
Kernel R10

Chapter 41.
Law Symbols

Topic: Ignore

In ACIS, law mathematical functions (laws) can be used to define geometry and solve
mathematical problems. A law is a character string made up of valid law symbols enclosed
within quotation marks. The law symbols used in law functions are very similar to common
mathematical notation and to the adaptation of mathematical notation for use in computers.
Refer to the 3D ACIS Online Help User’s Guide for a description of the fields in the
reference template.

DRAFT
Law Symbol: Laws

Action: Creates a law for accepting drafts as input data.

Derivation: draft_law : multiple_law : law : ACIS_OBJECT : –

Syntax: DRAFT1

Description: Refer to Action.

Example: ; law ”DRAFT”
; Create a simple law function.

EDGE
Law Symbol: Laws

Action: Creates a law for accepting edges as input data.

Derivation: curve_law_data : base_curve_law_data : path_law_data : law_data :
ACIS_OBJECT : –

Syntax: EDGE1

Description: Refer to Action.

Kernel R10

Example: ; law ”EDGE”
; Create a simple law function.

PCURVE
Law Symbol: Laws

Action: Creates a law for accepting pcurves as input data.

Derivation: pcurve_law_data : base_pcurve_law_data : path_law_data : law_data :
ACIS_OBJECT : –

Syntax: PCURVE

Description: Refer to Action.

Example: ; law ”PCURVE”
; Create a simple law function.

SURF
Law Symbol: Laws

Action: Creates a law that returns the positions of the defining surface.

Derivation: surface_law_data : base_surface_law_data : law_data : ACIS_OBJECT
: –

Syntax: SURF

Description: surf returns the positions of the defining surface at the parameter value.
This law symbol is a way to pass a surface into a law for other purposes,
such as evaluation. The dimension of the input, my_surface_law_data, is
two, but when surf is evaluated, it returns an item in three dimensions.

ACIS defines its own parameter range for a surface which is used by this
law.

Kernel R10

Example: ; law ”SURF”
; Create a surface to evaluate. (define my_sphere
(solid:sphere (position 0 0 0) 10))
;; my_sphere
; => #[entity 2 1]
(define my_surflaw (law ”surf(surf1)”
(car (entity:faces my_sphere))))
;; my_surflaw
; => #[law ”SURF(SURF1)”]
(define my_sveclaw (law ”surfvec(law1,
vec(x,y,z), vec(a4, a5))” my_surflaw))
;; my_sveclaw
; my_sveclaw =>
; [SURFVEC(SURF(SURF1),VEC(X,Y,Z), VEC(A4,A5))”]
(law:eval my_sveclaw (list 0 0 1 0 0))
;; (1 0 0 0)

; The law created takes an xyz vector and a uv
; position on the surface. It returns a uv vector
; in the direction of the given xyz vector at the
; given uv position on the surface. It also returns
; as the last two arguments the uv positions. The uv
; position is echoed.
; Here is an example at the pole.
(law:eval my_sveclaw
(list 1 1 0 (law:eval ”pi/2”) 0))
;; (–1 0 1.5707963267949 0.785398163401155)
; At the pole, this response means that you have to
; turn v by pi/4 to get the correct vector.

TRANS
Law Symbol: Laws

Action: Crates a law that transforms positions.

Derivation: transform_law_data : base_transform_law_data : law_data :
ACIS_OBJECT : –

Syntax: TRANS

Description: The trans law symbol requires that my_law return positions. It produces
positions that have been transformed by the my_transf. rotate is used on
vectors, while trans is used to transform positions.

Kernel R10

Example: ; law ”TRANS”
; Create a transform, and then create its inverse.
(define my_trans_rot (transform:rotation
(position 0 0 0) (gvector 1 0 0) 90))
;; my_trans_rot
; => #[transform 1075284160]
(define my_trans_move (transform:translation
(gvector 1 0 0)))
;; my_trans_move
; => #[transform 1075284848]
(define my_t_comp (transform:compose
my_trans_rot my_trans_move))
;; my_t_comp
(define my_law (law ”trans(vec(x,y,z),trans1)”
my_t_comp))
;; my_law
; => #[law ”TRANS(VEC(X,Y,Z),TRANS1)”]

; This transforms the given law ”VEC(X,Y,Z)” by
; the supplied transform, my_t_comp
(law:eval my_law (list 0 0 1))
;; (1 –1 6.12323399573677e–17)
; In this example, the input vector is (0, 0, 1).
; It gets rotated by 90 degrees, causing y to be
; –1 and then gets moved along x axis by 1.
; z is approximately zero.

WIRE
Law Symbol: Laws

Action: Creates a law that returns the positions of the wire’s component edges.

Derivation: wire_law_data : base_wire_law_data : path_law_data : law_data :
ACIS_OBJECT : –

Syntax: WIRE

Description: A wire is parameterized from 0 to the length of the wire. This symbol
returns the position of the wire’s component edges. The parameterization
has been linearly scaled to match the total length of the edge.

ACIS parameterization is not the arc length. The wire law returns the
position as a function of arc length, in as much linear scaling as the
subedges can accomplish. In the case of lines and arcs, the
parameterization is exactly the arc length. Curves which are not
parameterized with constant speed may have some internal variance. All
curves other than arcs and lines have non–constant speed.

Kernel R10

Example: ; law ”WIRE”
; Create an edge.
(define my_edge (edge:circular

(position 0 0 0) 20))
;; my_edge
; => #[entity 2 1]
; Create a wire body.
(define my_wire (wire–body my_edge))
;; my_wire
; => #[entity 3 1]
; Input this wire into a law.
(define my_law (law ”wire(wire1)” my_wire))
;; my_law
; => #[law ”WIRE(WIRE1)”]
; Evaluate this law mathematic function at a
; parameter value.
(law:eval–position my_law 2)
;; #[position 19.9000833055605 1.99666833293656 0]

