
Kernel  R10

Chapter 40.
Options

Topic: Ignore

Options may be set to modify the behavior of ACIS. An option’s value may be a flag
(indicating an on/off state), a number (integer or real number), or a string. Options may be
set in a Scheme application (such as Scheme AIDE) using the Scheme extension option:set;
in the ACIS Test Harness using the command option; or in a C++ application using one of
several API functions. Refer to the 3D ACIS Online Help User’s Guide for a description of
the fields in the reference template.

address_debug
Option: Debugging, Modeler Control

Action: Sets the form of output addresses.

Name String: address_debug

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: Selects whether or not to output actual entity addresses as well as list
indices. Makes output position-independent, thus comparisons are easier.

Example: ; address_debug
; Turn off entity addresses
(option:set ”address_debug” #f)
;; #t

annotations
Option: Modeler Control, Feature Naming

Action: Controls whether annotation entities are created.



Kernel  R10

Name String: annotations

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: If this option is on (true), annotation entities are created during ACIS
operations. If it is off, they are not. The annotations option has different
default values for the release and the debug mode. It is on (true) by default
in the debug mode. When the unhooking option is on (true), the annotation
entities are not saved in the SAT file. However, unhooking does not occur
until the outer most set of API_BEGIN and API_END macros. Hence the
annotation entities would be saved in the SAT file, if the save is being
performed within the same set of API_BEGIN and API_END macros as
the annotated operations. This behavior could be overriden by explicitly
turning off (false) the annotations option in debug mode.

Example: ; annotations
; Turn on annotation creation
(option:set ”annotations” #t)
;; #f

api_checking
Option: Modeler Control

Action: Controls whether or not arguments to APIs are checked.

Name String: api_checking

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If this option is on, arguments to APIs are checked for validity. If it is off,
they are not. This is a global option.

Example: ; api_checking
; Turn off API argument checking
(option:set ”api_checking” #f)
;; #t

backup_boxes
Option: Ignore

Action: Sets backup of mesh boxes.



Kernel  R10

Name String: backup_boxes

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: Turning this off saves a lot of memory, but boxes must be recomputed as
needed. Used in the tri3_msh_sur::copy_pointers function.

Example: ; backup_boxes
; Turn off mesh backup boxes
(option:set ”backup_boxes” #f)
;; #t

bb_immediate_close
Option: Modeler Control, History and Roll

Action: Controls whether or not a bulletin board is closed off immediately when
the call is made to the close_bulletin_board function.

Name String: bb_immediate_close

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: Controls whether bulletin boards are closed in close_bulletin_board or in
open_bulletin_board. Historically it has been done in the open, so that is
the default. Switching the option on could result in finding errors related
to missing API_BEGIN/API_ENDs a bit quicker, because this causes the
bulletin board to be closed immediately in the outermost API_END
instead of waiting for the next API_BEGIN.

Example: ; bb_immediate_close
; Close bulletin boards immediately
(option:set ”bb_immediate_close” #t)
;; #f

binary_format
Option: Modeler Control, SAT Save and Restore

Action: Controls the format to use when writing ACIS part save files as binary.



Kernel  R10

Name String: binary_format

Scheme: integer 0, 1, 2, 3, 4, 5, 6 0

Test Harness: integer 0, 1, 2, 3, 4, 5, 6 0

C++: int 0, 1, 2, 3, 4, 5, 6 0

Description: This option determines the format used when writing ACIS part save files
in binary form (to .sab files). It controls whether the file is written in a 32
bit or 64 bit (word size) format and whether the file is written with
big–endian or little–endian byte ordering. The word size only affects
longs. Pointers are converted to (long) indices before writing. All other
types are the same size on 32 and 64 bit platforms. This option does not
affect the reading of binary files.

The possible values are:

0 Use the native format for the platform
1 Use big-endian byte ordering with native word sizes for the platform
2 Use little-endian byte ordering with native word sizes for the

platform
3 Use big-endian byte ordering with 32 bit word sizes
4 Use little-endian byte ordering with 32 bit word sizes
5 Use big-endian byte ordering with 64 bit word sizes
6 Use little-endian byte ordering with 64 bit word sizes

Example: ; binary_format
; Using little–endian order and native word size
(option:set ”binary_format” 2)
;; 0

binary_read_format
Option: Modeler Control, SAT Save and Restore

Action: Controls the format to use when reading ACIS part save files as binary.

Name String: binary_read_format

Scheme: integer –1, 0, 1, 2, 3, 4, 5, 6 –1

Test Harness: integer –1, 0, 1, 2, 3, 4, 5, 6 –1

C++: int –1, 0, 1, 2, 3, 4, 5, 6 –1



Kernel  R10

Description: This option determines the format used when reading ACIS part save files
in binary form (from .sab files). It controls whether the file is read in a 32
bit or 64 bit (word size) format and whether the file is read with
big–endian or little–endian byte ordering. The word size only affects
longs. Pointers are converted to (long) indices before being written to the
.sab file. All other types are the same size on 32 and 64 bit platforms.

The possible values are:

–1 Determine the format automatically
0 Use the native format for the platform
1 Use big-endian byte ordering with native word sizes for the platform
2 Use little-endian byte ordering with native word sizes for the

platform
3 Use big-endian byte ordering with 32 bit word sizes
4 Use little-endian byte ordering with 32 bit word sizes
5 Use big-endian byte ordering with 64 bit word sizes
6 Use little-endian byte ordering with 64 bit word sizes

Example: ; binary_read_format
; Using little–endian order and native word size
(option:set ”binary_read_format” 2)
;; –1

bl_envelope_surf
Option: Modeler Control, Blending

Action: Controls the type of blend surface used when a variable-radius blend is
created.

Name String: bl_envelope_surf

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If this option is on (true), a rolling ball envelope blend surface is created
for the variable-radius blend. If it is off (false), a rolling ball snapshot
blend surface is created.



Kernel  R10

Example: ; bl_envelope_surf
; Unite two blocks, then create two blends, one
; with bl_envelope_surf off, and one with it on
(define block1 (solid:block (position 0 5 0)

(position 5 10 10)))
;; block1
(define block2 (solid:block (position 0 0 0)

(position 10 10 5)))
;; block2
(solid:unite block1 block2)
;; #[entity 2 1]
(iso)
;; #[view 1077019000]
(zoom–all)
;; #[view 1077019000]
(ray:queue 35.8763 –51.7115 28.5678

–0.408248 0.816497 –0.408248 1)
;; #[ray (35.8763 –51.7115 28.5678)
;; (–0.408248 0.816497 –0.408248)]
(define edge1 (pick–edge))
;; edge1
(solid:blend–edges edge1 2)
;; (#[entity 2 1])
(ray:queue 32.557 –50.0111 35.2878

–0.408248 0.816497 –0.408248 1)
;; #[ray (32.557 –50.0111 35.2878)
;; (–0.408248 0.816497 –0.408248)]
(define edge2 (pick–edge))
;; edge2
(solid:blend–edges edge2 2)
;; (#[entity 2 1])
(define radii (abl:two–ends–rad 1 2))
;; radii

; Turn option off and create a blend
(option:set ”bl_envelope_surf” #f)
;; #t
(ray:queue 29.4386 –53.3763 31.6758

–0.408248 0.816497 –0.408248 1)
;; #[ray (29.4386 –53.3763 31.6758)
;; (–0.408248 0.816497 –0.408248)]
(define edge3 (pick–edge))
;; edge3
(define edges (blend:get–smooth–edges edge3))
;; edges



Kernel  R10

(blend:var–rad–on–edge  edges 0 2)
;; (#[entity 6 1] #[entity 7 1] #[entity 8 1])
(blend:network edges)
;; #[entity 2 1]
; Turn option on and create another blend
(option:set ”bl_envelope_surf” #t)
;; #f
(ray:queue 29.639 –52.2681 33.6918

–0.408248 0.816497 –0.408248 1)
;; #[ray (29.639 –52.2681 33.6918)
;; (–0.408248 0.816497 –0.408248)]
(define edge4 (pick–edge))
;; edge4
(define edges (blend:get–smooth–edges edge4))
;; edges
(blend:var–rad–on–edge edges 0 2)
;; (#[entity 9 1] #[entity 10 1] #[entity 11 1])
(blend:network edges)
;; #[entity 2 1]
; Check convexity of edges
(ray:queue 34.0659 –49.9426 33.9158

–0.408248 0.816497 –0.408248 1)
;; #[ray (34.0659 –49.9426 33.9158)
;; (–0.408248 0.816497 –0.408248)]
(define edge5 (pick–edge))
;; edge5
(edge:convexity edge5)
;; ”convex”
(ray:queue 35.9327 –50.5213 30.8918

–0.408248 0.816497 –0.408248 1)
;; #[ray (35.9327 –50.5213 30.8918)
;; (–0.408248 0.816497 –0.408248)]
(define edge6 (pick–edge))
;; edge6
(edge:convexity edge6)
;; ”convex_smooth”

brief_comp_debug
Option: Ignore

Action: Sets how much information about a compcurv is printed.

Name String: brief_comp_debug

Scheme: boolean #f, #t #t



Kernel  R10

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, a brief version of the information is printed by com_cur::debug.

Example: ; brief_comp_debug
; Turn off the brief debug option
(option:set ”brief_comp_debug” #f)
;; #t

brief_curve_debug
Option: Modeler Control, Construction Geometry, Debugging

Action: Sets how much information about a curve is printed.

Name String: brief_curve_debug

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, only a brief version of the curve information is printed by
intcurve::debug.

Example: ; brief_curve_debug
; Turn off the brief debug option
(option:set ”brief_curve_debug” #f)
;; #t

brief_mesh_debug
Option: Ignore

Action: Sets how much information about a mesh is printed.

Name String: brief_mesh_debug

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE



Kernel  R10

Description: If on, only a brief version of the mesh information is printed by
msh_sur::debug_data.

Example: ; brief_mesh_debug
; Turn off the brief debug option
(option:set ”brief_mesh_debug” #f)
;; #t

brief_pcurve_debug
Option: Modeler Control, Debugging, Construction Geometry

Action: Sets how much information about a pcurve is printed.

Name String: brief_pcurve_debug

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, only a brief version of the pcurve information is printed by
pcurve::debug.

Example: ; brief_pcurve_debug
; Turn off the brief debug option
(option:set ”brief_pcurve_debug” #f)
;; #t

brief_surface_debug
Option: Modeler Control, Debugging, Construction Geometry

Action: Sets how much information about a spline surface is printed.

Name String: brief_surface_debug

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, only a brief version of the spline surface information is printed by
spline::debug.



Kernel  R10

Example: ; brief_surface_debug
; Turn off the brief debug option
(option:set ”brief_surface_debug” #f)
;; #t

careful
Option: Debugging, Modeler Control

Action: Controls whether or not extra geometry/topology checking is done.

Name String: careful

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: If this option is on (TRUE), extra geometry/topology checking is done, at
the expense of performance. This extra checking is not intended to be
specific to any component or area of functionality—it may occur
anywhere in ACIS. However, this option is currently being used only by
sweeping to check for face–face intersections.

Example: ; careful
; Turn on checking
(option:set ”careful” #t)
;; #f

check_output
Option: Modeler Control, Spline Interface

Action: Determines the level of output generated by the body checker.

Name String: check_output

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: Selects the level of output generated by the body checker. If this option is
on, a more detailed output on the errors is generated and sent to stdout.



Kernel  R10

Example: ; check_output
; Turn on detailed output
(option:set ”check_output” #t)
;; #f

compress_bb
Option: History and Roll, Modeler Control

Action: Controls bulletin board compression.

Name String: compress_bb

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, bulletin boards are to be automatically compressed. This means that
each bulletin board is automatically merged with any previous bulletin
boards in the same delta state. This generally results in smaller memory
usage. To maintain separate bulletin boards for each API, set this option to
off during initialization.

Each set of operations within an outermost API_BEGIN/API_END block
produces a bulletin board containing a bulletin for each entity created,
changed, or deleted within that block. All operations on any given entity
within the block go into a single bulletin. Thus, the bulletin indicates only
the state of the entity before and after the entire block.

A call to API api_note_state creates a delta state containing all of the
bulletin boards created since the previous call to api_note_state. If an
entity has been modified in several different blocks, there will be several
bulletins for that entity, each on a different bulletin board.

If the compress_bb option is on, at the end of each successful block the
bulletins in the bulletin board created for that block are merged with those
from the previous bulletin board, so they appear as though the operations
occurred in the same block. This should save memory used by extra
bulletins and backup copies of modified entities. It should also save time
during roll back.

Example: ; compress_bb
; Turn off bulletin board compression
(option:set ”compress_bb” #f)
;; #t



Kernel  R10

cone_param_range_v
Option: Modeler Control

Action: Controls whether to use a more accurate algorithm for computing cone
surface parameter range.

Name String: cone_param_range_v

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If this option is on, a more accurate—but slower—algorithm is used for
computing the parameter range of a cone surface.

Example: ; cone_param_range_v
; Turn off cone_param_range_v
(option:set ”cone_param_range_v” #f)
;; #t

convert_on_restore
Option: Modeler Control, SAT Save and Restore

Action: Controls whether to convert wires from the old to the new format during a
restore operation.

Name String: convert_on_restore

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: Refer to Action.

Example: ; convert_on_restore
; Do not convert
(option:set ”convert_on_restore” #f)
;; #t

delete_forward_states
Option: Modeler Control, History and Roll

Action: Controls whether to delete all forward delta states.



Kernel  R10

Name String: delete_forward_states

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If this option is on, all forward delta states are deleted when adding a new
delta state to a history stream.

Example: ; delete_forward_states
; Turn off forward state deletion
(option:set ”delete_forward_states” #f)
;; #t

error_no_input_tag
Option: Modeler Control, Feature Naming

Action: Controls whether or not an error occurs if inputs are not tagged (when
annotations are activated).

Name String: error_no_input_tag

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: This option affects the behavior when annotations are activated (e.g., using
option annotations); it has no affect when annotations are not turned on
(because annotations are not created). If this option is on (true), inputs
must by tagged (by adding an ATTRIB_TAG or an entity derived from it)
by the caller before calling the ACIS operation. If not tagged, a sys_error
occurs when creating an annotation that references the input. This can be a
useful debugging tool. If this option is off (false), tags are generated as
needed.

Example: ; error_no_input_tag
; Turn on error if not tagged
(option:set ”error_no_input_tag” #t)
;; #f

fitol_curve_interp
Option: Modeler Control, Spline Interface

Action: Sets the fit tolerance for spline curve interpolation.



Kernel  R10

Name String: fitol_curve_interp

Scheme: real See Description –1.0

Test Harness: double See Description –1.0

C++: double See Description –1.0

Description: The fit tolerance is set based on the value of this option, as follows:

Option Value Fit Tolerance Used
Greater than 0.0 Option value. . . . . . . . . . . . . . . . . 
Equal to 0.0 SPAresfit * arc length; where arc. . . . . . . . . . . . . . . . . . . . 

length is the length of the path
created by connecting the initial fit
points with line segments

Less than 0.0 SPAresfit. . . . . . . . . . . . . . . . . . . 

If the resulting fit tolerance is less than 10*SPAresabs, then
10*SPAresabs is used.

Example: ; fitol_curve_interp
; Set fit tolerance to use arc length * SPAresfit
(option:set ”fitol_curve_interp” 0.0)
;; –1

fix_pcurves
Option: Modeler Control, Intersectors

Action: Controls whether or not pcurves are corrected when validity checks are
performed.

Name String: fix_pcurves

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: This option is used whenever validity checks are performed on a pcurve.
This happens whenever a CCS (curve–curve intersection on a surface) is
done. The pcurve checking code checks various properties of the pcurve.
If this option is on (true), the checking code will attempt to correct any
properties that are not satisfied. If this option is off (false), there is no
attempt to correct the pcurve.



Kernel  R10

Example: ; fix_pcurves
; Turn off pcurve fixing
(option:set ”fix_pcurves” #f)
;; #t

history_checks
Option: Modeler Control, History and Roll

Action: Controls how history checks are reported.

Name String: history_checks

Scheme: integer See Description 0

Test Harness: integer See Description 0

C++: int See Description hs_checks_off

Description: This option controls the reporting of history checks (including checking
for mixed history streams). The valid values are defined in the enumerated
type hs_checks_level:

0 = hs_checks_off, no checking is done
1 = hs_checks_warning, any identified problems result in a warning
2 = hs_checks_error, any identified problems result in an error being

thrown

Example: ; history_checks
; Change history check reporting
(option:set ”history_checks” 2)
;; 0

intcurve_save_approx_level
Option: Modeler Control, SAT Save and Restore

Action: Controls the level of information stored in the SAT file for intcurves.

Name String: intcurve_save_approx_level

Scheme: string See Description “optimal”

Test Harness: string See Description “optimal”

C++: char* See Description “optimal”



Kernel  R10

Description: This option controls the amount of data stored in the SAT file for
intcurves. In particular, it controls whether the approximating geometry
for a spline curve is stored in full, in summary form, or not at all. If the
approximating geometry is stored in full, then the SAT file will be large,
but regenerating the part from the SAT file will be relatively fast. If the
approximating geometry is not stored at all, then the SAT file will be at its
minimum size, but parts may take a long time to regenerate because the
approximating geometry must be completely recalculated. The summary
form is a compromise. The SAT files will be only slightly larger than when
no approximating geometry is stored, and regeneration is nearly as fast as
when the full geometry is stored.

In this discussion, regenerate means to restore the data and prepare it for
use. In release 5.0, approximating geometry may not be recalculated
during the restore, but it will be recalculated when it is first required.
Therefore, if approximating geometry is stored in full, the actual restore
will be fast, but the part may not be “ready for use” until the
approximating geometry has been recalculated.

The argument to this option is a string. Possible values are:

“full” Save the complete approximating. . . . . . . . . . . . . . . . . . . . . . . . . . 
geometry.

“summary” Save a summary form of the. . . . . . . . . . . . . . . . . . . . . 
approximating geometry.

“none” Do not save the approximating. . . . . . . . . . . . . . . . . . . . . . . . 
geometry.

“historical” Preserve the historical behavior;. . . . . . . . . . . . . . . . . . . . . 
i.e., save the approximating
geometry if and only if this was
done in pre-5.0 versions.

“optimal” Allow ACIS to decide the level at. . . . . . . . . . . . . . . . . . . . . . 
which approximating geometry is
saved.

ACIS may override the setting of this option for a particular geometry
type. Typically, this will be because the geometry type requires the
approximating geometry as a fundamental part of its definition and cannot
exist without it. For example, if this option is set to “none,” exact
intcurves (exact_int_cur) will still be saved in full, because they would
otherwise be undefined.



Kernel  R10

The possible values for this option are defined in the enumeration
save_approx_level and in the corresponding enum_entry structure
save_approx_entries (and its enum_table save_approx_map), which
defines the strings and maps them to the enumeration. Refer to the
description of the Enumeration Template in the 3D ACIS Online Help
User’s Guide for more information about the enum_entry structure.

save_approx_full “full”. . . . . . . . . . . . . . . . 
save_approx_summary “summary”. . . . . . . . . . . 
save_approx_none “none”. . . . . . . . . . . . . . 
save_approx_historical “historical”. . . . . . . . . . . 
save_approx_optimal “optimal”. . . . . . . . . . . . 

Example: ; intcurve_save_approx_level
; Set to full save
(option:set ”intcurve_save_approx_level” ”full”)
;; ”optimal”

logging
Option: Modeler Control, History and Roll

Action: Sets whether bulletin boards and delta states are to be visible at the
application level.

Name String: logging

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If off, each bulletin board is deleted as soon as the next is opened, and
application functions to get bulletin boards or delta states always return
NULL.

Example: ; logging
; Turn off logging
(option:set ”logging” #f)
;; #t

new_dangling_wires
Option: Modeler Control, SAT Save and Restore

Action: Converts dangling wires to either new or old style.



Kernel  R10

Name String: new_dangling_wires

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: Used when restoring old-style save files. If off, converts backwards; if on,
converts forwards.

Example: ; new_dangling_wires
; Convert backwards
(option:set ”new_dangling_wires” #f)
;; #t

new_transform_method
Option: Modeler Control, Model Geometry, Transforms

Action: Sets the method used for transformations.

Name String: new_transform_method

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If on, uses the new streamlined method for performing transformations. If
off, uses the old method.

Example: ; new_transform_method
; Use old method
(option:set ”new_transform_method” #f)
;; #t

print_entity_type
Option: Modeler Control, Scheme AIDE Application, Debugging

Action: Controls how an entity is printed in Scheme output.

Name String: print_entity_type

Scheme: boolean #f, #t #f



Kernel  R10

Test Harness: Not applicable

C++: Not applicable

Description: If this option is on (true), the type name of the entity (e.g., face, body, etc.)
gets printed in Scheme output instead of just the string “entity”. If it is off,
Scheme simply prints “entity”.

Example: ; print_entity_type
; Create a body and print some entity information
(define b (solid:block (position 0 0 0) 

(position 1 1 1)))
;; b
b
;; #[entity 2 1]
(entity:faces b)
;; (#[entity 3 1] #[entity 4 1] #[entity 5 1]
;; #[entity 6 1] #[entity 7 1] #[entity 8 1])
;
; Turn the option on and repeat
(option:set ”print_entity_type” #t)
;; #f
(define b (solid:block (position 0 0 0) 

(position 1 1 1)))
;; b
b
;; #[body 9 1]
(entity:faces b)
;; (#[face 10 1] #[face 11 1] #[face 12 1] 
;; #[face 13 1] #[face 14 1] #[face 15 1])

regen_skin_approx
Option: Modeler Control, SAT Save and Restore

Action: Controls whether to regenerate the approximating surface during retrieval
of a skin surface.

Name String: regen_skin_approx

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: If this option is on, the approximating surface of a skin_spl_sur is
regenerated. Surfaces created with older versions of ACIS may have bad
approximating surfaces.



Kernel  R10

Example: ; regen_skin_approx
; Regenerate the surface
(option:set ”regen_skin_approx” #t)
;; #f

remesh
Option: Ignore

Action: Sets automatic remeshing during a Boolean.

Name String: remesh

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: Any compcurv intersections are used to break up the mesh faces on which
they lie. Breaks up the triangles along a boundary curve to be compatible
with the segments of that curve. Limited to straight segments. When on,
this will happen automatically during a Boolean. When off, the user must
remesh the body.

Example: ; remesh
; Turn off automatic remeshing
(option:set ”remesh” #f)
;; #t

restore_locale
Option: Modeler Control, SAT Save and Restore

Action: Sets the localization properties (language locale) to use when restoring
save files (.sat).

Name String: restore_locale

Scheme: string See Description “C”

Test Harness: string See Description “C”

C++: char* See Description “C”

Description: This provides the ability to restore .sat files that were saved using a locale
other than the “C” locale. It results in a call to the C standard library
function setlocale if a restore operation is performed. The locale is reset
to its original value following the restore.



Kernel  R10

The argument to this option is a string. Possible values are:

“C” Uses the standard environment for. . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.

“” (empty string) Uses the system’s native. . . . . . . . . . . . . . . . 
environment.

“<other valid locale name>” Is a string specifying some other. . . . . . . 
locale. Valid values are system
dependent locale names.

For example, in HP-UX version 10.01, a locale name conforms to ISO
standards and identifies the language (with a 2-character code), country or
territory (with a 2-character code), and the codeset of that locale.
Examples of valid locale names for an HP-UX (10.01) system include
“ar_DZ.arabic8” (for the Arabic language in Algeria, using the arabic8
codeset) “iw_IL.hebrew8” (Hebrew, Israel, hebrew8), and
“de_DE.iso88591” (German, Germany, ISO 8859/1).

Example: ; restore_locale
; On HP–UX 10.01, set locale to German, ISO codeset
(option:set ”restore_locale” ”de_DE.iso88591”)
;; ”C”

res_near_tangent
Option: Modeler Control, Tolerant Modeling

Action: Sets the tolerant modeling resolution (tolerance) for determining if an edge
is considered tangent.

Name String: res_near_tangent

Scheme: real 01234567890.,<>= 0.0175

Test Harness: double 01234567890.,<>= 0.0175

C++: double 01234567890.,<>= 0.0175

Description: This option is used for tolerant modeling, and is a system-wide setting for
the tolerance to use in testing whether or not an edge is considered tangent
(based on the angle between normals). Tolerant modeling algorithms
throughout the system may use this value. This option may be used in
conjunction with other options that control specific tolerant modeling
functionality. For example, this option may have no effect on certain
operations if tolerant modeling is not specifically enabled for that
functionality (e.g., blending, skinning, local operations, etc.).



Kernel  R10

The value given is specified in radians, with a logical range of 0.0 to 2pi.
In practice, this will be a small number close to zero. The default setting
of 0.0175 is approximately 1 degree.

Example: ; res_near_tangent
; Increase the tolerance to 2 degrees
(option:set ”res_near_tangent” .035)
;; 0.0175

ret_directory
Option: Modeler Control, SAT Save and Restore

Action: Sets the default directory for retrieve files in the ACIS Test Harness.

Name String: ret_directory

Scheme: Not applicable

Test Harness: string valid pathname ””

C++: Not applicable

Description: This option only applies to the ACIS Test Harness. This is the default
directory name for files retrieved using the retrieve command.

Example: Not applicable

save_box
Option: Modeler Control, SAT Save and Restore

Action: Sets writing the bounding boxes to the save file.

Name String: save_box

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: Not applicable

Description: When on, saves the bounding boxes in the SAT file. To improve
performance when performing operations on restored models, bounding
boxes( includes uv bounding boxes) are saved in the SAT file by default.
However this can be avoided by setting this option to off.



Kernel  R10

Example: ; save_box
; Do not write the bounding boxes to the file
(option:set ”save_box” #f)
;; #t

save_directory
Option: Modeler Control, SAT Save and Restore

Action: Sets the default directory for save files in the ACIS Test Harness.

Name String: save_directory

Scheme: Not applicable

Test Harness: string valid pathname “”

C++: Not applicable

Description: This option only applies to the ACIS Test Harness. This is the default
directory name for files created using the save command.

Example: Not applicable

save_entity_count
Option: Modeler Control, SAT Save and Restore

Action: Sets writing the entity count to the save file.

Name String: save_entity_count

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, forces the number of entities saved to be written to the file
header. Thus, when on, the save procedure must reposition the file, so you
may not be able to save to some targets.

Example: ; save_entity_count
; Write the entity count to the file
(option:set ”save_entity_count” #t)
;; #f



Kernel  R10

save_old_sab
Option: Modeler Control, SAT Save and Restore

Action: Sets format for binary save files.

Name String: save_old_sab

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, saves binary files in the old format which does not support
unknown entity types. Only truly useful in testing.

Example: ; save_old_sab
; Use old binary format
(option:set ”save_old_sab” #t)
;; #f

save_unknown_subtype_as_approx
Option: Modeler Control, SAT Save and Restore

Action: Sets how unknown subtypes are saved in old save file formats.

Name String: save_unknown_subtype_as_approx

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, saves unknown spl_sur or int_cur to old versions as an exact,
based on the approximate information.

Example: ; save_unknown_subtype_as_approx
; Save unknowns as approximates
(option:set ”save_unknown_subtype_as_approx” #t)
;; #f

save_version
Option: Modeler Control, SAT Save and Restore

Action: Sets the ACIS version to use for writing save files in the ACIS Test
Harness.



Kernel  R10

Name String: save_version

Scheme: Not applicable

Test Harness: integer 3-digit ACIS version installed version

C++: Not applicable

Description: This option only applies to the ACIS Test Harness. The version controls
the save file format. The first digit is the major version number. The
second and third digits are the minor version number. For example,
version 2.1 is represented as 201, and version 3.0 is represented as 300.
The default value is the currently installed version of ACIS. In C++

applications, the API api_save_version is used to set the version.

Example: Not applicable

sequence_save_files
Option: Modeler Control, SAT Save and Restore

Action: Sets sequence numbers in save files.

Name String: sequence_save_files

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, enables the writing of sequence numbers in .sat files

Example: ; sequence_save_files
; Write sequence numbers to save file
(option:set ”sequence_save_files” #t)
;; #f

spline_save_approx_level
Option: Modeler Control, SAT Save and Restore

Action: Controls the level of information stored in the SAT file for spline surfaces.

Name String: spline_save_approx_level

Scheme: string See Description “optimal”



Kernel  R10

Test Harness: string See Description “optimal”

C++: char* See Description “optimal”

Description: This option controls the amount of data stored in the SAT file for spline
surfaces. In particular, it controls whether the approximating geometry for
a spline surface is stored in full, in summary form, or not at all. If the
approximating geometry is stored in full, then the SAT file will be large,
but regenerating the part from the SAT file will be relatively fast. If the
approximating geometry is not stored at all, then the SAT file will be at its
minimum size, but parts may take a long time to regenerate because the
approximating geometry must be completely recalculated. The summary
form is a compromise. The SAT files will be only slightly larger than when
no approximating geometry is stored, and regeneration is nearly as fast as
when the full geometry is stored.

In this discussion, regenerate means to restore the data and prepare it for
use. In release 5.0, approximating geometry may not be recalculated
during the restore, but it will be recalculated when it is first required.
Therefore, if approximating geometry is stored in full, the actual restore
will be fast, but the part may not be “ready for use” until the
approximating geometry has been recalculated.

The argument to this option is a string. Possible values are:

“full” Save the complete approximating. . . . . . . . . . . . . . . . . . . . . . . . . . 
geometry.

“summary” Save a summary form of the. . . . . . . . . . . . . . . . . . . . . 
approximating geometry.

“none” Do not save the approximating. . . . . . . . . . . . . . . . . . . . . . . . 
geometry.

“historical” Preserve the historical behavior;. . . . . . . . . . . . . . . . . . . . . 
i.e., save the approximating
geometry if and only if this was
done in pre-5.0 versions.

“optimal” Allow ACIS to decide the level at. . . . . . . . . . . . . . . . . . . . . . 
which approximating geometry is
saved.

ACIS may override the setting of this option for a particular geometry
type. Typically, this will be because the geometry type requires the
approximating geometry as a fundamental part of its definition and cannot
exist without it.



Kernel  R10

The possible values for this option are defined in the enumeration
save_approx_level and in the corresponding enum_entry structure
save_approx_entries (and its enum_table save_approx_map), which
defines the strings and maps them to the enumeration. Refer to the
description of the Enumeration Template in the 3D ACIS Online Help
User’s Guide for more information about the enum_entry structure.

save_approx_full “full”. . . . . . . . . . . . . . . . 
save_approx_summary “summary”. . . . . . . . . . . 
save_approx_none “none”. . . . . . . . . . . . . . 
save_approx_historical “historical”. . . . . . . . . . . 
save_approx_optimal “optimal”. . . . . . . . . . . . 

Example: ; spline_save_approx_level
; Set to full save
(option:set ”spline_save_approx_level” ”full”)
;; ”optimal”

split_curves
Option: Modeler Control, Construction Geometry

Action: Sets curve splitting in the curve::split function.

Name String: split_curves

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, enables curve splitting in the curve::split function. If off,
curve::split does nothing and returns NULL.

Example: ; split_curves
; Turn on curve splitting
(option:set ”split_curves” #t)
;; #f

string_check
Option: Modeler Control

Action: Sets how NULL strings are handled.



Kernel  R10

Name String: string_check

Scheme: Not applicable

Test Harness: Not applicable

C++: logical FALSE, TRUE FALSE

Description: Selects “fixup” or “collapse” option. The general fixup treats NULL strings
as empty ones, making a check/fix function useful.

Example: Not applicable

sweep_selfint
Option: Modeler Control, Sweeping

Action: Sets self intersection checks while evaluating the sweep surface.

Name String: sweep_selfint

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, enables some limited self intersection checks while evaluating
the sweep surface. This is normally turned off and is turned on only during
the surface construction.

Example: ; sweep_selfint
; Turn on self intersection checks
(option:set ”sweep_selfint” #t)
;; #f

test_share
Option: Modeler Control, SAT Save and Restore

Action: Sets detecting and sharing of identical objects when restoring save files.

Name String: test_share

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1



Kernel  R10

C++: logical FALSE, TRUE TRUE

Description: When on, int_cur and spl_sur types are compared with those that have
already been restored to determine if they are identical to a previously
restored int_cur or spl_sur. when restoring save files. This option
significantly reduces the size of retrieved bodies and aids subsequent
operations, but it can be expensive and can become noticeable when
restoring large parts. Turning it off will speed up the restore process.
However, the amount of memory required to restore a model will be
larger, since sharing of geometry is not taking place. Also, evaluations of
geometry during modeling operations may take longer because the test for
coincidence will take place each time the objects are evaluated. This may
cause the test to happen many times instead of once when the model is
loaded. On is the default.

Example: ; test_share
; Turn off share testing
(option:set ”test_share” #f)
;; #t

tight_sphere_box
Option: Modeler Control, Model Geometry

Action: Sets calculation of a tight bounding box for a sphere.

Name String: tight_sphere_box

Scheme: boolean #f, #t #f

Test Harness: integer 0, 1 0

C++: logical FALSE, TRUE FALSE

Description: When on, enables calculation of a tight bounding box for a sphere.

Example: ; tight_sphere_box
; Turn on sphere bounding box
(option:set ”tight_sphere_box” #t)
;; #f

tight_torus_box
Option: Modeler Control, Model Geometry

Action: Sets calculation of a tight bounding box for a torus.



Kernel  R10

Name String: tight_torus_box

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: When on, enables calculation of a tight bounding box for a torus.

Example: ; tight_torus_box
; Turn off torus bounding box
(option:set ”tight_torus_box” #f)
;; #t

torus_param_range
Option: Modeler Control, Construction Geometry

Action: Sets whether or not a box is used to find the torus parameter range.

Name String: torus_param_range

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: When on, the box supplied to torus::param_range is used to find a
reasonably small parameter range for the torus (otherwise, the entire torus
range is returned).

Example: ; torus_param_range
; Turn option off
(option:set ”torus_param_range” #f)
;; #t

unhook_annotations
Option: Modeler Control, Feature Naming

Action: Controls whether annotations are automatically unhooked from their
entities.

Name String: unhook_annotations



Kernel  R10

Scheme: boolean #f, #t #t

Test Harness: integer 0, 1 1

C++: logical FALSE, TRUE TRUE

Description: If this option is on (true), annotations are automatically unhooked from
their entities at the outermost API_END enclosing an operation. This is
done by losing all ANNOTATION_ATTRIBs, as in API function
api_unhook_annotations.

Example: ; unhook_annotations
; Turn off automatic unhook
(option:set ”unhook_annotations” #f)
;; #t


