
Selective Booleans R10

Chapter 2.
Scheme Extensions

Topic: Ignore

Scheme is a public domain programming language, based on the LISP language, that uses
an interpreter to run commands. ACIS provides extensions (written in C++) to the native
Scheme language that can be used by an application to interact with ACIS through its
Scheme Interpreter. The C++ source files for ACIS Scheme extensions are provided with the
product. Spatial’s Scheme based demonstration application, Scheme ACIS Interface Driver
Extension (Scheme AIDE), also uses these Scheme extensions and the Scheme Interpreter.
Refer to the 3D ACIS Online Help User’s Guide for a description of the fields in the
reference template.

bool:sel–unite
Scheme Extension: Graph Theory, Booleans

Action: Unites two bodies.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_boolean, api_selective_unite

Syntax: ( bool:sel–unite  blank–body tool–body
option1 option2)

Arg Types: blank–body entity
tool–body entity
option1 entity | #t
option2 entity | #t

Returns: entity

Errors: None

Description: This scheme extension performs a union operation between two bodies.
The portions of bodies to keep is controlled by option1 and option2. The
blank body is returned and the tool body is deleted.



Selective Booleans R10

blank–body is an input entity.

tool–body is an input entity.

option1 controls the portions of the body to be kept.

option2 controls the portions of the body to be kept.

Limitations: None

Example: ; bool:sel–unite
; Define a couple of solids and then do a
; selective boolean.
(define c1

(solid:cylinder
(position 0 0 –1)
(position 0 0 1) 5))

;; c1
(define c2

(solid:cylinder
(position 0 0 –1)
(position 0 0 1) 4.5))

;; c2
(define subtract (bool:subtract c1 c2))
;; subtract
(define b

(solid:block
(position –6 –6 –0.25)
(position 6 1 0.25)))

;; b
(define pnt (position 0 0 0))
;; pnt
(define unite (bool:sel–unite c1 b #t pnt))
;; unite

bool:select1
Scheme Extension: Booleans

Action: Creates a graph for the first stage of selective Booleans from a tool body
and a blank body.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_selective_boolean_stage1



Selective Booleans R10

Syntax: ( bool:select1  blank–body tool–body [acis–opts])

Arg Types: blank–body entity
tool–body entity
acis–opts acis–options

Returns: graph

Errors: None

Description: This Scheme extension creates a graph structure (e.g., graph theory) from
the blank–body entity and the tool–body entity. Using Cellular Topology,
distinctive cells of the blank–body and the tool–body become vertices of
the graph. Overlapping portions of the cells become edges in the graph.
Once the graph has been created, further graph theory operations can be
performed to obtain a more desirable graph. This is then used as input to
the second stage of selective Booleans, bool:select2.

blank–body is an input entity.

tool–body is an input entity.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None



Selective Booleans R10

Example: ; bool:select1
; Create a blank body
(define blank (solid:block (position 0 0 0)

(position 25 10 10)))
;; blank
; blank => #[entity 2 1]
(define b2 (solid:block (position 5 0 0)

(position 10 5 10)))
;; b2
(define b3 (solid:block (position 15 0 0)

(position 20 5 10)))
;; b3
(define subtract (solid:subtract blank b2))
;; subtract
(define subtract2 (solid:subtract blank b3))
;; subtract2
; Create the tool body
(define tool (solid:cylinder

(position –5 2.5 5) (position 30 2.5 5)1))
;; tool
; Change the color of the tool for viewing.
(entity:set–color tool 3)
;; ()
; OUTPUT Original

(define g (bool:select1 tool blank))
;; g
; OUTPUT Result



Selective Booleans R10

Original Result

Figure 2-1. bool:select1

bool:select2
Scheme Extension: Booleans

Action: Completes the selective Boolean process for the cells selected.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_selective_boolean_stage2

Syntax: ( bool:select2  in–body in–cells [acis–opts])

Arg Types: in–body entity
in–cells graph | (entity ...)
acis–opts acis–options

Returns: entity

Errors: None

Description: This extension modifies the in–body body based on either the results of
graph theory or a Cellular Topology cell list in in–cells. When in–cells
contains cell entities, these are the only entities that should be kept. When
in–cells is a graph, the graph could be the result of extensive graph theory
operations. However, the resulting graph still maps to cells in the body and
represents the cells to keep.



Selective Booleans R10

The mapping of cells in a graph to entities will not be the same from
execution to execution.

in–body is an input entity.

in–cells is an input entity that contains either cell entities or a graph.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None



Selective Booleans R10

Example: ; bool:select2
; Create a selective boolean example.
(define blank (solid:block (position 0 0 0)

(position 25 10 10)))
;; blank
; blank => #[entity 2 1]
(define b2 (solid:block (position 5 0 0)

(position 10 5 10)))
;; b2
(define b3 (solid:block (position 15 0 0)

(position 20 5 10)))
;; b3
(define subtract (solid:subtract blank b2))
;; subtract
(define subtract2 (solid:subtract blank b3))
;; subtract2
(define tool (solid:cylinder

(position –5 2.5 5) (position 30 2.5 5)1))
;; tool
; Change the color of the tool for viewing.
(entity:set–color tool 3)
;; ()
(define g (bool:select1 blank tool))
;; g
; CAREFUL: The mapping of cell names to entities
; may not be the same each time this is run.
; Find the cells in the blank created by graph.
(define cells (entity:cells blank))
;; cells
; Put together list of things to keep.
; Leave out 2 and 6.
(define in–cells (list

(list–ref cells 0)
(list–ref cells 1)
(list–ref cells 3)
(list–ref cells 4)
(list–ref cells 5)
(list–ref cells 7)))

;; in–cells
; OUTPUT Original

(define select (bool:select2 blank in–cells))
;; select
; OUTPUT Result



Selective Booleans R10

Original Result

Figure 2-2. bool:select2

bool:tube
Scheme Extension: Booleans

Action: Performs a selective Boolean operation, as specified in the given option.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_boolean_tube_body

Syntax: ( bool:tube  blank tool start end opt [acis–opts])

Arg Types: blank body
tool body
start position | (position)
end position | (position)
opt string
acis–opts acis–options

Returns: entity

Errors: None

Description: The bool:tube performs a Boolean operation on the given blank and tool
bodies. The type of operation performed is specified by the opt of type
Tube–Options. The start and end regions for the operation can be defined
using positions or arrays of positions.



Selective Booleans R10

The purpose of this is to make selective Booleans more general so they
can be used by sweeping and other modeling operations.

The API api_boolean_tube_body, which bool:tube uses, takes two bodies
(blank and tube) as input and calls the selective Booleans stage 1 once and
stage 2 the number_of_options times. Each time these selective Booleans
are called, this function automatically sets up the subgraph from a set of
options and start and end conditions.

blank is an input body.

tool is an input body.

start gives the start region for the operation in terms of position or array of
positions.

end gives the end region for the operation in terms of position or array of
positions.

opt  specifies the type of operation performed.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None



Selective Booleans R10

Example: ; bool:tube – Example 1
; Create a block
(define b (solid:block (position 0 0 0)

(position 10 10 10)))
;; b
; b => #[entity 2 1]
; set new color for entity b
(entity:set–color b 3)
;; ()
; Create solid cylinder 1
(define c1 (solid:cylinder (position –5 5 2)

(position 15 5 2)1))
;; c1
;set new color for entity c1
(entity:set–color c1 4)
;; ()
; Create solid cylinder 2
(define c2 (solid:cylinder (position –5 5 8)

(position 15 5 8)1))
;; c2
; set new color for entity c2
(entity:set–color c2 5)
;; ()
; Combine solid cylinders 1 and 2
(define c (solid:unite c1 c2))
;; c
; set new color for entity c
(entity:set–color c 6)
;; ()
; OUTPUT Original

; Define the start position
(define start (list (list–ref (entity:faces c) 1)

(list–ref (entity:faces c) 4)))
;; start
; Define the end position
(define end (list (list–ref (entity:faces c) 2)

(list–ref (entity:faces c) 5)))
;; end



Selective Booleans R10

(define opt1 (tube:options ”keep_law” ”x=0”
”bool_type” ”UNITE”))

;; opt1
; View details of opt1
opt1
;; #[Tube_Options ”keep_law” X=0 ”keep_branches”

#f”unite”]
; Define an entity to be solid block ”b” with
; entities ”b” and ”c” removed from the interior
; and top
(define d (bool:tube b c start end opt1))
;; d
; OUTPUT Result

Original Result

Figure 2-3. bool:tube (Example 1)



Selective Booleans R10

; bool:tube – Example 2
; sel_bool unite operations with
; descriptions:
; Delete all entities from the active area.
(part:clear)
;; #t
; create a solid block (vertical rectangle).
(define b1 (solid:block (position –40 0 0)

(position 40 10 10)))
;; b1
; set new color for entity b1
(entity:set–color b1 4)
;; ()
; create solid block 2.
(define b2 (solid:block (position –40 10 0)

(position –30 30 10)))
;; b2
; set new color for entity b1
(entity:set–color b2 5)
;; ()
; create solid block 3.
(define b3 (solid:block (position 30 10 0)

(position 40 30 10)))
;; b3
; set new color for entity b1
(entity:set–color b3 6)
;; ()
; create solid block 4 (center block).
(define b4 (solid:block (position –5 0 0)

(position 5 30 10)))
;; b4
; set new color for entity b1
(entity:set–color b4 2)
;; ()
; OUTPUT Original

; create a blank.
; Unite the 4 block entities.
(define blank (bool:unite b1 b2 b3 b4))
;; blank
; OUTPUT Step 2



Selective Booleans R10

; create another solid block.
(define tool (solid:block (position –45 15 0)

(position 45 25 10)))
;; tool
; OUTPUT Step 3

; define the faces
(define faces (entity:faces tool))
;; faces
; Define new color for ”faces”
(entity:set–color faces 6)
;;()
; define the start position
(define start (list–ref faces 3))
;; start
; define the end position
(define end (list–ref faces 5))
;; end
; x1 (x) = order of this vertex
; x2 (y) = largest order in component
; x3 (z) = TRUE if from tool
; x4 = TRUE if from blank
; x5 = TRUE if start cell
; x6 = TRUE if end cell
; In this example, there are 4 possible cells that
; could be included in the unite operation.
; The first cell is 0, the last is 3.
; x1 takes on all possible values, 0, 1, 2, and 3.
; x2 is 3.
; x3 is always TRUE if we are doing a unite.
; x4 is always FALSE if we are doing a unite.
; x5 is TRUE if x1 is 0.
; x6 is TRUE if x1 is 3.



Selective Booleans R10

(define opts1 (tube:options ”keep_law” ”x!=x2”
”bool_type” ”u”))

;; opts1
; keep all but last cell
(define opts2

(tube:options ”keep_law” ”x5” ”bool_type” ”u”))
;; opts2
; keep all start cells
(define opts3 (tube:options ”keep_law” ”x=2 or

x6””bool_type” ”u”))
;; opts3
; keep the second and last cells
(bool:tube blank tool start end opts3)
;; Try opts1, opts2, and opts3.
; OUTPUT Result

Original Step 2



Selective Booleans R10

Step 3 Result

Figure 2-4. bool:tube (Example 2)

graph
Scheme Extension: Graph Theory

Action: Creates a graph used in graph theory.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_create_graph_from_cells, api_create_graph_from_edges,
api_create_graph_from_faces, api_pm_lookup_entity

Syntax: ( graph  {graph–string | face–ent–list | cell–list}
[acis–opts])

Arg Types: graph–string string
face–ent–list entity | (entity ...)
cell–list cell | (cell ...)
acis–opts acis–options

Returns: graph

Errors: None



Selective Booleans R10

Description: This extension creates a graph that can be used for graph theory operations
and selective Booleans. When creating a graph using a graph–string, the
entire string must be within double quotation marks. The vertex names
within the string can be any number of characters long without spaces or
dashes (–). Edges between vertices are indicated by a dash. The items in
the list of graph items within the string are separated by spaces.

When creating a graph using face–ent–list, the entities within the entity
list must be face entities. The face entities become vertices of the graph.
The ACIS topology is analyzed to determine which faces are connected.
The connections between faces become edges (or dashes) of the graph.

When creating a graph using cell–list, the list must contain cells from
Cellular Topology. The ACIS topology is analyzed to determine which
cells are connected. The connections between cells become edges (or
dashes) of the graph.

graph–string is an input string that can be used for creating a graph.

face–ent–list is an input entity that can be used for creating a graph.

cell–list is an input cell that can be used for creating a graph.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None

Example: ; graph
; Create a simple example
(define g1 (graph ”me–you us–them”))
;; g1
; Create an example using entities.
(define b1 (solid:block (position –5 –10 –20)

(position 5 10 15)))
;; b1
(define faces1 (entity:faces b1))
;; faces1
; Turn the block faces into vertices of the graph.
(define g3 (graph faces1))
;; g3

graph:subgraph–2dcell
Scheme Extension: Graph Theory

Action: Returns a subgraph containing only the vertices that are 2D cells.



Selective Booleans R10

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_subgraph_2dcell

Syntax: ( graph:subgraph–2dcell  whole–graph [acis–opts])

Arg Types: whole–graph graph
acis–opts acis–options

Returns: graph

Errors: None

Description: Refer to Action.

whole–graph is an input argument.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None

Example: ; graph:subgraph–2dcell
; Create entities
(define b1 (solid:block (position –40 0 0)

(position 40 10 10)))
;; b1
(define b2 (solid:block (position 30 –10 –10)

(position 45 20 20)))
;; b2
(define face1 (face:planar–disk (position –10 0 0)

(gvector 1 0 0) 20))
;; face1
(define sheet1 (sheet:face face1))
;; sheet1
(define sh2d–1 (sheet:2d sheet1))
;; sh2d–1
(define face2 (face:planar–disk (position –30 0 0)

(gvector 1 0 0) 20))
;; face2
(define sheet2 (sheet:face face2))
;; sheet2
(define sh2d–2 (sheet:2d sheet2))
;; sh2d–2
(define face3 (face:planar–disk (position –20 15 0)

(gvector 0 1 0) 30))
;; face3
(define sheet3 (sheet:face face3))



Selective Booleans R10

;; sheet3
(define sh2d–3 (sheet:2d sheet3))
;; sh2d–3
(define e (bool:nonreg–unite b1 b2 sh2d–1 sh2d–2

sh2d–3))
;; e
(define plane–pos (position –20 0 0))
;; plane–pos
(define plane–normal (gvector 1 0 0))
;; plane–normal
(define imprint–face (face:planar–disk

plane–pos plane–normal 50))
;; imprint–face
(define imprint–sheet (sheet:face imprint–face))
;; imprint–sheet
(define sh2d–4 (sheet:2d imprint–sheet))
;; sh2d–4
(define sol–im1 (solid:imprint e imprint–sheet))
;; sol–im1
(cell:attach e)
;; (#[entity 12 1] #[entity 13 1] #[entity 14 1]
;; #[entity 15 1] #[entity 16 1] #[entity 17 1]
;; #[entity 18 1] #[entity 19 1] #[entity 20 1]
;; #[entity 21 1])
(define g (graph (entity:cells e)))
;; g
(define g–2d (graph:subgraph–2dcell g))
;; g–2d
(define g–3d (graph:subgraph–3dcell g))
;; g–3d

graph:subgraph–3dcell
Scheme Extension: Graph Theory

Action: Returns a subgraph containing only the vertices that are 3D cells.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_subgraph_3dcell

Syntax: ( graph:subgraph–3dcell  whole–graph [acis–opts])

Arg Types: whole–graph graph
acis–opts acis–options



Selective Booleans R10

Returns: graph

Errors: None

Description: Refer to Action.

whole–graph is an input argument.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None

Example: ; graph:subgraph–3dcell
; Create entities
(define b1 (solid:block (position –40 0 0)

(position 40 10 10)))
;; b1
(define b2 (solid:block (position 30 –10 –10)

(position 45 20 20)))
;; b2
(define face1 (face:planar–disk (position –10 0 0)

(gvector 1 0 0) 20))
;; face1
(define sheet1 (sheet:face face1))
;; sheet1
(define sh2d–1 (sheet:2d sheet1))
;; sh2d–1
(define face2 (face:planar–disk (position –30 0 0)

(gvector 1 0 0) 20))
;; face2
(define sheet2 (sheet:face face2))
;; sheet2
(define sh2d–2 (sheet:2d sheet2))
;; sh2d–2
(define face3 (face:planar–disk (position –20 15 0)

(gvector 0 1 0) 30))
;; face3
(define sheet3 (sheet:face face3))
;; sheet3
(define sh2d–3 (sheet:2d sheet3))
;; sh2d–3
(define e (bool:nonreg–unite b1 b2 sh2d–1 sh2d–2

sh2d–3))
;; e
(define plane–pos (position –20 0 0))
;; plane–pos



Selective Booleans R10

(define plane–normal (gvector 1 0 0))
;; plane–normal
(define imprint–face (face:planar–disk

plane–pos plane–normal 50))
;; imprint–face
(define imprint–sheet (sheet:face imprint–face))
;; imprint–sheet
(define sh2d–4 (sheet:2d imprint–sheet))
;; sh2d–4
(define sol–im1 (solid:imprint e imprint–sheet))
;; sol–im1
(cell:attach e)
;; (#[entity 12 1] #[entity 13 1] #[entity 14 1]
;; #[entity 15 1] #[entity 16 1] #[entity 17 1]
;; #[entity 18 1] #[entity 19 1] #[entity 20 1]
;; #[entity 21 1])
(define g (graph (entity:cells e)))
;; g
(define g–2d (graph:subgraph–2dcell g))
;; g–2d
(define g–3d (graph:subgraph–3dcell g))
;; g–3d

graph:subset–with–plane
Scheme Extension: Graph Theory

Action: Finds the subset of a graph on one side of a plane.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: api_subset_graph_with_plane

Syntax: ( graph:subset–with–plane  whole–graph plane–origin
plane–normal [acis–opts])

Arg Types: whole–graph graph
plane–origin position
plane–normal vector
acis–opts acis–options

Returns: graph

Errors: None

Description: Finds the subset of a graph on one side of a plane. The graph must first be
split at that plane. It is assumed that the graph is made of entities which
are either faces or cells.



Selective Booleans R10

whole–graph is an input graph that is split to get a subset of the graph.

plane–origin is the position of the plane.

plane–normal is a vector to the plane.

The optional acis–opts contains parameters for versioning and journaling.

Limitations: None

Example: ; graph:subset–with–plane
; Create entities
(define b1 (solid:block (position –40 0 0)

(position 40 10 10)))
;; b1
(define b2 (solid:block (position –40 10 0)

(position –30 30 10)))
;; b2
(define b3 (solid:block (position 30 10 0)

(position 40 30 10)))
;; b3
(define b4 (solid:block (position –5 0 0)

(position 5 30 10)))
;; b4
(define b5 (solid:block (position –35 15 0)

(position 35 25 10)))
;; b5
(define u1 (bool:unite b1 b2 b3))
;; u1
(define whole–entity (bool:nonreg–unite u1 b4 b5))
;; whole–entity
(cell:attach whole–entity)
;; (#[entity 7 1] #[entity 8 1] #[entity 9 1]
;; #[entity 10 1] #[entity 11 1] #[entity 12 1]
;; #[entity 13 1] #[entity 14 1] #[entity 15 1]
;; #[entity 16 1])
(define whole–graph (graph

(entity:cells whole–entity)))
;; whole–graph
(define plane–pos (position 5 0 0))
;; plane–pos
(define plane–normal1 (gvector 1 0 0))
;; plane–normal1
(define plane–normal2 (gvector:transform

plane–normal1 (transform:scaling –1)))
;; plane–normal2



Selective Booleans R10

(define partial–graph1 (graph:subset–with–plane
whole–graph plane–pos plane–normal1))

;; partial–graph1
(define partial–graph2 (graph:subset–with–plane

whole–graph plane–pos plane–normal2))
;; partial–graph2
; Make sure two halves have nothing in common.
(law:equal–test (graph:intersect

partial–graph1 partial–graph2) (graph ””))
;; #t
; Make sure two halves are both non–empty
(law:equal–test

(equal? partial–graph1 (graph ””)) #f)
;; #t
(law:equal–test

(equal? partial–graph2 (graph ””)) #f)
;; #t

tube:options
Scheme Extension: Booleans

Action: Creates a data structure used by selective Booleans.

Filename: sbool/sbool_scm/selective_scm.cxx

APIs: None

Syntax: ( tube:options  [keep–law–string keep–law]
[keep–branches–string branch–bool]
[bool–type–string bool–type]
[ ”connected”  logical]
[ ”merge”  logical]
[ ”only_from”  integer])

Arg Types: keep–law–string string
keep–law law
keep–branches–string string
branch–bool boolean
bool–type–string string
bool–type string
“connected” string
logical boolean
“merge” string
logical boolean
“only_from” integer



Selective Booleans R10

Returns: entity

Errors: None

Description: The purpose of the Tube–Options data structure is to hold information
between selective Boolean operations stages 1 and 2 and to make selective
Booleans accessible by other modeling operations. Sweeping, among other
modeling operations, creates and uses this data structure. The data
structure is used as input to bool:tube.

The options are explained in detail in the discussion topic Options for a
Law Sweep and include:

– bool_type
– keep_branches
– keep_law

Limitations: None

Example: ; tube:options
; Define some entities
(define b (solid:block (position 0 0 0)

(position 10 10 10)))
;; b
(define c1 (solid:cylinder (position –5 5 2)

(position 15 5 2)1))
;; c1
(define c2 (solid:cylinder (position –5 5 8)

(position 15 5 8)1))
;; c2
(define c (solid:unite c1 c2))
;; c
(define start (list (list–ref (entity:faces c) 1)

(list–ref (entity:faces c) 4)))
;; start
(define end (list (list–ref (entity:faces c) 2)

(list–ref (entity:faces c) 5)))
;; end
(define opt1 (tube:options ”keep_law” ”x=0”

”bool_type” ”UNITE”))
;; opt1
(define tube (bool:tube b c start end opt1)))
;; tube



Selective Booleans R10

; Another Example.
(define b (solid:block (position 0 0 0)

(position 10 10 10)))
;; b
(define c (solid:cylinder (position –5 5 5)

(position 15 5 5)2))
;; c
(define start (list–ref (entity:faces c) 1))
;; start
(define end (list–ref (entity:faces c) 2))
;; end
(define opt1 (tube:options ”keep_law”

”x=0” ”bool_type” ”unite”))
;; opt1
opt1
; #[Tube_Options ”keep_law” X=0 ”keep_branches”

#f”unite”]
(define d (bool:tube b c start end opt1))
;; d


