into two pieces at the specified parameter value, except
that it provides an emptpl_sur in case it is needed. This method returns
TRUE if the spl_sur is used; otherwise, it retur\LSE. This method is

not externally called, but it is available for use by the derived class
implementation okplit_v.

Typically, the derived class implementationssplit_u/v call these

functions with a slightly different parameter to the one that they were
originally called with (the new parameter is obtained by relaxing from the
split point to the approximating surface, and so can be regarded as the
parameter on the approximating surface). This method takes both versions
of the parameter.

protected: virtual void spl_sur::split_u (

double, /I parameter value
spl_sur[2] /I resulting pieces
)=0;

Divides a surface into two pieces at the specified parameter value. This
method returns a new surface for the low-parameter side, and changes the
old one to represent the high-parameter side.

protected: virtual void spl_sur::split_v (

double, /I parameter value
spl_sur*[2] /I resulting pieces
)=0;

Divides a surface into two pieces at the specified parameter value. This
method returns a new surface for the low-parameter side, and changes the
old one to represent the high-parameter side.

protected: virtual spl_sur* spl_sur::subset (
SPApar_box const& /I parameter box

);

Constructs a new spline that is a copy of the part of the original within the
given parameter bounds, unless this is not a proper subset, when returning
thethis pointer, or there is no overlap of the ranges, when retuiifid .

The ranges should not overlap at a single point in either parameter
direction—if they do, the whole parameter range in that direction is
assumed. This cannot benst because it sometimes retutthss as a

non-const pointer.

protected: int spl_sur::summary_nuknots () const;

Provides read-only access to thenots summary_data for derived
classes.

protected: int spl_sur::summary_nvknots () const;

Provides read-only access to thénots summary_data for derived
classes.

protected: const double*
spl_sur::summary_uknots () const;

Provides read-only access to thienots summary_data for derived
classes.

protected: const double*
spl_sur::summary_vknots () const;

Provides read-only access to thaots summary_data for derived
classes.

Kernel R10

Kernel R10

public: bs3_surface spl_sur::sur () const;

Returns thés3_surface approximation.

protected: virtual logical spl_sur::test_point_tol (

SPAposition const&, /I given point
double, /Il test tolerance
SPApar_pos const& /I guess parameter
= * (SPApar_pos*) NULL_REF,
SPApar_pos& /I actual parameter
= * (SPApar_pos*) NULL_REF
) const;

Tests whether a point lies on the surface, within a user-defined tolerance.

protected: virtual char const*
spl_sur::itype_name () const = 0;

Returns the stringspl_sur”.

protected: void spl_sur::update_data (
bs3_surface Il surface for update

);

Updates the range, closure and singularity information from a
bs3_surface.

protected: virtual curve* spl_sur::u_param_line (

double, /I constant v—parameter
spline const& /I owning surface
) const;

Constructs an iso-parameter line on the surface-pArameter line runs in

the direction of increasing-parameter, at constantThe

parameterization in the nonconstant direction matches that of the surface,
and it has the range obtained by the usgacdm_range_u.

protected: virtual curve* spl_sur::v_param_line (

double, /I constant v—parameter
spline const& /I owning surface
) const;

Constructs an isoparameter line on the surfaceparameter line runs in

the direction of increasing-parameter, at constant The

parameterization in the nonconstant direction matches that of the surface,
and it has the range obtained by the usgacdm_range_v.

Internal Use: deep_copy_elements, full_size

Related Fncs:
None

Kernel R10

