
Kernel R10

Chapter 37.
Classes Sr thru Sz

Topic: Ignore

standard_error_info
Class: Debugging

Purpose: Returns standard error information.

Derivation: standard_error_info : error_info : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/errorsys/stde_info.hxx

Description: This class contains standard error information, which is sufficient for use
in many circumstances. For example, when working in the Local
Operations Component, if unable to solve for an EDGE, the error
LOP_TWK_NO_EDGE will produce an outcome that points to a standard
error info object. The argument entity0 will be set to the EDGE in
question.

This class also contains flags that warn the user if the returned ENTITY
will be deleted on roll back.

Two overloaded versions of the function sys_error set a global pointer to
an error_info object. One version is passed an error_info object, and the
other creates a standard_error_info object when sys_error is passed one or
two ENTITYs. The standard_error_info class is derived from error_info,
which provides error data that is adequate in a majority of cases, such as
local operations and blending.

In the Local Ops, Remove Faces, and Shelling Components, the error_info
object returns an ENTITY that further specifies where the local operation
first fails, when such information is available. A standard_error_info
object is adequate for use in these components, and more detailed
information could be returned, if necessary, by deriving a new class.

Kernel R10

Limitations: None

References: KERN ENTITY

Data:
public ENTITY *entity0;
First entity with standard error information.

public ENTITY *entity1;
Second entity with standard error information.

public logical entity0_dead;
Flag that warns whether the returned entity0 will be deleted on rollback.

public logical entity1_dead;
Flag that warns whether the returned entity1 will be deleted on rollback.

Constructor:
public: standard_error_info::standard_error_info (

ENTITY* e0 // Pointer to first
= NULL, // entity with error

ENTITY* e1 // Pointer to second
= NULL // entity with error

);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
public: virtual

standard_error_info::~standard_error_info ();

C++ destructor, deleting a standard_error_info.

Methods:
public: static int standard_error_info::id ();

Identifies the standard error object.

public: virtual int
standard_error_info::type () const;

Returns the string “standard_error_info”.

Related Fncs:
None

Kernel R10

STRAIGHT
Class: Model Geometry, SAT Save and Restore

Purpose: Defines an infinite line as an object in the model.

Derivation: STRAIGHT : CURVE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “straight”

Filename: kern/kernel/kerndata/geom/straight.hxx

Description: STRAIGHT is a model geometry class that contains a pointer to a
(lowercase) straight, the corresponding construction geometry class. In
general, a model geometry class is derived from ENTITY and is used to
define a permanent model object. It provides model management
functionality, in addition to the geometry definition.

STRAIGHT is one of several classes derived from CURVE to define a
specific type of curve. The straight class defines an infinite line by a point
(SPAposition) on the line and its direction (SPAunit_vector).

Along with the usual CURVE and ENTITY class methods, STRAIGHT has
member methods to provide access to specific implementations of the
geometry. For example, methods are available to set and retrieve the root
point and direction of a line.

A use count allows references to multiple STRAIGHTs. The construction
of a new STRAIGHT initializes the use count to 0. Methods are provided
to increment and decrement the use count, and after the use count returns
to 0, the entity is deleted.

Limitations: None

References: KERN straight

Data:
None

Constructor:
public: STRAIGHT::STRAIGHT ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

Kernel R10

public: STRAIGHT::STRAIGHT (
SPAposition const&, // position
SPAunit_vector const& // unit vector
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Creates a STRAIGHT that passes through a given SPAposition and in the
direction of a given unit vector.

public: STRAIGHT::STRAIGHT (
straight const& // straight object
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument. Applications should call
this constructor only with the overloaded new operator, because this
reserves the memory on the heap, a requirement to support roll back and
history management.

Destructor:
public: virtual void STRAIGHT::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual STRAIGHT::~STRAIGHT ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
STRAIGHT(...) then later x–>lose.)

Methods:
protected: virtual logical

 STRAIGHT::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Kernel R10

Virtual function for comparing subclass data – called by
bulletin_no_change. For identical_comparator to be TRUE requires an
exact match when comparing doubles, and returns the result of memcmp
as a default (for non–overridden subclasses). FALSE indicates tolerant
compares and returns FALSE as a default.

public: virtual void STRAIGHT::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: SPAunit_vector const&
STRAIGHT::direction () const;

Returns the SPAunit_vector defining the direction of the line.

public: curve const& STRAIGHT::equation () const;

Returns the curve’s equation for reading only.

public: curve& STRAIGHT::equation_for_update ();

Returns the address of the curve’s equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: virtual int STRAIGHT::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier STRAIGHT_TYPE .
If level is specified, returns STRAIGHT_TYPE for that level of derivation
from ENTITY. The level of this class is defined as STRAIGHT_LEVEL .

public: virtual logical STRAIGHT::is_deepcopyable (
) const;

Kernel R10

Returns TRUE if this can be deep copied.

public: void STRAIGHT::operator*= (
SPAtransf const& // transform
);

Transforms a STRAIGHT. Before performing a change it checks whether
the data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: void STRAIGHT::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

straight::restore_data Low-level geometry definition for
a line.

public: SPAposition const&
STRAIGHT::root_point () const;

Returns a SPAposition defining a point on the line.

public: void STRAIGHT::set_direction (
SPAunit_vector const& // unit vector
);

Sets the STRAIGHT’s direction to the given SPAunit_vector. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: void STRAIGHT::set_root_point (
SPAposition const& // root point
);

Kernel R10

Sets the STRAIGHT’s root point to the given SPAposition. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: curve* STRAIGHT::trans_curve (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // reversed flag

= FALSE
) const;

Transforms the curve’s equation. If the logical is TRUE, the curve is
reversed.

public: virtual const char*
STRAIGHT::type_name () const;

Returns the string “straight”.

Internal Use: full_size

Related Fncs:
is_STRAIGHT

straight
Class: Construction Geometry, SAT Save and Restore

Purpose: Defines an infinite straight line represented by a point and a unit vector
specifying the direction.

Derivation: straight : curve : ACIS_OBJECT : –

SAT Identifier: “straight”

Filename: kern/kernel/kerngeom/curve/strdef.hxx

Description: This class defines an infinite straight line represented by a point and a unit
vector specifying the direction. A straight also has a scale factor for the
parameterization, so the parameter values can be made invariant under
transformation.

A straight line is an open curve that is not periodic. It is parameterized as:

Kernel R10

point = root_point + t* param_scale* direction

where t is the parameter.

Limitations: None

References: by KERN STRAIGHT
BASE SPAposition, SPAunit_vector

Data:
public SPAposition root_point;
A point through which the straight line passes.

public double param_scale;
The scaling factor for parameterization that allows fixed parameters
despite transformation.

public SPAunit_vector direction;
The tangent along the line. A NULL unit vector in an uninitialized straight
line.

Constructor:
public: straight::straight ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: straight::straight (
SPAposition const&, // point
SPAunit_vector const&, // direction
double // parameter scaling

= 1.0
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Creates a straight using a point, a direction, and a parameter scaling.

public: straight::straight (
straight const& // straight line
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

Destructor:
public: straight::~straight ();

C++ destructor, deleting a straight.

Methods:
public: virtual int straight::accurate_derivs (

SPAinterval const& // portion of
= * (SPAinterval*) NULL_REF // the curve

) const;

Returns the number of derivatives that evaluate can find accurately. For a
straight, any number of derivatives can be calculated (which are all zero
after the first) and so the value ALL_CURVE_DERIVATIVES is returned.

public: SPAbox straight::bound (
double start, // start point

// on the line
double end, // end point

// on the line
SPAtransf const& t // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box enclosing the two given points on the straight line. This
function is retained for historical reasons.

public: virtual SPAbox straight::bound (
SPAbox const&, // box
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box surrounding that portion of the curve within the given box.

public: virtual SPAbox straight::bound (
SPAinterval const&, // two given points

// represented as an
// interval

SPAtransf const& // transformation
= * (SPAtransf*) NULL_REF

) const;

Kernel R10

Return a box enclosing the two given points on the straight line.

public: virtual SPAbox straight::bound (
SPAposition const&, // first position
SPAposition const&, // second position
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Return a box enclosing the two given points on the straight line.

public: virtual logical straight::closed () const;

Indicates if a curve is closed. This function joins itself (smoothly or not) at
the ends of its principal parameter range. This function should always
return TRUE if periodic does.

public: virtual void straight::debug (
char const*, // title line
FILE* // file name

= debug_file_ptr
) const;

Outputs a title line and details about the straight line to the debug file or to
the specified file.

public: virtual curve* straight::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: virtual curve_boundcyl
straight::enclosing_cylinder (
const SPAinterval& // interval

= * (SPAinterval*) NULL_REF
) const;

Kernel R10

Returns a cylinder that encloses the portion of the curve bounded by the
interval.

public: virtual void straight::eval (
double, // parameter value
SPAposition&, // position
SPAvector& // first derivative

= * (SPAvector*) NULL_REF,
SPAvector& // second derivative

= * (SPAvector*) NULL_REF,
logical // take advantage of

// report orders, so
// values don’t
// have to be
// recomputed?

= FALSE,
logical // approx ok?

= FALSE
) const;

Evaluate the curve at a given parameter value, giving the position, and
first and second derivatives, all of which are optional.

public: virtual int straight::evaluate (
double, // parameter
SPAposition&, // point on curve at

// given parameter
SPAvector** // array of ptrs to

= NULL, // vectors, size nd.
// any of the ptrs
// may be null, =>
// corresponding
// derivative won’t
// be returned

int // # derivatives
= 0, // required (nd)

evaluate_curve_side // the evaluation
= evaluate_curve_unknown // location – above,

// below or don’t
// care

) const;

Kernel R10

Calculates derivatives, of any order up to the number requested, and store
them in vectors provided by the user. This function returns the number it
was able to calculate; this will be equal to the number requested in all but
the most exceptional circumstances. A certain number will be evaluated
directly and (more or less) accurately; higher derivatives will be
automatically calculated by finite differencing; the accuracy of these
decreases with the order of the derivative, as the cost increases.

public: virtual SPAvector straight::eval_curvature (
double, // parameter
logical // repeat order?

= FALSE,
logical // approx ok?

= FALSE
) const;

Returns the curvature at a given parameter value. This is always zero, so
all the arguments are ignored.

public: virtual double straight::eval_deriv_len (
double, // point
logical // repeat order?

= FALSE,
logical // approx ok?

= FALSE
) const;

Finds the magnitude of the derivative at the given parameter value on the
curve.

public: virtual curve_extremum*
straight::find_extrema (
SPAunit_vector const& // direction
) const;

Finds the extrema of the curve in the given direction. A straight line has
no extrema, so this method returns NULL.

public: virtual int straight::high_curvature (
double k, // maximum curvature
SPAinterval*& spans // interval list

) const;

Kernel R10

Finds regions of high curvature of the curve. This method stores an array
of intervals in spans argument over which the curvature exceeds k. It
returns the number of intervals stored.

public: law* straight::law_form ();

Returns the law form of the straight entity.

public: virtual double straight::length (
double, // start parameter
double // end parameter
) const;

Return the algebraic distance along the curve between the given
parameters, the sign being positive if the parameter values are given in
increasing order, and negative if they are in decreasing order. The result is
undefined if either parameter value is outside the parameter range of a
bounded curve. For a periodic curve the parameters are not reduced to the
principal range, and so the portion of the curve evaluated may include
several complete circuits. This function is therefore always a
monotonically increasing function of its second argument if the first is
held constant, and a decreasing function of its first argument if the second
is held constant.

public: virtual double straight::length_param (
double, // datum parameter
double // arc length
) const;

Returns the parameter value of the point on the curve at the given
algebraic arc length from that defined by the datum parameter. This
method is the inverse of the length method. The result is not defined for a
bounded nonperiodic curve if the datum parameter is outside the
parameter range, or if the length is outside the range bounded by the
values for the ends of the parameter range.

public: virtual curve* straight::make_copy () const;

Makes a copy of this straight on the heap, and returns a pointer to it.

public: virtual curve& straight::negate ();

Kernel R10

Negates this straight line (i.e., this method negates the direction).

public: virtual curve& straight::operator*= (
SPAtransf const& // transformation
);

Transforms this straight line by the given transformation.

public: straight straight::operator– () const;

Returns a straight line with the opposite sense from this line.

public: virtual logical straight::operator== (
curve const& // curve
) const;

Tests two curves for equality. This method does not guarantee equality for
effectively-equal curves, but it is guaranteed to determine inequality if the
two curves are not equal. Use this result for optimization.

public: virtual double straight::param (
SPAposition const&, // position
SPAparameter const& // param guess

= * (SPAparameter*) NULL_REF
) const;

Finds the parameter value at the given point on the curve. If the point is
not on the curve, a plane is constructed perpendicular to the line, and the
parameter value for its intersection with the line returns.

public: virtual double
straight::param_period () const;

Returns the parameter period, 0 in this case because a straight line is not
periodic

public: virtual SPAinterval straight::param_range (
SPAbox const& // box

= * (SPAbox*) NULL_REF
) const;

Kernel R10

Returns the principal parameter range, or what is inside the given box, if
one is indeed given. If there is no box, the range is unbounded, and we
return the empty interval.

public: virtual logical straight::periodic () const;

Indicates if the curve is periodic and joins itself smoothly at the ends of its
principal parameter range, so that edges may span the seam.

public: virtual SPAvector straight::point_curvature (
SPAposition const&, // point
SPAparameter const& // param guess

= * (SPAparameter*) NULL_REF
) const;

Returns the curvature, which is 0 for a straight line. It is immaterial
whether the point is on or off the curve. The SPAparameter argument is
ignored.

public: virtual
SPAunit_vector straight::point_direction (
SPAposition const&, // position
SPAparameter const& // param guess

= * (SPAparameter*) NULL_REF
) const;

Returns the direction of the curve at a point on it. This is a constant for a
straight line, so it is immaterial whether the given point is on or off the
curve.

Kernel R10

public: virtual void straight::point_perp (
SPAposition const&, // position
SPAposition&, // foot
SPAunit_vector&, // curve

// direction at
// foot

SPAvector&, // curvature at
// foot

SPAparameter const& // param guess
= * (SPAparameter*) NULL_REF,

SPAparameter& // actual param
= * (SPAparameter*) NULL_REF,

logical f_weak // weak flag
= FALSE

) const;

Finds the foot of the perpendicular from the given point to the curve, and
tangent to the curve at that point, and its parameter value. If an input
parameter value is supplied (as argument 5), the perpendicular found is the
one nearest to the supplied parameter position, otherwise it is the one at
which the curve is nearest to the given point. Any of the return value
arguments may be a NULL reference, in which case it is simply ignored.

public: void straight::point_perp (
SPAposition const& pos, // position
SPAposition& foot, // foot
SPAparameter const& guess // param guess

= * (SPAparameter*) NULL_REF,
SPAparameter& actual // actual param

= * (SPAparameter*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Find the foot of the perpendicular from the given point to the curve, and
tangent to the curve at that point, and its parameter value

Kernel R10

public: void straight::point_perp (
SPAposition const& pos, // position
SPAposition& foot, // foot
SPAunit_vector& foot_dt, // tangent to

// curve at foot
SPAparameter const& guess // param guess

= * (SPAparameter*) NULL_REF,
SPAparameter& actual // actual param

= * (SPAparameter*) NULL_REF,
logical f_weak // weak flag

= FALSE
) const;

Drop a perpendicular from the given point to the line, returning the foot of
the perpendicular, and the curve direction there.

public: void straight::restore_data ();

Restore the data for a straight from a save file.

read_position Root point
read_vector The direction of straight
curve::restore_data Restore the rest of the curve data.

public: virtual void straight::save () const;

Saves the type or id, then calls save_data.

public: void straight::save_data () const;

Save the information for the straight to a save file.

public: virtual curve_tancone
straight::tangent_cone (
SPAinterval const&, // line interval
logical, // approx results OK?
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Kernel R10

Returns a cone bounding the tangent direction of a curve. The cone has its
apex at the origin, and it has a given axis direction and positive half-angle.
If logical is TRUE, then approximate results are found. The approximate
result may lie wholly within or wholly outside the guaranteed bound
(obtained with the FALSE argument), but it may not cross from side to
outside. Flags in the returned object indicate whether the cone is the best
available, and if the result is inside or outside the best cone.

public: virtual logical straight::test_point_tol (
SPAposition const&, // point
double // tolerance

= 0,
SPAparameter const& // param guess

= * (SPAparameter*) NULL_REF,
SPAparameter& // actual param

= * (SPAparameter*) NULL_REF
) const;

Tests a point on the curve, returning the parameter value if it is required.

public: virtual int straight::type () const;

Returns the type of straight.

public: virtual char const*
straight::type_name () const;

Returns a string “straight”.

public: logical straight::undef () const;

Determines whether this curve is undefined.

Internal Use: full_size

Related Fncs:
restore_straight

friend: straight operator* (
straight const&, // input straight
SPAtransf const& // transform to use
);

Kernel R10

Transforms the given straight by the transform given.

StreamFinder
Class: History and Roll

Purpose: Used by the DistributeStates function below to find the
HISTORY_STREAM corresponding to a given entity.

Derivation: StreamFinder : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/sg_husk/history/history.hxx

Description: This class is used by the DistributeStates function below to find the
HISTORY_STREAM corresponding to a given entity. It gives a great deal
of flexibility and supports a variety of usage scenarios. At the same time
user needs to be careful during usage. This is a class, instead of function
pointers, hence it can cache data or arguments without using the global
data hack. Examples of implementations are:
. Find the top level owner and get the stream from an ATTRIB_HISTORY
found there.
. Find the PART for the ENTITY and return the stream associated with the
PART.
. Always return the same stream. This is useful when the application has
some knowledge about what has transpired and knows all BULLETINs go
on the same stream.

Limitations: None

References: by KERN HISTORY_MANAGER

Data:
public enum LookStrategy;
Type of look strategy.

Constructor:
public: StreamFinder::StreamFinder ();

C++ allocation constructor requests memory for this object.

Destructor:
None

Kernel R10

Methods:
public: virtual HISTORY_STREAM*
StreamFinder::findStream (

ENTITY*, //Entity Object
LookStrategy strategy //Type of look strategy

= LookNormal //
)= 0;

Function to return the HISTORY_STREAM for any entity.

public: virtual HISTORY_STREAM*
StreamFinder::quick_findStream (

ENTITY* //Entity Object
);

Function to return the HISTORY_STREAM for any entity whose stream
needs to be quickly determined. This check is very fast.

Related Fncs:
None

SUBSHELL
Class: Model Topology, SAT Save and Restore

Purpose: Represents a subdivision of a SHELL or SUBSHELL.

Derivation: SUBSHELL : ENTITY : ACIS_OBJECT : –

SAT Identifier: “subshell”

Filename: kern/kernel/kerndata/top/subshell.hxx

Description: A subshell represents a subdivision of a shell or superior subshell. The
efficiency of many-to-many comparisons is improved by allowing
quantities of faces to be excluded by a single box test. The subdivision is
determined by the system and may change at any time. Thus, the subshell
has no significance to the user, although the application program may find
the implied spatial subdivision useful.

Limitations: None

References: KERN FACE, WIRE
by KERN FACE, SHELL, WIRE

Data:
None

Kernel R10

Constructor:
public: SUBSHELL::SUBSHELL ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

public: SUBSHELL::SUBSHELL (
FACE*, // list of FACEs
SUBSHELL*, // list of SUBSHELLs
SUBSHELL* // sister SUBSHELLs list
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments. Applications should call this
constructor only with the overloaded new operator, because this reserves
the memory on the heap, a requirement to support roll back and history
management.

Constructs a SUBSHELL, initializing the record and interacting with the
bulletin board. It sets back pointer in child SUBSHELLs and FACEs. The
first two arguments define the starts of lists of FACEs and SUBSHELLs
contained within the SUBSHELL, and the last is a list of sibling
SUBSHELLs already in the current BODY. The arguments initialize
face_ptr, child_ptr, and sibling_ptr respectively. The calling routine must
set parent_ptr and if desired, bound_ptr, using set_parent and set_bound.

Destructor:
public: virtual void SUBSHELL::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

protected: virtual SUBSHELL::~SUBSHELL ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
SUBSHELL(...) then later x–>lose.)

Methods:
public: SPAbox* SUBSHELL::bound () const;

Kernel R10

Returns a pointer to the geometric bounding region (box) that contains the
entire SUBSHELL (with respect to the internal coordinate system of the
BODY). This function returns NULL if the bounding box was not
calculated since the SUBSHELL was last modified.

protected: virtual logical
 SUBSHELL::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data – called by
bulletin_no_change. For identical_comparator to be TRUE requires an
exact match when comparing doubles, and returns the result of memcmp
as a default (for non–overridden subclasses). FALSE indicates tolerant
compares and returns FALSE as a default.

public: SUBSHELL* SUBSHELL::child () const;

Returns a pointer to the start of list of SUBSHELLs contained within the
current SUBSHELL. This data scheme allows a hierarchy of subdivisions.

public: virtual void SUBSHELL::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: FACE* SUBSHELL::face () const;

Returns the first FACE in a complete enumeration of all the FACEs in the
owning SHELL, continued by repeated use of FACE::next.

public: FACE* SUBSHELL::face_list () const;

Return a pointer to the first FACE in a list of FACEs contained in this
SUBSHELL. Each FACE in a SHELL must be in the face list of the
SHELL, or exactly one of its SUBSHELLs.

Kernel R10

public: virtual int SUBSHELL::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier SUBSHELL_TYPE .
If level is specified, returns SUBSHELL_TYPE for that level of derivation
from ENTITY. The level of this class is defined as SUBSHELL_LEVEL .

public: virtual logical SUBSHELL::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: ENTITY* SUBSHELL::owner () const;

Returns a pointer to the owning parent.

public: SUBSHELL* SUBSHELL::parent () const;

Returns a pointer to the next superior SUBSHELL. The return is NULL if
the SUBSHELL belongs directly to a SHELL.

public: void SUBSHELL::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

Kernel R10

read_ptr Pointer to record in save file for
parent SUBSHELL

read_ptr Pointer to record in save file for
next SUBSHELL belonging to
parent (sibling)

read_ptr Pointer to record in save file for
first child SUBSHELL

read_ptr Pointer to record in save file for
first FACE in subshell

if (restore_version_number >= WIREBOOL_VERSION)
read_ptr Pointer to record in save file for

first WIRE in subshell
else Pointer for first WIRE in subshell

is set to NULL.

public: void SUBSHELL::set_bound (
SPAbox* // new bounding box
);

Sets the SUBSHELL’s bounding box pointer to the given box. Before
performing a change, it checks whether the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SUBSHELL::set_child (
SUBSHELL* // child SUBSHELLs list
);

Sets the SUBSHELL’s child pointer to the given SUBSHELL starting a list
of child SUBSHELLs. Before performing a change, it checks whether the
data structure is posted on the bulletin board. If not, the method calls
backup to put an entry on the bulletin board.

public: void SUBSHELL::set_face (
FACE* // list of FACEs
);

Sets the SUBSHELL’s FACE pointer to the given FACE at the start of a
list of FACEs. Before performing a change, it checks whether the data
structure is posted on the bulletin board. If not, the method calls backup to
put an entry on the bulletin board.

Kernel R10

public: void SUBSHELL::set_parent (
SUBSHELL* // parent SUBSHELL
);

Sets the SUBSHELL’s parent pointer to the given SUBSHELL. Before
performing a change, it checks whether the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SUBSHELL::set_sibling (
SUBSHELL* // sister SUBSHELL
);

Sets the SUBSHELL’s sibling pointer to the given SUBSHELL. Before
performing a change, it checks whether the data structure is posted on the
bulletin board. If not, the method calls backup to put an entry on the
bulletin board.

public: void SUBSHELL::set_wire (
WIRE* // wire
);

Sets the SUBSHELL’s WIRE pointer to the given WIRE at the start of a
list of WIREs. Before performing a change, it checks whether the data
structure is posted on the bulletin board. If not, the method calls backup to
put an entry on the bulletin board.

public: SUBSHELL* SUBSHELL::sibling () const;

Returns a pointer to the next SUBSHELL in the list contained by a
superior SHELL or SUBSHELL.

public: virtual const char*
SUBSHELL::type_name () const;

Returns the string “subshell”.

public: WIRE* SUBSHELL::wire () const;

Returns the first WIRE in a complete enumeration of all the WIREs in the
owning SHELL, continued by repeated use of WIRE::next.

Kernel R10

public: WIRE* SUBSHELL::wire_list () const;

Return a pointer to the first WIRE in a list of WIREs contained in this
SUBSHELL. Each WIRE in a SHELL must be in the face list of the
SHELL, or exactly one of its SUBSHELLs.

Internal Use: first_face, save, save_common

Related Fncs:
is_SUBSHELL

subtrans_object
Class: Construction Geometry

Purpose: Defines a shared-subtype class that is subject to transformations.

Derivation: subtrans_object : subtype_object : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/subtype/subtrans.hxx

Description: This class defines a shared-subtype class that is subject to transformations,
and is designed to ensure that transforming several references to the same
object with the same transformation retains the sharing.

Limitations: None

References: None

Data:
None

Constructor:
protected: subtrans_object::subtrans_object ();

C++ constructor, creating a subtrans_object.

protected: subtrans_object::subtrans_object (
subtrans_trans*, // transform list
subtrans_object* // parent object
);

This constructor transforms the given parent to make a new child, and
hooks up all the pointers. Constructor to be used when a linked list of
extensions is made. Initially the linked list is of length 1 and parent points
to itself.

Kernel R10

Destructor:
protected: subtrans_object::~subtrans_object ();

C++ destructor, deleting a subtrans_object. Removes references in the
trans_list and also the one referring to this in the parent’s list.

Methods:
public: void subtrans_object::clear_trans ();

Clears any references to this object using transformation lists, before
incompatible changes.

protected: virtual subtrans_object*
subtrans_object::copy () const = 0;

Duplicates this object. This method is virtual so that the true derived
object is copied.

public: subtrans_object* subtrans_object::get_next ()
const;

Returns the next object in the list.

public: subtrans_object*
subtrans_object::make_trans (
SPAtransf const& // transformation
);

Transforms the subtrans_object on an external level. This method
searches the transform list to find a match. It returns the corresponding
transformed object if it is found; otherwise, it constructs a new
transformed object, enters it into the transformation list for future
reference, and returns the new object. If this object is only
singly-referenced and has no transformed counterpart, then it transforms
directly without copying, and ”this” returns.

protected: virtual void subtrans_object::operator*= (
SPAtransf const& // transformation
) = 0;

Transforms the subtrans_object by the given transformation.

public: void subtrans_object::set_next (
subtrans_object* // object
);

Kernel R10

Sets the next object in the list.

Internal Use: full_size

Related Fncs:
None

subtype_object
Class: Construction Geometry

Purpose: Defines the master object from which all subtype objects must be derived.

Derivation: subtype_object : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernutil/subtype/subtype.hxx

Description: This class defines the master object from which all subtype objects must
be derived. This object contains a use count (in case the object is
shareable) and defines two virtual functions and a destructor.

Limitations: None

References: None

Data:
None

Constructor:
public: subtype_object::subtype_object ();

C++ constructor, creating a subtype_object.

Destructor:
public: virtual subtype_object::~subtype_object ();

C++ destructor, deleting a subtype_object. and all those objects that need
it.

Methods:
public: void subtype_object::add_ref ();

Use count manipulation.

Kernel R10

public: virtual void subtype_object::debug (
char const*, // leader for second and

// subsequent lines of
// output

logical, // TRUE for brief output
// FALSE for full output

FILE* // file name
= debug_file_ptr

) const = 0;

Writes the subtype_object in readable form for debugging. If logical is
TRUE, brief output is produced; if logical is FALSE, long output is
produced.

public: logical subtype_object::mult_ref () const;

Returns TRUE if there is more than one reference; otherwise, it returns
FALSE.

public: logical subtype_object::operator!= (
subtype_object const& rhs // subtype–object
) const;

TRUE if two subtype objects are not the same. Use this method for sharing
on restoration of old save files.

public: virtual logical subtype_object::operator== (
subtype_object const& // subtype–object
) const;

Determines if two subtype objects are the same. Use this method for
sharing on restoration of old save files.

public: int subtype_object::ref_count ();

Returns the use count.

public: void subtype_object::remove_ref ();

Removes a reference.

Kernel R10

public: virtual void subtype_object::save () const;

Saves a subtype object with identifier and brackets, and enters it in the
current tag table. If it is already there, just puts out a reference.

public: virtual void
subtype_object::save_data () const = 0;

Saves the information for the subtype_object to a save file.

public: virtual int
subtype_object::type () const = 0;

Returns the type of subtype_object.

public: virtual char const*
subtype_object::type_name () const = 0;

Returns a pointer to a static string, which is the externally-meaningful type
name for this subtype.

public: virtual logical
subtype_object::unknown_type () const;

Returns TRUE if this object type is unknown to the system; otherwise, it
returns FALSE. This method returns FALSE as the default, so except for
the system unknown subtype, the method should be omitted from derived
class definitions.

Internal Use: full_size

Related Fncs:
None

sum_spl_sur
Class: Construction Geometry, SAT Save and Restore

Purpose: Represents a linear sum of two curves.

Derivation: sum_spl_sur : spl_sur : subtrans_object : subtype_object :
ACIS_OBJECT : –

Kernel R10

SAT Identifier: “sumsur”

Filename: kern/kernel/kerngeom/splsur/sum_spl.hxx

Description: This class represents a surface that is a linear sum of two curves. This is
derived from the class spl_sur, which is used by the spline surface class to
contain the surface descriptions. The surface is defined primarily by two
curves that are assumed not parallel, and the parameter ranges over which
the surface is defined.

Parametric Representation

If the curves are represented as:

x = c 1(t) and x = c 2(t)

the surface is:

x = s(u, v) = c 1(u) + c 2(v) – p

where p is a constant position, normally initialized to be the value of c2 at
the start of the parameter range.

Limitations: None.

References: KERN curve
BASE SPAposition

Data:
None

Constructor:
public: sum_spl_sur::sum_spl_sur (

const sum_spl_sur& // input curve
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

public: sum_spl_sur::sum_spl_sur (
curve const&, // 1st curve
curve const&, // 2nd curve
SPAinterval const& // 1st curve

= * (SPAinterval*) NULL_REF,// param range
// (u–param)

SPAinterval const& // 2nd curve
= * (SPAinterval*) NULL_REF,// param range

// (v–param)
SPAposition const& // datum position

= * (SPAposition*) NULL_REF
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

The u-parameter range defaults to the full first curve and the v-parameter
range defaults to the full second curve. If either curve is unbounded, this
constructor returns an error. The datum position is subtracted from the sum
of the curves to give a position for the surface and is normally initialized
to be the start of cur2.

Destructor:
None

Methods:
protected: virtual SPAbox sum_spl_sur::bound (

SPApar_box const& // parameter box of
= * (SPApar_box*)NULL_REF// defining curves

);

Returns a bounding box by boxing the defining curves and combining
them.

public: virtual spl_sur* sum_spl_sur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

Kernel R10

public: virtual curve*
sum_spl_sur::get_path () const;

Returns the sweep path curve.

public: virtual sweep_path_type
sum_spl_sur::get_path_type () const;

Returns the sweep path type

public: virtual curve*
sum_spl_sur::get_profile (
double // param

) const;

Returns the sweep profile on the sum_spl_sur, which is the u-curve.

public: virtual law*
sum_spl_sur::get_rail () const;

Returns the rail law for the sum_spl_sur.

public: static int sum_spl_sur::id ();

Returns the ID for the sum_spl_sur list.

public: virtual logical sum_spl_sur::is_extendable (
sum_spl_sur const& other, // other surface
SPApar_box& new_domain // new domain
) const;;

This method will return true if the sum_spl_sur can be extended to
include the given sum_spl_sur. It also returns what the new domain of the
“this” surface should be to include the other surface. This method returns
false in any case that is not covered.

protected: virtual void sum_spl_sur::make_approx (
double fit, // fit tolerance
const spline& spl // pointer to output

= * (spline*) NULL_REF,// spline approx.
logical force // flag for forcing

= FALSE
) const;

Kernel R10

Makes or remakes an approximation of the surface, within the given
tolerance.

private: void sum_spl_sur::restore_data ();

Restores the information for the sum_spl_sur from a save file.

 restore_curve u-curve
restore_curve v-curve
read_position Datum point
if (restore_version_number < APPROX_SUMMARY_VERSION)

read_interval u-range
read_interval v-range
if (restore_version_number >= DISCONTINUITY_VERSION)

discontinuity_info::restore u discontinuities
discontinuity_info::restore v discontinuities

else
spl_sur::restore_common_data restore the generic surface data

public: virtual void sum_spl_sur::save_data () const;

Save the information for the sum_spl_sur to a save file.

public: virtual int sum_spl_sur::type () const;

Returns the type of sum_spl_sur.

public: virtual char const*
sum_spl_sur::type_name () const;

Returns the string “sumsur”.

Internal Use: full_size

Related Fncs:
restore_sum_spl_sur

SURFACE
Class: Model Geometry, SAT Save and Restore

Purpose: Defines a generic surface as an object in the model.

Kernel R10

Derivation: SURFACE : ENTITY : ACIS_OBJECT : –

SAT Identifier: “surface”

Filename: kern/kernel/kerndata/geom/surface.hxx

Description: SURFACE is a model geometry class that contains a pointer to a
(lowercase) surface, the corresponding construction geometry class. In
general, a model geometry class is derived from ENTITY and is used to
define a permanent model object. It provides model management
functionality, in addition to the geometry definition.

A SURFACE provides the basic framework for the range of surface
geometries implemented in the modeler. Additional classes are derived
from SURFACE to define specific types of surfaces, such as CONE,
MESHSURF, PLANE, SPHERE and TORUS.

Along with the usual ENTITY class methods, SURFACE has member
methods to provide access to specific implementations of the geometry.
For example, a surface can be transformed by a given transform operator,
resulting in another surface.

A use count allows multiple references to a SURFACE. The construction
of a new SURFACE initializes the use count to 0. Methods are provided to
increment and decrement the use count, and after the use count returns to
0, the entity is deleted.

Limitations: None

References: KERN ENTITY
by KERN FACE, pattern_holder

Data:
None

Constructor:
public: SURFACE::SURFACE ();

C++ allocation constructor requests memory for this object but does not
populate it. The allocation constructor is used primarily by restore.
Applications should call this constructor only with the overloaded new
operator, because this reserves the memory on the heap, a requirement to
support roll back and history management.

Destructor:
public: virtual void SURFACE::lose ();

Posts a delete bulletin to the bulletin board indicating the instance is no
longer used in the active model. The lose methods for attached attributes
are also called.

Kernel R10

protected: virtual SURFACE::~SURFACE ();

This C++ destructor should never be called directly. Instead, applications
should use the overloaded lose method inherited from the ENTITY class,
because this supports history management. (For example, x=new
SURFACE(...) then later x–>lose.)

Methods:
public: virtual void SURFACE::add ();

Increments the use count. Before performing a change it checks whether
the data structure is posted on the bulletin board. If not, the routine calls
backup to put an entry on the bulletin board.

public: void SURFACE::add_owner (
ENTITY* owner, // owner
logical increment_use_count // increment use

= TRUE // count or not
);

Adds owner argument to the list of owners.

protected: virtual logical
 SURFACE::bulletin_no_change_vf (
ENTITY const* other, // other entity
logical identical_comparator// comparator
) const;

Virtual function for comparing subclass data – called by
bulletin_no_change. For identical_comparator to be TRUE requires an
exact match when comparing doubles, and returns the result of memcmp
as a default (for non–overridden subclasses). FALSE indicates tolerant
compares and returns FALSE as a default.

public: virtual void SURFACE::debug_ent (
FILE* // file pointer
) const;

Prints the type and address of this object, roll back pointer, attributes, and
any unknown subtype information to the specified file. Refer to the
ENTITY class for more details.

public: virtual logical SURFACE::deletable () const;

Kernel R10

Indicates whether this entity is normally destroyed by lose (TRUE), or
whether it is shared between multiple owners using a use count, and so
gets destroyed implicitly when every owner has been lost (FALSE). The
default for SURFACE is FALSE.

public: virtual surface const&
SURFACE::equation () const;

Returns the surface’s equation.

public: virtual surface&
SURFACE::equation_for_update ();

Returns a pointer to surface equation for update operations. Before
performing a change it checks whether the data structure is posted on the
bulletin board. If not, the routine calls backup to put an entry on the
bulletin board.

public: int SURFACE::get_owners (
ENTITY_LIST& list // list of owners

) const;

Copies the list of owners from this object to the list argument. The method
returns the number of owners copied.

public: virtual int SURFACE::identity (
int // level

= 0
) const;

If level is unspecified or 0, returns the type identifier SURFACE_TYPE. If
level is specified, returns SURFACE_TYPE for that level of derivation
from ENTITY. The level of this class is defined as SURFACE_LEVEL.

public: virtual logical SURFACE::is_deepcopyable (
) const;

Returns TRUE if this can be deep copied.

public: virtual logical SURFACE::is_use_counted (
) const;

Kernel R10

Returns TRUE if the entity is use counted.

public: virtual SPAbox SURFACE::make_box (
LOOP*, // list of LOOPs
SPAtransf const* t = NULL, // for future use
logical tight_box // for future use

= FALSE,
SPAbox* untransformed_box // for future use

= NULL
) const;

Constructs a bounding box for a FACE. Although the generic record type
should never exist, this function is defined for it, to return a box enclosing
all the edges of the given list of LOOPs. This is sufficient for any ruled
surface type, for which any point in a FACE must be a linear combination
of some two points on its boundary.

public: virtual void SURFACE::operator*= (
SPAtransf const& // transform
);

Transforms the SURFACE equation. Before performing a change it checks
whether the data structure is posted on the bulletin board. If not, the
routine calls backup to put an entry on the bulletin board.

public: virtual void SURFACE::remove (
logical lose_if_zero // flag for lose

= TRUE
);

Decrements the use count. If the use count reaches 0, the SURFACE is
deleted. Before performing a change it checks whether the data structure is
posted on the bulletin board. If not, the routine calls backup to put an
entry on the bulletin board.

public: void SURFACE::remove_owner (
ENTITY* owner, // owner
logical // decrement use

= TRUE, // count flag
logical // lose if

= TRUE // zero flag
);

Kernel R10

Removes the owner argument from the list of owners.

public: void SURFACE::restore_common ();

The RESTORE_DEF macro expands to the restore_common method,
which is used in reading information from a SAT file. This method is
never called directly. It is called by a higher hierarchical function if an
item in the SAT file is determined to be of this class type. An instance of
this class will already have been created through the allocation
constructor. This method then populates the class instance with the
appropriate data from the SAT file.

if (restore_version_number < PATTERN_VERSION
read_ptr APATTERN index

if (apat_idx != (APATTERN*)(–1)))
restore_cache();

if (!get_standard_save_flag())
read_int use count data

// Nothing to copy or restore under normal circumstances.

public: virtual void SURFACE::set_use_count (
int val // value to set
);

Sets the reference use count of the SURFACE.

public: virtual surface* SURFACE::trans_surface (
SPAtransf const& // transform

= * (SPAtransf*) NULL_REF,
logical // reversed

= FALSE
) const;

Returns the transformed surface. If the logical is TRUE the surface is
reversed.

public: virtual const char*
SURFACE::type_name () const;

Returns the string “surface”.

public: virtual int SURFACE::use_count () const;

Kernel R10

Returns the use count for the SURFACE.

Internal Use: full_size, save, save_common

Related Fncs:
is_SURFACE

surface
Class: Construction Geometry, SAT Save and Restore

Purpose: Base class for all ACIS surface types that defines the basic virtual
functions that are supplied for all specific surface classes.

Derivation: surface : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/surface/surdef.hxx

Description: The surface class is the base class that all ACIS surface types (plane, cone,
sphere, torus, and spline) are derived. The surface class defines the basic
virtual functions that are supplied for all specific surface classes. Some of
these functions are pure; i.e., the derived classes must define their own
version; others have default definitions that can be used by the derived
classes.

All ACIS surfaces have a parameterization scheme defined for them;
however, the analytic surfaces (plane, cone, sphere, and torus) are not
considered parametric surfaces. The only true parametric surface is the
spline surface.

The parameterization of any ACIS surface maps a rectangle within a 2D
vector space (u,v-parameter space) into a 3D real vector space (xyz object
space). A surface is closed in u (or v) if the opposite sides of the rectangle
map into identical curves in object space. If the derivatives also match at
these boundaries, the surface is periodic in that parameter. If one side of
this rectangle maps into a single point in object space, this point is a
parametric singularity. If the surface normal is not continuous at this point,
the point is a surface singularity.

The parameterization can be either right-handed; i.e., the surface normal is
the cross product of u and v, or left-handed; i.e., the normal is the cross
product of v and u.

Limitations: None

Kernel R10

References: by KERN blend_support, exp_par_cur, int_cur, law_par_cur,
off_spl_sur, skin_spl_sur, stripc, surf_surf_int,
surface_law_data, taper_spl_sur

BASE SPApar_box

Data:
protected SPApar_box subset_range;
Any surface may be subset to a given parameter range.

Constructor:
public: surface::surface ();

C++ allocation constructor requests memory for this object but does not
populate it.

Destructor:
public: virtual surface::~surface ();

C++ destructor, deleting a surface.

Methods:
public: virtual int surface::accurate_derivs (

SPApar_box const& // parameter box
= * (SPApar_box*) NULL_REF

) const;

Returns the number of derivatives that evaluate finds accurately and
directly, rather than by finite differencing, over the given portion of the
surface. If there is no limit to the number of accurate derivatives, this
method returns the ALL_SURFACE_DERIVATIVES value.

public: virtual const double*
surface::all_discontinuities_u (
int& n_discont, // number of disc.
int order // max order
);

Returns (in a read-only array) the number and parameter values of
discontinuities of the surface up to the given order (maximum three).

public: virtual const double*
surface::all_discontinuities_v (
int& n_discont, // # of disc.
int order // max order
);

Kernel R10

Returns (in a read-only array) the number and parameter values of
discontinuities of the surface up to the given order (maximum three).

public: virtual SPAbox surface::bound (
SPAbox const&, // box
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box around a surface bounded in object space. This box need not
be the smallest box that contains the specified portion of the surface, but it
must balance the tightness of the bound against the cost of the evaluation.

public: virtual SPAbox surface::bound (
SPApar_box const& // parameter box

= * (SPApar_box*) NULL_REF,
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a box around a surface bounded in parameter space. This box need
not be the smallest box that contains the specified portion of the surface,
but it must balance the tightness of the bound against the cost of the
evaluation.

public: virtual void surface::change_event ();

Notifies the derived type that the surface has been changed (e.g., the
subset_range has changed) so that it can update itself. The default version
of the function does nothing.

public: virtual check_status_list* surface::check (
const check_fix& input // flags for

= * (const check_fix*) // allowed
NULL_REF, // fixes

check_fix& result // fixes applied
= * (check_fix*) NULL_REF,

const check_status_list* // checks to be
= (const check_status_list*)// made, default
NULL_REF // is none

);

Kernel R10

Check for any data errors in the surface, and correct the errors if possible.
The various arguments provide control over which checks are made, which
fixes can be applied and which fixes were actually applied. The function
returns a list of errors that remain in the surface on exit.

The default for the set of flags which say which fixes are allowable is none
(nothing is fixed). If the list of checks to be made is null, then every
possible check will be made. Otherwise, the function will only check for
things in the list. The return value for the function will then be a subset of
this list.

public: virtual logical surface::closed_u () const;

Determines whether the surface is closed, smoothly or not, in the
u-parameter direction. A closed method always returns TRUE if the
corresponding periodic method returns TRUE.

public: virtual logical surface::closed_v () const;

Determines whether the surface is closed, smoothly or not, in the
v-parameter direction. A closed method always returns TRUE if the
corresponding periodic method returns TRUE.

public: surface* surface::copy_surf () const;

Makes a copy of the given surface. This method calls make_copy.

public: virtual void surface::debug (
char const*, // title line
FILE* // file name

= debug_file_ptr
) const = 0;

Prints out a title line and details about the surface to the debug file or to
the specified file.

public: virtual surface* surface::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const = 0;

Kernel R10

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

In a deep copy, all the information about the copied item is self-contained
in a new memory block. By comparison, a shallow copy stores only the
first instance of the item in memory, and increments the reference count
for each copy.

The pointer_map keeps a list of all pointers in the original object that have
already been deep copied. For example, a deep_copy of a complex model
results in self contained data, but identical sub-parts within the model are
allowed to share a single set of data.

public: virtual const double*
surface::discontinuities_u (
int& n_discont, // number of discont.
int order // curve order
) const;

Returns in a read–only array the number and parameter values of
discontinuities of the surface, of the given order (maximum three).

public: virtual const double*
surface::discontinuities_v (
int& n_discont, // number of discont.
int order // curve order
) const;

Returns in a read–only array the number and parameter values of
discontinuities of the surface, of the given order (maximum three).

public: virtual int surface::discontinuous_at_u (
double u // parameter
) const;

Returns whether a particular parameter value is a discontinuity.

public: virtual int surface::discontinuous_at_v (
double v // parameter
) const;

Returns whether a particular parameter value is a discontinuity.

Kernel R10

public: virtual void surface::eval (
SPApar_pos const&, // parameter
SPAposition&, // point position
SPAvector* // first derivatives

= NULL, // array of length 2 in
// the order Xu, Xv

SPAvector* // second derivatives
= NULL // array of length 3 in

// the order Xuu, Xuv,
// Xvv

) const;

Finds the point on a parametric surface with given parameter values, and
optionally the first and second derivatives as well.

public: virtual int surface::evaluate (
SPApar_pos const&, // pt on surface
SPAposition&, // at given param

// values
SPAvector** // array of ptrs

= NULL, // to array of
// vectors

int // number of
= 0, // derivatives

evaluate_surface_quadrant // eval. location
= evaluate_surface_unknown

) const;

Calculates derivatives, of any order up to the number requested, and stores
them in vectors provided by the user. This method returns the number of
derivatives it was able to calculate; usually, this equals the requested
number. A certain number are evaluated directly and accurately; higher
derivatives are automatically calculated by finite differencing. The
accuracy of these decreases with the order of the derivative as the cost
increases. Any of the pointers may be NULL in which case the
corresponding derivatives will not be returned. Otherwise they must point
to arrays long enough for all the derivatives of that order.

Kernel R10

public: virtual int surface::evaluate_iter (
SPApar_pos const&, // pt on surface
surface_evaldata*, // data supplying

// initial
// values, and
// set to reflect
// the results of
// this
// evaluation

SPAposition&, // at given param
// values

SPAvector** // array of ptrs
= NULL, // to array of

// vectors
int // number of

= 0, // derivatives
evaluate_surface_quadrant // eval. location

= evaluate_surface_unknown
) const;

The evaluate_iter function is just like evaluate, but is supplied with a data
object which contains results from a previous close evaluation, for use as
initial values for any iteration involved.

public: virtual double surface::eval_cross (
SPApar_pos const&, // given parameter values
SPAunit_vector const& // given normal
) const;

Finds the curvature of a cross-section curve of the parametric surface at
the point with the given parameter values. The cross-section curve is given
by the intersection of the surface with a plane passing through the point
and with the given normal.

public: virtual SPAunit_vector surface::eval_normal (
SPApar_pos const& // parameter values
) const;

Finds the normal to a parametric surface at a point with the given
parameter values.

Kernel R10

public: virtual SPAunit_vector surface::eval_outdir (
SPApar_pos const& // parameter values
) const;

Finds the outward direction from the surface at a point with the given
parameter values. This method usually returns the normal, but if the
nearest point is a singularity (like the apex of a cone), this method still
returns an outward direction.

public: virtual SPAposition surface::eval_position (
SPApar_pos const& // parameter values
) const;

Finds the point on a parametric surface with the given parameter values.

public: surf_princurv surface::eval_prin_curv (
SPApar_pos const& // parameter values
) const;

Finds the principle aces of curvature of the surface at a point with the
given parameter values.

public: virtual void surface::eval_prin_curv (
SPApar_pos const&, // parameter values
SPAunit_vector&, // first axis direction
double&, // 1st dir. curvature
SPAunit_vector&, // second axis direction
double& // 2nd direction crvtr.
) const;

Finds the principle aces of curvature of the surface at a point with the
given parameter values and the curvatures in those directions.

Kernel R10

protected: int
surface::finite_difference_derivatives (
SPApar_pos const&, // parameter
SPAposition&, // point on surface

// at given parameter
SPAvector**, // array of ptrs to

// array of vectors
int, // # derivatives
int, // # derivatives

// evaluated
double, // finite diff.

// step to
// use in u param.

double, // finite diff.
// step to
// use in v param.

evaluate_surface_quadrant // evaluation
// quadrant

) const;

Evaluates higher derivatives than are available accurately in evaluate by
finite differencing. This method is available to any derived class for use in
its own evaluate. It calls back the evaluate function for adjacent points to
evaluate a number of derivatives, so evaluate must ensure that this does
not cause a further call to this method.

public: virtual const discontinuity_info&
surface::get_disc_info_u() const;

Return read-only access to discontinuity_info objects, if they exist. The
default version of the functions return null.

public: virtual const discontinuity_info&
surface::get_disc_info_v() const;

Return read-only access to discontinuity_info objects, if they exist. The
default version of the functions return null.

public: virtual curve*
surface::get_path () const;

Returns the path curve.

Kernel R10

public: virtual sweep_path_type
surface::get_path_type () const;

Returns the sweep path type for this surface.

public: virtual curve* surface::get_profile (
double // parameter
) const;

Returns the sweep profile on the surface.

public: virtual law*
surface::get_rail () const;

Returns the rail law for the swept surface.

public: virtual logical
surface::left_handed_uv () const;

Indicates whether the parameter coordinate system of the surface is
right-handed or left-handed. With a right-handed system, the output
normal at any point is given by the cross product of the increasing
u-direction with the increasing v-direction, in that order. With a
left-handed system, the outward normal is in the opposite direction from
this cross product.

public: void surface::limit (
SPApar_box const& // parameter box
);

Limits a subset to the given parameter box.

public: void surface::limit_u (
SPAinterval const& // u interval
);

Limits a subset to the given u interval.

public: void surface::limit_v (
SPAinterval const& // v interval
);

Kernel R10

Limits a subset to the given v interval.

public: virtual surface*
surface::make_copy () const = 0;

Makes a copy of this surface on the heap, and returns a pointer to it.

public: virtual surface_evaldata*
surface::make_evaldata () const;

Construct a data object to retain evaluation information across calls to
evaluate_iter. This is to allow subsidiary calls within an iterative evaluator
to start iteration much closer to the required result than is possible just
using the curve information itself.

public: virtual surface& surface::negate () = 0;

Reverses the sense of a surface.

public: virtual surf_normcone surface::normal_cone (
SPApar_box const&, // parameter box
logical // approx results OK?

= FALSE,
SPAtransf const& // transformation

= * (SPAtransf*) NULL_REF
) const;

Returns a cone bounding the normal direction of the surface. The cone has
its apex at the origin, and it has a given axis direction and positive
half-angle. If logical is TRUE, then this method finds a quick
approximation. The approximate result may lie wholly within or wholly
outside the guaranteed bound (obtained with a FALSE argument), but it
may not cross from inside to outside. Flags in the turned object indicate
whether the cone is the best available, and if this result is inside or outside
the best cone.

public: logical surface::operator!= (
surface const& rhs // surface
) const;

Tests two surfaces for equality. This method does not guarantee equality
for effectively-equal surfaces, but it is guaranteed to determine inequality
if the two surfaces are not equal. Use this result for optimization.

Kernel R10

public: virtual surface& surface::operator*= (
SPAtransf const& // transformation
) = 0;

Transforms the surface by the given transformation.

public: virtual logical surface::operator== (
surface const& // surface
) const;

Tests two surfaces for inequality. This method does not guarantee equality
for effectively-equal surfaces, but it is guaranteed to determine inequality
if the two surfaces are not equal. Use this result for optimization.

public: virtual SPApar_pos surface::param (
SPAposition const&, // given point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values of a point on a surface given an optional first
guess.

public: virtual logical surface::parametric () const;

Returns TRUE if the surface is a parametric surface; otherwise, it returns
FALSE. This reflects the fundamental nature of the surface and it is used
by the ACIS kernel to avoid using parameters when they are not necessary.
For a surface, the ACIS kernel does not use any of the parameter-based
functions, though they are implemented for the sake of those components
and applications that prefer parameter-based representations of every
surface.

Whether to declare a surface parametric or not depends on the
implementation of the point-based evaluations. If the availability of a good
approximation to the point’s parameter values makes no significant
improvement to the speed of these functions, then the surface is
nonparametric; otherwise, it is parametric. A plane is an obvious
nonparametric surface; a B-spline is a parametric surface.

Kernel R10

public: SPApar_dir surface::param_dir (
SPAunit_vector const&, // object–space direction
SPApar_pos const& // parameter value
) const;

Finds the direction in parameter space of a given object-space direction on
a surface at a given parameter value.

public: virtual double
surface::param_period_u () const;

Returns the period of a periodic parametric surface. If the surface is not
parametric or is not periodic in the u-direction, this method returns 0.

public: virtual double
surface::param_period_v () const;

Returns the period of a periodic parametric surface. If the surface is not
parametric or is not periodic in the v-direction, this method returns 0.

public: virtual SPApar_box surface::param_range (
SPAbox const& // box

= * (SPAbox*) NULL_REF
) const;

Returns the principle parameter range of a surface. A periodic surface is
defined for all parameter values in the periodic direction by reducing the
given parameter modulo the period into this principle range. For a surface
that is open or nonperiodic in the chosen direction, the surface evaluation
functions are defined only for the parameter values in the returned range.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided and the
parameter range in some direction is unbounded, then this method returns
an empty interval.

public: virtual SPAinterval surface::param_range_u (
SPAbox const& // box

= * (SPAbox*) NULL_REF
) const;

Kernel R10

Returns the principle parameter range of a surface in the u-parameter
direction. A periodic surface is defined for all parameter values in the
periodic direction by reducing the given parameter modulo the period into
this principle range. For a surface that is open or nonperiodic in the chosen
direction, the surface evaluation functions are defined only for the
parameter values in the returned range.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided and the
parameter range in some direction is unbounded, then this method returns
an empty interval.

public: virtual SPAinterval surface::param_range_v (
SPAbox const& // box

= * (SPAbox*) NULL_REF
) const;

Returns the principle parameter range of a surface in the v-parameter
direction. A periodic surface is defined for all parameter values in the
periodic direction by reducing the given parameter modulo the period into
this principle range. For a surface that is open or nonperiodic in the chosen
direction, the surface evaluation functions are defined only for the
parameter values in the returned range.

If a box is provided, the parameter range returned may be restricted to a
portion of the surface that is guaranteed to contain all portions of the
surface that lie within the region of interest. If none is provided and the
parameter range in some direction is unbounded, then this method returns
an empty interval.

public: virtual SPApar_vec surface::param_unitvec (
SPAunit_vector const&, // object space direction
SPApar_pos const& // parameter position
) const;

Finds the rate of change in the surface parameter corresponding to a unit
velocity in a given object-space direction at a given position in parameter
space.

public: virtual logical surface::periodic_u () const;

Determines if the surface is periodic in the u-parameter direction (i.e., it is
smoothly closed so that faces can run over the seam).

Kernel R10

public: virtual logical surface::periodic_v () const;

Determines if the surface is periodic in the v-parameter direction (i.e., it is
smoothly closed so that faces can run over the seam).

public: virtual logical surface::planar (
SPAposition&, // point on the surface
SPAunit_vector& // axis direction
) const;

Reports if a surface is planar.

public: virtual double surface::point_cross (
SPAposition const&, // point
SPAunit_vector const&, // given normal
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the curvature of a cross-section curve of the surface at the given
point. The cross-section curve is given by the intersection of the surface
with a plane passing through the given point and with the given normal.

public: virtual SPAunit_vector surface::point_normal
(

SPAposition const&, // given point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const = 0;

Finds the normal to the surface at a point on the surface nearest to the
given point.

public: virtual SPAunit_vector surface::point_outdir
(

SPAposition const&, // given point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Kernel R10

Finds the outward direction from the surface at a point with the given
parameter values. This method usually is the normal, but if the nearest
point is a singularity (like the apex of a cone), this method still returns an
outward direction. The base class definition returns point_normal, which is
used by default on by simple surfaces.

public: virtual void surface::point_perp (
SPAposition const&, // given point
SPAposition&, // foot
SPAunit_vector&, // normal to

// surface
surf_princurv&, // principle

// curvature
SPApar_pos const& // param guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // actual param

= * (SPApar_pos*) NULL_REF,
logical f_weak // weak flag

= FALSE // internal use
) const = 0;

Finds the point on the surface nearest to the given point and optionally, the
normal to and the principle curvatures of the surface at that point. If the
surface is parametric, this method also returns the parameter values at the
found point.

public: void surface::point_perp (
SPAposition const& pos, // given point
SPAposition& foot, // foot
SPApar_pos const& // param position

param_guess // param guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual // parameter
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE // internal use

) const;

Finds the point on the surface nearest to the given point and optionally, the
normal to and the principle curvatures of the surface at that point. If the
surface is parametric, this method also returns the parameter values at the
found point.

Kernel R10

public: void surface::point_perp (
SPAposition const& pos, // given point
SPAposition& foot, // foot
SPAunit_vector& norm, // normal to

// surface
SPApar_pos const& // param position

param_guess // param guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& param_actual // actual param
= * (SPApar_pos*) NULL_REF,

logical f_weak // weak flag
= FALSE // internal use

) const;

Finds the point on the surface nearest to the given point and optionally, the
normal to and the principle curvatures of the surface at that point. If the
surface is parametric, this method also returns the parameter values at the
found point.

public: surf_princurv surface::point_prin_curv (
SPAposition const&, // point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the principle axes of curvature of the surface at a given point and the
curvatures in those directions in a structure defined for the purpose.

public: virtual void surface::point_prin_curv (
SPAposition const&, // position
SPAunit_vector&, // 1st axis direction
double&, // 1st dir. curvature
SPAunit_vector&, // 2nd axis direction
double&, // 2nd dir. curvature
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const = 0;

Finds the principle axes of curvature of the surface at a given point and the
curvatures in those directions.

public: void surface::restore_data ();

Kernel R10

Restore the data for a surface from a save file.

if (restore_version_number >= BNDSUR_VERSION)
read_interval subset u interval
read_interval subset v interval

public: virtual void surface::save () const = 0;

Calls the virtual save method for the particular type of surface.

public: void surface::save_data () const;

Save the information for the surface to a save file.

public: void surface::save_surface () const;

Saves the surface if the surface is of an unknown type or NULL. It checks
for NULL then calls the save method.

public: virtual logical surface::singular_u (
double // u–parameter value
) const;

Determines whether the surface parameterization is singular at the
specified u-parameter value. The only singularity recognized is where
every value of the nonconstant parameter generates the same object-space
point, and these can only occur at the ends of the parameter range.

public: virtual logical surface::singular_v (
double // v–parameter value
) const;

Determines whether the surface parameterization is singular at the
specified v-parameter value. The only singularity recognized is where
every value of the nonconstant parameter generates the same object-space
point, and these can only occur at the ends of the parameter range.

public: virtual int surface::split_at_kinks_u (
spline**& pieces, // split pieces
double curvature = 0.0 // curvature
) const;

Kernel R10

Divides a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split if the curvature
exceeds the minimum curvature argument. If it is closed after this, it is
then split into two. The split pieces are stored in the pieces argument. The
function returns the count of split pieces. Only implemented for splines
and elliptical cones.

public: virtual int surface::split_at_kinks_v (
spline**& pieces, // split pieces
double curvature = 0.0 // curvature
) const;

Divides a surface into separate pieces which are smooth (and therefore
suitable for offsetting or blending). The surface is split if the curvature
exceeds the minimum curvature argument. If it is closed after this, it is
then split into two. The split pieces are stored in the pieces argument. The
function returns the count of split pieces. Only implemented for splines
and elliptical cones.

public: surface* surface::subset (
SPApar_box const& // parameter box
) const;

Constructs a subset copy within the given parameter box.

public: logical surface::subsetted () const;

Determines whether the surface has a significant subset range.

public: logical surface::subsetted_u () const;

Determines whether the surface has a significant subset range in the u
direction.

public: logical surface::subsetted_v () const;

Determines whether the surface has a significant subset range in the v
direction.

public: SPApar_box surface::subset_box () const;

Kernel R10

Returns a subset of the surface.

public: surface* surface::subset_u (
SPAinterval const& // u interval
) const;

Constructs a subset copy within the given u interval.

public: SPAinterval surface::subset_u_interval ()
const;

Returns a subset interval.

public: surface* surface::subset_v (
SPAinterval const& // v interval
) const;

Constructs a subset copy within the given v interval.

public: SPAinterval surface::subset_v_interval ()
const;

Returns a subset interval.

public: logical surface::test_point (
SPAposition const& pos, // point
SPApar_pos const& uv_guess // param guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& uv_actual // actual param

= * (SPApar_pos*) NULL_REF
) const;

Determines if a point lies on the surface to the system precision.

Kernel R10

public: virtual logical surface::test_point_tol (
SPAposition const&, // point
double // tolerance

= 0, // (defaults to
// SPAresabs)

SPApar_pos const& // param guess
= * (SPApar_pos*) NULL_REF,

SPApar_pos& // actual param
= * (SPApar_pos*) NULL_REF

) const = 0;

Determines whether a point lies on the surface to the given tolerance.

public: virtual int surface::type () const = 0;

Returns the type of surface.

public: virtual char const*
surface::type_name () const = 0;

Returns the string “surface”.

public: virtual logical surface::undef () const;

Determines whether a surface is defined or undefined. A NULL or generic
surface are always undefined; other surfaces depend on their contents.

public: logical surface::undefined () const;

Determines whether a surface is defined or undefined. A NULL or generic
surface are always undefined; other surfaces depend on their contents.

public: void surface::unlimit ();

Removes the subsetting from this surface.

public: void surface::unlimit_u ();

Removes the subsetting from this surface in the u direction.

public: void surface::unlimit_v ();

Kernel R10

Removes the subsetting from this surface in the v direction.

public: surface* surface::unsubset () const;

Constructs a copy of the unbounded surface underlying this one.

public: surface* surface::unsubset_u () const;

Constructs a copy of the unbounded surface underlying this one in the
u direction

public: surface* surface::unsubset_v () const;

Constructs a copy of the unbounded surface underlying this one in the
v direction.

public: virtual curve* surface::u_param_line (
double // v parameter
) const;

Constructs a parameter line on the surface. A u-parameter line runs in the
direction of increasing u parameter, at constant v. The parameterization int
he nonconstant direction matches that of the surface, and it has the range
obtained by the use of param_range_u. If the supplied constant parameter
value is outside the valid range for the surface, or if it is at a singularity,
this method returns NULL.

The new curve is constructed in free storage, so it is the responsibility of
the caller to ensure that it is correctly deleted.

public: virtual curve* surface::v_param_line (
double // u parameter
) const;

Constructs a parameter line on the surface. A v-parameter line runs in the
direction of increasing v parameter, at constant u. The parameterization int
he nonconstant direction matches that of the surface, and it has the range
obtained by the use of param_range_v. If the supplied constant parameter
value is outside the valid range for the surface, or if it is at a singularity,
this method returns NULL.

The new curve is constructed in free storage, so it is the responsibility of
the caller to ensure that it is correctly deleted.

Kernel R10

Internal Use: full_size

Related Fncs:
restore_surface, surf_deriv_to_curv

surface_law_data
Class: Laws, Geometric Analysis, SAT Save and Restore

Purpose: Creates a wrapper to an ACIS surface class.

Derivation: surface_law_data : base_surface_law_data : law_data : ACIS_OBJECT
: –

SAT Identifier: “SURF#”

Filename: kern/kernel/kernutil/law/law.hxx

Description: This is a law data class that holds a pointer to a surface.

Limitations: None

References: KERN surface
BASE SPAinterval, SPApar_pos, SPAposition

Data:
protected SPAinterval u_domain;
This holds the u parameter range of the given surface.

protected SPAinterval v_domain;
This holds the v parameter range of the given surface.

protected int *which_cached;
This holds the time tags.

protected int point_level;
This holds the size of tvalue.

protected SPApar_pos *tvalue;
This holds the parameter values.

protected SPAposition *cached_f;
This holds the positions.

protected surface *acis_surface;
This holds a pointer to the ACIS surface class.

Kernel R10

Constructor:
public: surface_law_data::surface_law_data (

surface const& in_acis_surface, // surface
SPAinterval const& in_u_domain, // u parameter

// range
SPAinterval const& in_v_domain // v parameter

// range
);

C++ constructor, creating a sruface_law_data which is a wrapper for the
ACIS surface.

public: surface_law_data::surface_law_data (
surface const& in_acis_surface // surface
);

C++ constructor, creating a sruface_law_data which is a wrapper for the
ACIS surface.

Destructor:
public: surface_law_data::~surface_law_data ();

Applications are required to call this destructor for their law data types.

Methods:
public: SPAposition surface_law_data::bs3_eval (

SPApar_pos const& in_par_pos// uv parameters
) const;

Returns the position of the u,v parameters on the spline approximating
surface.

public: virtual law_data*
surface_law_data::deep_copy (
base_pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

Kernel R10

public: void surface_law_data::eval (
SPApar_pos& uv, // parameter to evaluate
SPAposition& pos, // output surface

// position
SPAvector* dpos, // array of 1st

// derivatives
SPAvector* ddpos // array of second

// derivatives
);

This takes in a uv parameter value and returns the corresponding xyz
position on the surface; a vector array, which holds the derivative with
respect to u and the derivative with respect to v; and an array with three
vectors, which correspond to the second derivative with respect to u, the
derivative with respect to u and then to v, and the second derivative with
respect to v.

public: double
surface_law_data::eval_gaussian_curvature (
SPApar_pos const& in_par_pos// parameter position
) const;

Finds the Gaussian curvature at the given parameter value on the curve.

public: double surface_law_data::eval_max_curvature (
SPApar_pos const& in_par_pos// parameter position
) const;

Finds the maximum curvature at the given parameter value on the curve.

public: double
surface_law_data::eval_mean_curvature (
SPApar_pos const& in_par_pos// parameter position
) const;

Finds the mean curvature at the given parameter value on the curve.

public: double surface_law_data::eval_min_curvature (
SPApar_pos const& in_par_pos// parameter position
) const;

Kernel R10

Finds the minimum curvature at the given parameter value on the curve.

protected: void surface_law_data::init (
surface const& in_acis_surface, // surface
SPAinterval const& in_u_domain, // u parameter

// range
SPAinterval const& in_v_domain // v parameter

// range
);

Initializes this object.

public: SPApar_pos surface_law_data::point_perp (
SPAposition in_point // given position
);

Finds the parameter position on the surface perpendicular to the given
position outside of the surface.

public: SPApar_pos surface_law_data::point_perp (
SPAposition in_point, // given position
SPApar_pos in_par_pos // given par pos
);

Finds the parameter position on the surface perpendicular to the given
position outside of the surface.

public: virtual void surface_law_data::save ();

Calls the specific surface save method, and saves the u domain interval
and v domain interval.

public: void surface_law_data::set_levels (
int in_point_level // number of tvalue

= 4,
int in_derivative_level // number of deriv

= 2
);

Establishes the number of positions stored in tvalue in preparation for
starting over. In addition, it clears out cached arrays for the positions and
their derivatives.

Kernel R10

public: char const* surface_law_data::symbol (
law_symbol_type type // type of law symbol
);

Returns the string that represents this law class’s symbol. The symbol is
used for parsing the law and for saving and restoring law-based geometry.
For a law to be saved and restored, it must have or inherit this method.

The default law symbol for this class is SURF.

public: logical surface_law_data::term_domain (
int which, // term to bound
SPAinterval& answer // bounds for term
);

Establishes the domain of a given term in the law.

Internal Use: grid

Related Fncs:
restore_law, restore_law_data, save_law

surf_int_cur
Class: Construction Geometry, SAT Save and Restore

Purpose: Represents spline curves on a surface within the given fit tolerance.

Derivation: surf_int_cur : int_cur : subtrans_object : subtype_object :
ACIS_OBJECT : –

SAT Identifier: “surfcur”

Filename: kern/kernel/kerngeom/intcur/surf_int.hxx

Description: This class, derived from int_cur, represents spline curves on a surface
within a given fit tolerance.

Limitations: None

References: None

Data:
None

Kernel R10

Constructor:
public: surf_int_cur::surf_int_cur (

bs3_curve, // spline curve
double, // fit tolerance
surface const&, // 1st surface

// for curve
surface const&, // 2nd surface

// for curve
bs2_curve, // 1st curve

// param space
bs2_curve, // 2nd curve

// param space
logical // surface for

= TRUE, // true curve
const SPAinterval& // safe range

= * (SPAinterval*) NULL_REF// for curve
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: surf_int_cur::surf_int_cur (
bs3_curve, // spline curve
double, // fit tolerance
surface const& // surface where

= * (surface*) NULL_REF, // curve lies
bs2_curve // curve in param

= NULL, // space
logical // surface for

= TRUE, // true curve
const SPAinterval& // safe range

= * (SPAinterval*) NULL_REF // for curve
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

public: surf_int_cur::surf_int_cur (
const surf_int_cur& // input curve
);

C++ copy constructor requests memory for this object and populates it with
the data from the object supplied as an argument.

Kernel R10

Destructor:
None

Methods:
public: virtual int_cur* surf_int_cur::deep_copy (

pointer_map* pm // list of items within
= NULL // the entity that are

// already deep copied
) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

public: static int surf_int_cur::id ();

Returns the ID for the surf_int_cur list.

private: void surf_int_cur::restore_data ();

Restores the information for the surf_int_cur from a save file.

int_cur::restore_data Generic curve data
if (restore_version_number >= PARCUR_VERSION)

read_logical Either “surf2” or “surf1”

public: virtual void
surf_int_cur::save_data () const;

Save the information for the surf_int_cur to a save file.

public: virtual int surf_int_cur::type () const;

Returns the type of surf_int_cur.

public: virtual char const*
surf_int_cur::type_name () const;

Returns the string “surfcur”.

Internal Use: full_size

Related Fncs:
restore_surf_int_cur

Kernel R10

surf_normcone
Class: Construction Geometry, Mathematics

Purpose: Provides a return value for normal_cone which returns a cone bounding
the surface normal.

Derivation: surf_normcone : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/surface/surdef.hxx

Description: Defines a bound on the surface normal. It is used in intersection code to
eliminate the possibility of tangencies and common normals.

Limitations: None

References: by KERN mesh_tree
BASE SPAunit_vector

Data:
public double angle;
Positive half angle defining the bounding cone.

public logical approx;
TRUE if this is only an approximation to the best cone available.

public logical oversize;
If approx is TRUE, this flag is TRUE if this cone is entirely outside the
best available cone and FALSE if it is inside.

public surface_vardir vardir;
Classifies whether the normal direction varies more in the u-parameter
direction, more in the v-parameter direction, or in neither. This item is to
be used only as a hint.

public SPAunit_vector axis;
Axis direction for the cone. The cone is deemed to have its apex at the
origin.

Constructor:
public: surf_normcone::surf_normcone (

SPAunit_vector const& ax, // axis direction
double ang, // positive half angle
surface_vardir vdir, // variation direction
logical app, // approx results OK?
logical over // inside or outside?
);

Kernel R10

C++ constructor, creating a surf_normcore using the specified parameters.

Destructor:
None

Methods:
None

Related Fncs:
surf_deriv_to_curv

surf_princurv
Class: Construction Geometry, Mathematics

Purpose: Provides the return value for the principle curvature functions, returning
two directions and two curvatures for a surface.

Derivation: surf_princurv : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kerngeom/surface/surdef.hxx

Description: This class provides the return value for the principle curvature functions,
returning two directions and two curvatures for a surface.

Limitations: None

References: BASE SPAunit_vector

Data:
public double curv1;
The first curvature.

public double curv2;
The second curvature.

public SPAunit_vector dir1;
First direction vector.

public SPAunit_vector dir2;
The second direction vector.

Constructor:
public: surf_princurv::surf_princurv ();

C++ allocation constructor requests memory for this object but does not
populate it.

Kernel R10

public: surf_princurv::surf_princurv (
SPAunit_vector const& d1,// 1st vector direction
double c1, // first curvature
SPAunit_vector const& d2,// 2nd vector direction
double c2 // second curvature
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Destructor:
None

Methods:
None

Related Fncs:
surf_deriv_to_curv

surf_surf_int
Class: Intersectors

Purpose: Represents the intersection of two face surfaces and returns zero or more
curves.

Derivation: surf_surf_int : ACIS_OBJECT : –

SAT Identifier: None

Filename: kern/kernel/kernint/intsfsf/sfsfint.hxx

Description: This class holds the details of the intersection of two face surfaces and
returns zero or more curves. Every edge of each face is assumed to have
been intersected with the other surface, so the intersection points may be
used to assist (for example, if the surfaces are parametric).

Limitations: None

References: KERN curve, pcurve, surf_surf_term, surface

Data:
public curve *cur;
It indicates the face-face coincidence, and it may be NULL. In this case,
all face-body relationships are either surf_symmetric or
surf_antisymmetric, and this is the only CURVE_LIST record in the list.

Kernel R10

public double *split_param;
An array of parameter values flagging bounded regions of the curve where
it lies outside the region of interest. Each value is in a typical parameter
value within the portion outside the box. If no box is specified, or if the
intersection curve lies wholly within the box, or if it is unbounded but only
enters the box in one interval, then this pointer is NULL; otherwise it must
point to an array on the heap.

public int nsplit;
The number of values in the array split_param. This is 0 if split_param is
NULL.

public pcurve *pcur1;
The first pcurve, it provides the parametric-space intersection curve with
respect to the intersection surfaces, if they are parametric. It may be NULL
even if cur is not NULL.

public pcurve *pcur2;
The second pcurve, it provides the parametric-space intersection curve
with respect to the intersection surfaces, if they are parametric. It may be
NULL even if cur is not NULL.

public double end_param;
The parameter value of end_point, which is meaningless if the end_point
is NULL.

public double start_param;
The parameter value of start_point, which is meaningless if the start_point
is NULL.

public surf_int_type int_type;
The classification of the intersection type (normal, tangent, or
antitangent).

public surf_int_type left_int_type[2];
Intersection type (with respect to other face) of the portions of each face to
the left of the intersection curve. Only used for mesh surface intersections
(otherwise the single int_type above is sufficient). Set to int_unknown if
not used.

public surf_int_type right_int_type[2];
Intersection type (with respect to other face) of the portions of each face to
the left of the intersection curve. Only used for mesh surface intersections
(otherwise the single int_type above is sufficient). Set to int_unknown if
not used.

Kernel R10

public surf_surf_int *next;
For chaining surface-surface intersections.

public surf_surf_rel aux_left_rel[2];
For each of the surfaces, it specifies the relationship on the left side of the
intersection curve to the auxiliary surface. Because this is always a clean
“inside” or “outside,” the right relationship is always the converse, so it
does not need to be recorded.

public surf_surf_rel left_surf_rel[2];
The relationship (with respect to the other face) of the portions of each
face to the left of the intersection curve.

public surf_surf_rel right_surf_rel[2];
The relationship (with respect to the other face) of the portions of each
face to the right of the intersection curve.

public surf_surf_term *end_term;
The terminator point at the end of the curve. It is NULL if the curve is not
bounded at the end.

public surf_surf_term *start_term;
The terminator point at the start of the curve. It is NULL if the curve is not
bounded at the start.

public surface *aux_surf;
Normally NULL, this points to a surface containing the intersection curve
and is roughly perpendicular to the subject surfaces if they are tangential
or near tangential, which allows for clean intersections with the edges of
the faces.

Constructor:
public: surf_surf_int::surf_surf_int (

curve*, // curve
surf_surf_int* // surf–surf intersection

= NULL,
surf_surf_term* // surf–surf termination

= NULL,
surf_surf_term* // surf–surf termination

= NULL
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

The default type is normal, and the relationships are suitable for the
conventional curve direction being the cross products of the surface
normals in the given order.

Kernel R10

public: surf_surf_int::surf_surf_int (
SPAposition const&, // position
surf_surf_int* // next surf–surf

= NULL // intersection
);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

Constructor for an intersection curve representing an isolated point. The
default type is normal and the relationships are set to unknown.

Destructor:
public: surf_surf_int::~surf_surf_int ();

C++ destructor, deleting a surf_surf_int.

Methods:
public: void surf_surf_int::debug (

FILE* // file name
= debug_file_ptr

) const;

Writes debug information about surf_surf_int to the printer or to the
specified file.

Related Fncs:
None

sweep_spl_sur
Class: Sweeping, Construction Geometry, SAT Save and Restore

Purpose: Defines the perpendicular sweep of a planar profile curve along a path
curve.

Derivation: sweep_spl_sur : spl_sur : subtrans_object : subtype_object :
ACIS_OBJECT : –

SAT Identifier: “sweepsur”

Filename: kern/kernel/sg_husk/sweep/swp_spl.hxx

Description: This class defines the perpendicular sweep of a planar profile curve along
a path curve. The start of the path is in the plane of the shape curve.

Kernel R10

The evaluator for the “sweep” surface type has been redone to remove the
restriction on the profile and path curves.

The new equation S(u,v) for the sweep surface is defined below:

S (u,v) = k (u) *M (v)

where

k (u) = w (u) * transpose (M (start v))
p (u) = the position of the profile at u

 w (u) = p (u) – (the start of the sweep path)

M (v) = the 3 x 3 matrix
with rows { mx (v), my (v), mz (v) }

mx (v) = rail_law (v)
mz (v) = normalized (sweep path tangent at v)
my (v) = mz (v) X mx (v)

M is a frame at v on the sweep path, and k is the vector in the starting
frame’s coordinate system that points from the start of the sweep path to
the profile at u.

When we consider scale, the equation becomes

S (u,v) = k (u) *s (v) * M (v)

where

s (v) = the 3 x 3 matrix
with diagonal equal to { xs (v), ys (v), zs (v) }

and where

 “_s” is the scale in the frame’s “_” direction

When we consider draft, the equation becomes

S (u,v) = k (u,v) * s (v) * M (v)

where

k (u,v) = p (u,v) – (the start of the sweep path)

and where

p (u,v) is the u position of the profile offset by the draft_law (v)

Kernel R10

The profile must be planar if draft is used.

Limitations: None

References: KERN curve
BASE SPAinterval, SPAmatrix, SPAposition, SPAunit_vector
LAW law

Data:
protected bs3_curve path_bs;
The spline representation of a path curve.

protected bs3_curve profile_bs;
The spline representation of a profile curve.

protected curve *path_curve;
A copy of the path curve.

protected curve *profile_curve;
A copy of the profile curve.

protected SPAinterval draft_domain;
The draft range.

protected law *draft_law;
This is a law that represents the draft angle as a function of the length of
the wire, starting at wire length equal to zero for the beginning of the wire.

protected law *rail_law;
This is a law that represents a vector orientation as a function of the length
of the wire, starting at wire length equal to zero for the beginning of the
wire.

protected law *scale_law;
This is a law that represents xyz scaling as a function of the length of the
wire, starting at wire length equal to zero for the beginning of the wire.

protected logical is_path_normal;
The variables to switch on the path type.

protected logical sweep_nor;
A logical variable that is TRUE if the shape is in the plane formed by
local_x and local_y; otherwise, it is FALSE.

protected SPAmatrix start_frame;
Start of frame used by the path and rail law. x is the rail, z is the path
direction at the start. y = z X x.

Kernel R10

protected SPAmatrix start_frame_t;
The transpose of the start_frame.

protected SPAposition path_start;
Start the Frenet Frame, which is defined by the path and the rail curves.

protected SPAunit_vector profile_nor;
The normal vector to the profile.

Constructor:
protected: sweep_spl_sur::sweep_spl_sur ();

C++ allocation constructor requests memory for this object but does not
populate it.

public: sweep_spl_sur::sweep_spl_sur (
curve const&, // shape curve
curve const&, // path curve
law*, // rail law
law*, // draft law
law*, // scale law
SPAinterval const&, // shape range
SPAinterval const&, // path range
logical, // shape perp. to

// path?
bs3_curve help_profile_bs // rail curve

= (bs3_curve) NULL,
bs3_curve help_path_bs // rail curve

= (bs3_curve) NULL,
SPAunit_vector const& // unit vector

in_profile_nor // normal in shape
= * (SPAunit_vector const*) NULL_REF

);

C++ initialize constructor requests memory for this object and populates it
with the data supplied as arguments.

This sweep surface is formed by sweeping the shape along the path curve,
with an optional rail curve to specify the twist of the shape curve when it
is swept along the path. If the path curve is normal, the path normal must
not be NULL. If the path is not planar, a rail curve must be specified.

Destructor:
protected: virtual sweep_spl_sur::~sweep_spl_sur ();

Kernel R10

C++ destructor, deleting a sweep_spl_sur.

Methods:
public: int sweep_spl_sur::accurate_derivs (

SPApar_box const& // range for derivs
= * (SPApar_box*) NULL_REF

) const;

Calculates the derivatives for the surface.

public: void
sweep_spl_sur::check_for_approx () const;

This function should be used after creating a sweep_spl_sur, to ensure the
surface will be valid for downstream operations.

protected: virtual subtrans_object*
sweep_spl_sur::copy () const;

Constructs a duplicate sweep_spl_sur in free storage of this object, with a
zero use count.

protected: void
sweep_spl_sur::curve_add_discontinuities ();

Calculates discontinuity information from the generating curves and adds
it to the sweep surface.

protected: virtual void sweep_spl_sur::debug (
char const*, // class–identifying line
logical, // brief output?
FILE* // file name
) const;

Prints out a class-specific identifying line to standard output or to the
specified file.

protected: void sweep_spl_sur::debug_data (
char const*, // class–identifying line
logical, // brief output?
FILE* // file name
) const;

Kernel R10

Prints out the details. The debug_data derived class can call its parent’s
version first, to put out the common data. If the derived class has no
additional data it need not define its own version of debug_data and use
its parent’s instead. A string argument provides the introduction to each
displayed line after the first, and a logical sets brief output (normally
removing detailed subsidiary curve and surface definitions).

public: virtual spl_sur* sweep_spl_sur::deep_copy (
pointer_map* pm // list of items within

= NULL // the entity that are
// already deep copied

) const;

Creates a copy of an item that does not share any data with the original.
Allocates new storage for all member data and any pointers. Returns a
pointer to the copied item.

protected: virtual int sweep_spl_sur::evaluate (
SPApar_pos const& uv, // parameter
SPAposition& xyz, // point on surface

// at given parameter
SPAvector** derivs, // array of points

// to vector
int number_of_derivs, // no. of derivatives

// required
evaluate_surface_quadrant // location to

quadrant // evaluate
) const;

Calculates derivatives of any order up to the number requested, and stores
them in vectors provided by the user. It returns the number of derivatives it
was able to calculate. (In most circumstances, this will be the number of
derivatives requested.) Lower order derivatives will be evaluated directly
and with reasonable accuracy; higher derivatives will be automatically
calculated by finite differencing. The accuracy of the higher derivatives
decreases with the order of the derivative, while the computing cost
increases.

Any of the pointers may be NULL, in which case the corresponding
derivatives will not be returned. Otherwise they must point to arrays large
enough to contain all the derivatives of that order; i.e., 2 for the first
derivatives, 3 for the second, etc.

Kernel R10

protected: virtual double sweep_spl_sur::eval_cross (
SPApar_pos const&, // parametric position
SPAunit_vector const& // curve direction
) const;

Finds the curvature of a cross-section curve of the surface at the point on
the surface with the specified parameter values. The cross-section curve is
defined as the intersection of the surface with a plane passing through the
point on the surface and normal to the specified direction, which must lie
in the surface.

protected: virtual SPAunit_vector
sweep_spl_sur::eval_normal (
SPApar_pos const& // parametric position
) const;

Finds the normal to the surface at the point with the specified parameter
values.

protected: virtual void
sweep_spl_sur::eval_prin_curv (
SPApar_pos const&, // parametric position
SPAunit_vector&, // first curvature axis

// direction
double&, // curvature in first

// direction
SPAunit_vector&, // second curvature axis

// direction
double& // curvature in the 2nd

// direction
) const;

Finds the principal axes of curvature of the surface at a point with the
specified parameter values and curvatures in those directions.

public: virtual law*
sweep_spl_sur::get_draft () const;

Returns the draft law for the sweep.

public: virtual curve*
sweep_spl_sur::get_path () const;

Kernel R10

Returns the sweep path curve.

public: virtual sweep_path_type
sweep_spl_sur::get_path_type () const;

Returns the sweep path type.

public: virtual curve* sweep_spl_sur::get_profile (
double param // parameter location
) const;

Evaluates the curve at the given parameter location.

public: virtual law*
sweep_spl_sur::get_rail () const;

Returns a pointer to the sweep rail law.

public: virtual law*
sweep_spl_sur::get_scale () const;

Returns a pointer to the sweep scale law.

public: logical sweep_spl_sur::helix (
spline const& owner, // starting surface
SPAvector& axis // axis start direction

= * (SPAvector*)NULL_REF,
SPAposition& root // axis start position

= * (SPAposition*)NULL_REF,
double& pitch // thread pitch

= * (double*)NULL_REF,
double& radius // radius of helix

= * (double*)NULL_REF,
logical& right_handed // TRUE is right handed

= * (logical*)NULL_REF
) const;

Sweeps a helical surface.

public: static int sweep_spl_sur::id ();

Kernel R10

Returns the ID for the sweep_spl_sur list.

protected: virtual void sweep_spl_sur::make_approx (
double fit, // fit tolerance
const spline& spl // pointer to output

= * (spline*) NULL_REF,// spline approx.
logical force // flag for forcing

= FALSE
) const;

Makes or remakes an approximation of the surface, within the given
tolerance.

protected: virtual void sweep_spl_sur::operator*= (
SPAtransf const& // transformation
);

Transforms the sweep by the specified transform.

protected: logical sweep_spl_sur::operator== (
subtype_object const& // sweep_spl_sur
) const;

Tests for equality. This does not guarantee to find all effectively equal
surfaces, but it does guarantee that different surfaces are correctly
identified as different.

protected: virtual SPApar_pos sweep_spl_sur::param (
SPAposition const&, // given point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the parameter values of a point on the surface.

protected: virtual SPApar_vec
sweep_spl_sur::param_unitvec (
SPAunit_vector const&, // direction
SPApar_pos const& // parametric position
) const;

Finds the change in the surface parameter corresponding to a unit offset in
a given direction at a given uv, the direction lying in the surface.

Kernel R10

public: virtual logical
sweep_spl_sur::planar_profile () const;

Checks whether the sweep profile is planar.

public: virtual logical
sweep_spl_sur::planar_profile (

SPAunit_vector& norm // normal to profile
) const;

Checks whether the sweep profile is planar and returns a vector normal to
the profile.

protected: virtual SPAunit_vector
sweep_spl_sur::point_normal (
SPAposition const&, // point
SPApar_pos const& // parameter guess

= * (SPApar_pos*) NULL_REF
) const;

Finds the normal to the surface at a point on the surface nearest to the
specified point.

protected: virtual void
sweep_spl_sur::point_prin_curv (
SPAposition const&, // given point
SPAunit_vector&, // 1st axis direction
double&, // curvature in first

// direction
SPAunit_vector&, // 2nd axis direction
double&, // curvature in 2nd

// direction
SPApar_pos const& // parametric guess

= * (SPApar_pos*) NULL_REF// supplied
) const;

Finds the principle axes of curvature of the surface at a specified point and
the curvatures in those directions.

public: curve const& sweep_spl_sur::profile () const;

Kernel R10

Returns the sweep profile curve.

protected: void sweep_spl_sur::restore_data ();

Restore the data for a sweep_spl_sur from a save file.

read_logical // path normal, ”angled” or
”normal”

restore_curve // profile curve
restore_curve // path curve
read_logical // sweep normal, ”angled” or

”normal”
read_vector // profile normal
read_position // path start position
read_vector // x–vector
read_vector // y–vector
read_vector // z–vector
if (restore_version_number < APPROX_SUMMARY_VERSION)

read_real // low point of u interval
read_real // high point of u interval
read_real // low point of v interval
read_real // high point of v interval

else // else
read_real // low point
read_real // high point

read_real // start draft distance
read_real // end draft distance
if(restore_version_number >= LAW_VERSION)

restore_law // rail law
restore_law // draft law
restore_law // scale law

restore_common_data // common surface data

public: virtual void sweep_spl_sur::save () const;

Saves an approximation of the surface, or calls the subtype object’s save
method.

public: virtual void
sweep_spl_sur::save_data () const;

Save the information for the sweep_spl_sur to a save file.

Kernel R10

protected: virtual void sweep_spl_sur::shift_u (
double // shift value
);

Adjusts the spline surface to have a parameter range increased by the shift
value, which may be negative. This method is only used to move portions
of a periodic surface by integral multiples of the period, so shift_v is never
used.

protected: virtual void sweep_spl_sur::shift_v (
double // shift value
);

This method is never used because shift_u and shift_v are designed to
move portions of a periodic surface by integral multiples of the period.
Refer to shift_u for more information.

protected: virtual void sweep_spl_sur::split_u (
double, // u–parameter value
spl_sur* [2] // returned split

// surfaces
);

Divides a surface into two pieces at the specified parameter value. It the
split occurs at the end of the parameter range, the spl_sur returns as the
appropriate half (in increasing parameter order), and the other is NULL;
otherwise a new spl_sur is used for one part, and the old one is modified
for the other part.

protected: virtual void sweep_spl_sur::split_v (
double, // v–parameter value
spl_sur* [2] // returned split

// surfaces
);

Divides a surface into two pieces at the specified parameter value. It the
split occurs at the end of the parameter range, the spl_sur returns as the
appropriate half (in increasing parameter order), and the other is NULL;
otherwise a new spl_sur is used for one part, and the old one is modified
for the other part.

Kernel R10

protected: virtual logical
sweep_spl_sur::test_point_tol (
SPAposition const&, // given point
double, // tolerance
SPApar_pos const& // param guess

= * (SPApar_pos*) NULL_REF,
SPApar_pos& // actual param

= * (SPApar_pos*) NULL_REF
) const;

Tests whether a point lies on the surface.

public: virtual int sweep_spl_sur::type () const;

Returns the type of sweep_spl_sur.

public: virtual char const*
sweep_spl_sur::type_name () const;

Returns a string “sweepsur”.

Internal Use: full_size

Related Fncs:
is_path_planar, restore_sweep_spl_sur

