Chapter 3.
Functions

Topic: Ignore
The function interface is a set of Application Procedural Interface (API) and Direct Interface
(DI) functions that an application can invoke to interact with ACIS. API functions, which
combine modeler functionality with application support features such as argument error
checking and roll back, are the main interface between applications and ACIS. The DI
functions provide access to modeler functionality, but do not provide the additional
application support features, and, unlike APIs, are not guaranteed to remain consistent from
release to release. Refer to 8i2 ACIS Online Help User's Guider a description of the
fields in the reference template.

api_boolean_tube body

Function: Booleans
Action: Does a selective Boolean operation on two bodies.
Prototype: outcome api_boolean_tube_body (
BODY* blank, /I blank body
BODY* tube, /l tube body
ENTITY_LIST& start_faces, /I start face
ENTITY_LIST& end_faces, /I end face
SPAposition* start_pos, /I array of start
/I positions
int number_of_starts, /I number of start
/I positions
SPAposition* end_pos, /I array of end
/I positions
int number_of_ends, /I number of end
/I positions
SPAvector start_dir, /I start direction

// Should be (0,0,0)
/I if not cyclic

tube_options** opts, /I options for tube
int number_of_options, /I number of options
ENTITY_LIST& bodies, /I output bodies
AcisOptions* ao = NULL /I acis options

);

Selective BooleansR10

Includes:

Description:

#include "sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include "baseutil/vector/position.hxx”
#include "baseutil/vector/vector.hxx”

#include “kernel/kernapi/api/api.hxx”
#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

The APlboolean_tube_body takes two bodiesh{ank andtube) as input

and calls the selective Booleans stage 1 once and stage 2 the

number_of options times. Each time these selective Booleans are called,
this function automatically sets up the subgraph from a set of options and
start and end conditions.

If you pass multiple options intapi_boolean_tube_body, the results will
be found many times faster than calling it separately for each option.

Defining the operationbpol_type) using tube_options:

There are 3 types of cells, “only from the blank”, “only from the tool”,
and “from both”.

There are 4 possible bool_types, UNITE, LIMIT, INTERSECT, and
SUBTRACT:

— A UNITE operation deals with the cells "only from the tool”, adding
the specified ones to the blank. Given a variable, opts, of type
tube_options, call for exampleopts—>set_bool_type(UNITE);

— A LIMIT operation is the same as UNITE except that all cells from
the blank are discarded instead of kept.

— An INTERSECT operation deals with "cells from both”. Only the
specified cells are kept.

— A SUBTRACT operation deals with "cells from both”. Start with the
blank, and subtract the specified cells.

Defining Laws using tube_options:

Laws are used to specify which subset of the possible cells your operation
should use. Laws are string expressions consisting of the main variable
that loops over all possible cell numbers (x1), some constants (X2, X3,
X4, X5, X6, and possibly more), and some operators and conditionals (=,
I=, >, or, etc.) For shorthand, you can use x for x1, y for x2, and z for x3.

Selective BooleansR10

Selective BooleansR10

— x1 (x) = order of this cell, or the independent variable

— X2 (y) = largest order in the component cell x belongs to
— X3 (z) = TRUE if from tool

— x4 = TRUE if from blank

— x5 =TRUE if start cell

— X6 = TRUE if end cell

Example laws:

Imagine a vertical tube cutting through the three legs of an extruded letter
'E’, where the tube also extends above the top leg and below the bottom
leg. Let 'E’ be the blank, and the tube be the tool. Specify the top cell to
be a start cell, and the bottom cell to be the end cell, using the ordering
techniques explained below. There are now 4 possible cells that could be
included in the unite operation, numbered from top to bottom 0, 1, 2, and
3.

— x1 iterates over the 4 cells, testing each one to see whether it should
be kept. In this case, it takes on numbers 0, 1, 2, and 3.

— X2 is always 3, since 3 is the biggest possible number.

— x3is always TRUE, since we are doing a unite, and only cells from
the tool are considered.

— x4 is always FALSE, since we are doing a unite, and no cells from
the blank are considered.

— x5isTRUE ifx1is 0.

— Xx6is TRUE ifx1is 3.

— Thus, to specify all but the last cell, use:
law * keep_law = NULL;
api_str_to_law("x!=x2",&keep_law)
opts—>set_keep_law(keep_law);
keep_law—>remove();

— To specify all start cells, substitute the second line with:
api_str_to_law("x5”,&keep_law)

— To keep the second and last cells, substitute the second line with:
api_str_to_law("x=1 or x6",&keep_law)

Defining Cell Numbers, or Ordering:

To determine cell numbers, first pick start cells and end cells. This is done
by picking start vertices and end vertices, or start faces and end faces,
which are on the cells you want to pick. Start cells are all numbered zero.
The shortest paths from start cells to end cells are automatically found.
Depending on the operation type, non—relevant cells are discarded, and the
rest are given an integral number based on the steps they are away from
the start cell. Note that multiple cells could share the same number.

Errors:

Limitations:

Library:
Filename:

Effect:

Keep branches:

Cells that are not on any "shortest path” are considered "branch cells.”
You can either keep them all or discard them all with the keep_branches
flag, which defaults to FALSE. To keep branch cells use:
opts—>set_keep_branches(TRUE);

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_create_graph_from_cells

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Graph Theory
Creates a graph (from cells) used in graph theory.

outcome api_create_graph_from_cells (
ENTITY_LIST& cells, /I cells to use
generic_graph*& graph, // graph
AcisOptions* ao = NULL // acis options

);

#include "kernel/acis.hxx”

#include “sbool/kernapi/api/sboolapi.hxx”
#include “kernel/kernapi/api/api.hxx”

#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API creates a graph that can be used for graph theory operations and
selective Booleans.

When creating a graph from cells, the list must contain cells from Cellular
Topology. The ACIS topology is analyzed to determine which cells are
connected. The connections between cells become edges (or dashes) of the
graph.

None

None

Selective BooleansR10

Library:
Filename:

Effect:

sbool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_create_graph_from_edges

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Graph Theory
Creates a graph used in graph theory.

outcome api_create_graph_from_edges (
ENTITY_LIST& edges, // edges to use
generic_graph*& graph, // graph
AcisOptions* ao = NULL // acis options

);

#include "sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API creates a graph used for graph theory operations and selective
Booleans.

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_create_graph_from_faces

Function:
Action:

Prototype:

Selective BooleansR10

Graph Theory
Creates a graph (from edges) used in graph theory.

outcome api_create_graph_from_faces (
ENTITY_LIST& faces, /| faces to use
generic_graph*& graph, // graph
AcisOptions* ao = NULL // acis options

);

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kerndata/lists/lists.hxx”
#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This API creates a graph that can be used for graph theory operations and
selective Booleans.

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_initialize_sbooleans

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

Booleans, Modeler Control
Initializes the Selective Booleans Component library.

outcome api_initialize_sbooleans ();

#include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx

Refer to Action.
None
None
sbool

sbool/sbool/kernapi/api/sboolapi.hxx

System routine

api_selective_boolean_stagel

Function:
Action:

Booleans
Creates a graph for the first stage of selective Booleans from a tool body
and a blank body.

Selective BooleansR10

Prototype: outcome api_selective_boolean_stagel (
BODY* blank, /I blank body
BODY* tool, // tool body
generic_graph*& graph, // cell adjacency graph
AcisOptions* ao = NULL // acis options

);
Includes: #include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Description: This API creates a graph structure (e.g., graph theory) from the
blank_body entity and theool_body entity. Using Cellular Topology,
distinctive cells of thélank_body and thetool_body become vertices of
the graph. Overlapping portions of the cells become edges in the graph.
Once the graph has been created, further graph theory operations can be
performed to obtain a more desirable graph. This is then used as input to
the second stage of selective Booleaps, selective_boolean_stage?2.

Errors: Pointer to tool or blank body ULL or not to a@BODY.
Limitations: None

Library: sbool

Filename: sbool/sbool/kernapi/api/sboolapi.hxx

Effect: Changes model

api_selective _boolean_stage?2

Function: Booleans
Action: Completes the selective Boolean process for the cells selected.
Prototype: outcome api_selective_boolean_stage2 (

BODY* non_reg_unite_body, /I body to use

ENTITY_LIST& cells_to_keep, // cells to keep

AcisOptions* ao = NULL // acis options

)i

outcome api_selective_boolean_stage2 (

BODY* non_reg_unite_body, /I body to use

generic_graph* /I graph
graph_of _cells_to_keep, // cells to keep

AcisOptions* ao = NULL // acis options

);

Selective BooleansR10

Includes:

Description:

Errors:

Limitations:

Library:
Filename:

Effect:

#include "sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kerndata/lists/lists.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This function modifies the entity based on either the results of graph
theory or a Cellular Topology cell list. When a cell list is used, only the
cell entities in the list should be kept. When a graph is used, the resulting
graph still maps to cells in the body and represents the cells to keep.

The mapping of cells in a graph to entities will not be the same from
execution to execution.

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_selective_unite

Function:
Action:

Prototype:

Booleans
Unites two bodies with the given positions.

outcome api_selective_unite (

BODY* tool, /I first body

BODY* blank, /I second body

int thum, /I number of position on
/ tool to keep, 0 means
Il keep all

SPAposition* tpos, /I positions

int bnum /I number of position on

=0, /I blank to keep, 0 means

Il keep all

SPAposition* bpos = NULL,// positions
AcisOptions* ao = NULL // acis options

);

Selective BooleansR10

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

#include "kernel/acis.hxx”

#include "baseutil/vector/position.hxx”
#include “kernel/kernapi/api/api.hxx”
#include “kernel/kerndata/top/body.hxx”
#include "sbool/kernapi/api/sboolapi.hxx”
#include "kernel/kernapi/api/acis_options.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

This selective union operation takes two bodies and two lists of positions.
The lists of positions are used to specify the portions to keep after the
Boolean operation. If the number of positions is zero, the operation will
retain the entire body.

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Changes model

api_subgraph_2dcell

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Selective BooleansR10

Graph Theory
Returns a subgraph containing only the vertices that are 2D cells.

outcome api_subgraph_2dcell (

const generic_graph* /I input
whole_graph, /I graph

generic_graph*& /I output graph
partial_graph, /I with 2d cells

AcisOptions* ao = NULL // acis options

)i

#include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Refer to Action.

None

Limitations:
Library:
Filename:

Effect:

None
sbool
sbool/sbool/kernapi/api/sboolapi.hxx

Read-only

api_subgraph_3dcell

Function:
Action:

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

Graph Theory
Returns a subgraph containing only the vertices that are 3D cells.

outcome api_subgraph_3dcell (
const generic_graph* /I input
whole_graph, /I graph
generic_graph*& partial_graph, // output graph
/I with 3d cells
AcisOptions* ao = NULL // acis options

);

#include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kernutil/law/generic_graph.hxx”
#include "kernel/kernapi/api/acis_options.hxx”

Refer to Action.

None

None

sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Read—only

api_subset_graph_with_plane

Function:
Action:

Graph Theory
Finds the subset of a graph on one side of a plane.

Selective BooleansR10

Prototype:

Includes:

Description:

Errors:
Limitations:
Library:
Filename:

Effect:

outcome api_subset_graph_with_plane (

const generic_graph* /I input
whole_graph, /I graph

const SPAposition& plane_origin,// origin

const SPAunit_vector& /Il plane
plane_normal, /I normal

generic_graph*& partial_graph, // output graph

AcisOptions* ao = NULL /I acis options

)i

#include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”

#include "baseutil/vector/position.hxx”

#include “baseutil/vector/unitvec.hxx”

#include “kernel/kernapi/api/api.hxx”

#include "kernel/kernutil/law/generic_graph.hxx”
#include “kernel/kernapi/api/acis_options.hxx”

Finds the subset of a graph on one side of a plane. The graph must first be
split at that plane. It is assumed that the graph is made of entities which
are either faces or cells.

None
None
sbhool
sbool/sbool/kernapi/api/sboolapi.hxx

Read—only

api_terminate_sbooleans

Function:
Action:

Prototype:

Includes:

Description:

Errors:

Selective BooleansR10

Booleans, Modeler Control
Terminates the Selective Booleans Component library.

outcome api_terminate_sbooleans ();

#include “sbool/kernapi/api/sboolapi.hxx”
#include "kernel/acis.hxx”
#include “kernel/kernapi/api/api.hxx”

Refer to Action.

None

Limitations: None

Library: sbool
Filename: sbool/sbool/kernapi/api/sboolapi.hxx
Effect: System routine

Selective BooleansR10

