Automated Analog Design

Part II
A symbolic analysis approach
Objectives

- Some notes about last my presentation
- Abstract
- Review related works
- Introduction of Symbolic analysis
- Proposal for automated analog design
- Examples
- Difficulties and future goals
- Conclusions
Notes about last my presentation

Genetic algorithms

- A genetic algorithm transforms a population of individual objects, each with an associated value of fitness into a new generation of the population, using the principles of survival and reproduction of the fitness and analog of natural occurred operation crossover and mutation.

- In order to use this algorithmic approach we map object representation with labeled tree.
 Ex.: object is a formula \((X+0.98)*(Y-0.5)\)
Notes about last my presentation
Genetic algorithms

Crossover
Two randomly chosen nodes exchange the corresponding subtrees
Notes about last my presentation
Genetic algorithms

Mutation
At randomly chosen node grows randomly chosen function from the set of all available functions
Notes about last my presentation

Genetic algorithms

- Design analog filter
 The algorithm starts with embryo structure – two modifiable wires Z_0,Z_1

- The two branches below “list” node is associated with Z_0,Z_1

- The two branches below “list” node is associated with Z_0,Z_1
Notes about last my presentation
Circuit constructing program tree

Offspring in II generation
Notes about last my presentation

Genetic algorithms

- Circuit, synthesizing, by traversing nodes from the top to the bottom

- Circuit, corresponding to the offspring
Functions:
- C,L,R Capacitor, inductance, resistor
- Flip – reverse voltage polarity
- Series – following functions are build series structure
- End – not modifiable node
- Cut – modifiable wire will be deleted
- Two_groung – divide modifiable wires in 2 parts and connect middle node to ground
- Pair_connect – connect two nodes
Notes about last my presentation

the inaccurate genome representation

- Genome – a collection of genes, representing parameters of the problem to be optimized
- Example of genome:
Abstract

Some arguments supporting automated circuit analog design

- Market requirement for short design cycle
- Decreasing products life cycle
- The supply and demand growth of solutions, rather than a parts.
Abstract

☐ The background of the all difficulties

☐ Possible achievement ...
 ■ Optimization aspect
 ■ Automated sizing aspect
 ■ VHDL aspect

☐ What is not done yet
 ■ Fully automated mixed analog/digital circuit design engine
Abstract

GOAL: MIXED Analog Digital AUTOMATED Design flow

- Evolutionary algorithms approach
- Symbolic analysis approach
- Design with reuse
- Other approaches
Abstract

- What is the real situation
- Design by reuse
 - Based on existing IP
 - Usually reference design is first optimal one
 - Possibly to be not optimal solution
 - Quick design
 - Virtually no optimization is needed
Design by reuse – example 1

Most leading IT companies use referent design for some products
Design by reuse – example 2

-Precision Micropower Low Dropout Voltage Reference LM420 (National)
- 9 referent circuits (www.national.com)

-Mono/Stereo 2W (Class-D) Audio Power Amplifier MAX4295
- 1 referent circuit
Review related works

- **Neolinear**
 - Several tools for creating IP in analog/mixed/Soc design
 - *NeoCircuit* is used to automatically size, bias and verify analog circuits
 - *NeoCircuit-RF* is used to automatically size, bias and verify RF circuits including LNAs, mixers, etc.
 - *NeoIP* is a library of analog cells (VCO, bandgap, opamps, etc.) fully constrained for use in your NeoCircuit and NeoCell design environment.
 - *NeoCell*, for automatic analog place and route, is distributed and supported by Cadence Design Systems.
Review related works

- **Analog design automation Ltd**
 - Commercial software for analog/digital/mixed design
 - Operate with existing IP database in electronic design
 - Provide fast design/evaluation on custom specifications
 - Evolutionary algorithms makes partial design and optimization until the goal is reached.
 - Strongly dependent on existing database
Review related works

- Design overview

In any circuit, there are many possible optimal designs, each representing the best tradeoffs in design goals (e.g., area vs. speed; speed vs. power, etc.).

The system engineer has to find the one design from many optimized candidates that best meets the overall design objectives.
Review related works

- **Creative Genius® tool**

- searches for optimized designs using evolutionary algorithms.

- It considers all design variables and design objectives in its search of the design space.

- CG provides a quick analysis, producing several results from simulation.

- The values of the performance measurements are expressed as **design goals** (speed, area, power, etc.)

- Performed tasks: maximize, minimize or match the design goal to a specific value
Review related works

- Output visualization makes easy choosing best design according initial constrains (example Low THD / F)
- Even the we design an amplifier, circuit topology is different for different goals
Review related works

- Existing solutions – an overview

BENEFITS
- Decreasing (up to 10 times) design cycle
- If the certain design cannot be evaluated, searching space is bounded by output set of optimized simulation-validated circuits

DRAWBACKS
- Depending on the IP database of initial topologies.
- Not fully automated.
- Essentially without guarantee to find a solution.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout Nominal, V</td>
<td>1.28274</td>
<td>No</td>
<td>1.23305</td>
<td>Yes</td>
</tr>
<tr>
<td>Vout spread vs Temperature, V</td>
<td>0.03858</td>
<td>No</td>
<td>0.00059</td>
<td>Yes</td>
</tr>
<tr>
<td>TK_max, ppm/C</td>
<td>403.884</td>
<td>No</td>
<td>24.3301</td>
<td>Yes</td>
</tr>
<tr>
<td>Vout overall deviation, V</td>
<td>0.02545</td>
<td>No</td>
<td>0.00259</td>
<td>Yes</td>
</tr>
<tr>
<td>Gain at 1V_out</td>
<td>164.319</td>
<td>No</td>
<td>8740.29</td>
<td>Yes</td>
</tr>
<tr>
<td>Gain at 1500mV_out</td>
<td>392.617</td>
<td>No</td>
<td>12153.2</td>
<td>Yes</td>
</tr>
<tr>
<td>Ogaini, dB</td>
<td>41.3671</td>
<td>No</td>
<td>119.533</td>
<td>Yes</td>
</tr>
<tr>
<td>UGBW, Hz</td>
<td>5591710</td>
<td>Yes</td>
<td>3757930</td>
<td>Yes</td>
</tr>
<tr>
<td>PM, deg.</td>
<td>72.8793</td>
<td>Yes</td>
<td>88.6515</td>
<td>Yes</td>
</tr>
<tr>
<td>Isupply, A</td>
<td>0.0008715</td>
<td>Yes</td>
<td>0.0005266</td>
<td>Yes</td>
</tr>
<tr>
<td>Inc. offset voltage, V</td>
<td>0.005118</td>
<td>Yes</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Area, um^2</td>
<td>195.45</td>
<td>Yes</td>
<td>2475.74</td>
<td>Yes</td>
</tr>
<tr>
<td>Vout, V</td>
<td>1.27784</td>
<td>Yes</td>
<td>1.23309</td>
<td>Yes</td>
</tr>
<tr>
<td>Vout_peak, V</td>
<td>3.47994</td>
<td>Yes</td>
<td>3.51049</td>
<td>Yes</td>
</tr>
<tr>
<td>Setting time, s</td>
<td>3.385e-06</td>
<td>Yes</td>
<td>2.47e-06</td>
<td>Yes</td>
</tr>
<tr>
<td>Max_gain, dB</td>
<td>88.9038</td>
<td>Yes</td>
<td>163.918</td>
<td>Yes</td>
</tr>
<tr>
<td>Gain at 500mV output, dB</td>
<td>59.8472</td>
<td>No</td>
<td>140.341</td>
<td>Yes</td>
</tr>
<tr>
<td>Gain at 750mV output, dB</td>
<td>41.3083</td>
<td>No</td>
<td>119.522</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Introduction of Symbolic analysis

- **Benefits**
 - explicit circuit representation
 - Analytical qualitative analysis
 - opportunity to look at the circuits as a set of subcircuits.

- **Difficulties**
 - huge set of equation describing analog processes
 - it is hard to be fully analyzed medium size IC
 - in many cases, circuits with more than 100 elements, the relatively small error in process equation is growing at the output.

- **GOAL:** Finding and canceling all insignificant terms
Introduction of Symbolic analysis

- Types of analyses (Gain Vout/Vin):
 - Fully symbolic
 \[
 G_i G_3 \left(\frac{s^2 C_1 C_i (1 + \frac{1}{A_0}) + s (C_3 (G_i + G_2 + G_3) (1 + \frac{1}{A_0}) + \frac{G_1 G_3}{A_0}) + G_i G_3 (1 + \frac{1}{A_0}) + \frac{G_i G_3}{A_0}}{s^2 C_1 C_2 + s C_2 (G_i + G_2 + G_3) + G_i G_3} \right)
 \]
 - Simplified symbolic
 - Semisimblomic
 \[
 \omega^2 = \left(\frac{A_0 + 3}{A_0 + 1} \right) (0.5 \times 10^9)
 \]
Introduction of Symbolic analysis

- MOS Transistor – Small signal models
- The model choice depends on the desired analysis, objective function, circuit size etc.
- All the models are linearized

\[Z_{\text{OUT}} = \frac{g_{m3} + g_{ds2} + g_{ds3}}{g_{ds2}g_{ds3}} \]
Introduction of Symbolic analysis

Computational techniques:

Tree enumeration methods:
- Handle only small circuits
- Doesn’t produce term cancellation

Flow graph (topological) method:
- Mason signal FG – weighted signal graph of simultaneous linear equations
- Each node is a summer
- Transfer function between two nodes is

\[
\frac{X_j}{X_i} = \frac{1}{\Delta} \sum_k P_k \Delta_k
\]

\(\Delta\rightarrow\) sum of all lups+(sum of all 2nd lups)-(sum of all 3nd lups)...

\(\Delta_k\rightarrow\) \(\Delta\) touching k node

\(P_k\rightarrow\) sum of all loops at k node
Introduction of Symbolic analysis

Example Mason method

\[\frac{V_2}{V_1} = \frac{1}{1 + \frac{sC}{g_0}} \left[\frac{g_m}{g_0} + \frac{sC}{g_0} \right] = \frac{sC - g_m}{sC + g_0} \]
Introduction of Symbolic analysis

Computational techniques:

Matrix based methods: fully symbolic equations, obtained directly from the circuit. **Modified Nodal Analysis MNA** formalize the problem in the form $YV=J$, Y admittance matrix, V voltage, J current sources

![Circuit diagram](image-url)
Linearized circuit equation

\[
\begin{pmatrix}
G_2 + G_3 + \frac{1}{sL_7} & -G_3 & -\frac{1}{sL_7} \\
-G_3 & G_3 + G_5 - sG_6 & -sG_6 \\
g_8 + \frac{1}{sL_7} & -(g_8 + sG_6) & \frac{1}{sL_7} + sG_6
\end{pmatrix} \times V = J
\]

Gain (V3/V2) obtained applying Cramer rule

\[
\frac{V_3}{V_2} = \frac{(g_8 - \frac{1}{sL_7})(-J_4G_3 - J_1G_3 - J_1sC_6) + (g_6 + sC_6)(J_4G_2 + J_4G_3 + \frac{J_4}{sL_7} + J_3G_3)}{(g_8 + sC_6)(-sC6 + \frac{J_4}{sL_7}) + (sC_6 + \frac{1}{sL_7})(J_1G_3 + J_1G_5 + J_1sC_6 + J_3G_3)}
\]
Introduction of Symbolic analysis

Hierarchical Symbolic analysis

- **Overview**
 - The main idea is to partition the circuit into a number of smaller circuits with already compiled parameter.
 - Two types of blocks – inner and outer (leafs, terminal).
 - Time complexity $O(n^2/p)$

- **Terminal block analysis**
 - Use traditional MNA approach
 - Reducing MNA to RMNA by reducing all internal variables

- **Middle block analysis**
 - Recursively combining pair of blocks with at least 2 common nodes, to produce leaf nodes.
Introduction of Symbolic analysis

Hierarchical Symbolic analysis

- Example of middle block analysis

\[Y_1 = \begin{pmatrix} G_1 & -G_1 A \\ 0 & sC_3 + G_4 - sC_3 A \end{pmatrix} \]

\[Y_1 = \begin{pmatrix} G_5 & -G_5 B \\ 0 & sC_7 + G_8 - sC_7 B \end{pmatrix} \]

\[Y_{12} = \begin{pmatrix} G_1 & -G_1 A \\ 0 & sC_3 + G_4 - sC_3 A + G_5 - G_5 B \\ 0 & 0 & sC_7 + G_8 - sC_7 B \end{pmatrix} \Rightarrow \text{MNA} \]

\[Y_{12} = \begin{pmatrix} G_1 & -G_1 A - G_5 B \\ sC_3 + G_4 - sC_3 A + G_5 \\ 0 & sC_7 + G_8 - sC_7 B \end{pmatrix} \Rightarrow \text{RMNA} \]

\[
\begin{bmatrix} V_{12} \\ I_{12} \end{bmatrix} = \begin{bmatrix} J_{12} \\ E_{12} \end{bmatrix}
\]

\[
\begin{bmatrix} V^1 & V^2 \\ I^1 & I^2 \end{bmatrix} = \begin{bmatrix} J^1 \\ J^2 \end{bmatrix}
\]
Introduction of Symbolic analysis

- Basic definition:
 - **Topology graph** $G (N, B, R)$: N (nodes), B (branches), R (incident relation)
 - **Structure** $S(G, F)$: $F(B\rightarrow E)$, each branch is associated circuit element
 - **Circuit** $C(S,P)$: $P(E\rightarrow R)$, each element is takes real numerical assignment
 - **Objective function** D: (determine circuit performance with respect design specifications)
 - **Error function** Er, $Er = |D-Do|$
 - **Element cost** Cs: individual element cost function $Cs : E\rightarrow$cost
 - **Cost function** Ks, Kc: for structure $Ks : S\rightarrow R$ or for circuit $Kc : C\rightarrow$cost
Introduction of Symbolic analysis

☐ Problem formalization
1. Minimization of cost function with objective minimal error function

\[
\min_{s \in S} K_s(S) \quad \text{or} \quad \min_{c \in C} K_c(C)
\]

2. Optimization Objective function with constraints imposed on cost function

\[
\min_{s \in S} E_s(S) \quad \text{or} \quad \min_{c \in C} E_c(C)
\]

3. Global optimization

\[
\min_{s \in S} (\alpha \times E_r(S) + \beta \times K_s(S)) \\
\min_{c \in C} (\alpha \times E_r(C) + \beta \times K_s(C))
\]
Introduction of Symbolic analysis

Sequential structure generation schemes

- P1: Definition of a class possible topologies
- P2: Exhaustive generation of all possible topologies
- P3: For all structures generation of a symbolic characteristic function of a circuit
Proposal for automated analog design

- By using symbolic analysis can be build of database with compiled (analyzed) base circuits. Example: differential amplifier, 2 MOS current mirror, etc.
- On the level circuit can be design correct mapping between topology and real (existing) elements.
- Additional parameter describing the certain behavior of each topology is assigned. Example (diff. amplifier – AF, IF; common drain amplifier – AF, IF, RF). There is no need to analyze diff. amplifier for RF.
- Each topology is presented with the full admittance matrix and additional parameters set for terms cancellation. Example Cgb is important in HF analysis. It’s similar to chose the level of transistor simulation.
Proposal for automated analog design

- Design specification **Task(S, Err, Class)**, where S input-output signal bandwidth, Err – maximal error function, Class – some ID to the type design has to be performed.

 Ex. Task((100W, THD<0.03%, AF stereo amplifier))

- Find set of partitions in all structures corresponding to **Class** \{D_1, D_2, ..., D_n\}

- Find all alternative substitutions for D_i \{D_{i1}, D_{i2}...D_{ik}\}

- Perform symbolic analysis for each compatible in D_i with constrain min (Er (D_i)), min (cost) and |S’-S|<Err
Proposal for automated analog design

Example Goal: Task((100W, THD<0.03%, AF stereo amplifier.

- 100W output power requires at least two amplifier stages
- AF requires bias control
- THD<0.03% require low noise pre-amplifier OPAMP
Proposal for automated analog design

Example of topologies maintaining problem constrains
Proposal for automated analog design
Proposal for automated analog design
Proposal for automated analog design

- The parameter “index of applicability (AP)” can save time for unnecessary computation, by assignment approximate value for quantitative estimation how much the structure will fit solving a particular problem. Example Low noise can be maintain with tube amplifier stages. So AP for tube structures will point somewhere in high level of “low noise requirement”

- The overall problem can be defined as a constrain satisfaction problem. Additional constrain will be index of applicability – analyzing the structures with greater AP. In this case only the cost constrain will be validated
Proposal for automated analog design

- What are the benefits?
 - Missing GA for optimization
 - Strong analytical approach finding a solution
 - Possibly working in fully automated mode
 - Intended to work much faster.

- What will be difficult?
 - Probably not so fast in optimization.
 - It will never come up with new solution.
 - Possibly hitches in the symbolic analysis part – cannot find solution due to memory overflow
Difficulties and future goals

Difficulties:

- How to find more cancel-free terms?
- I’m not sure that all specification parameters have explicit analytical presentation (example noise has approximate formulas?)
- I don’t know yet what will be the time complexity.
- I’m still looking for acceptable ontology
- I don’t know how to compare symbolic expressions
Difficulties and future goals

Future goals

- I’ll look for specific algorithms in symbolic analysis. There is an alternative computation using BDD (ZDD)
- I’ll try make some GA programs, just to estimate their usefulness.
- I’ll start working on expert system only in a amplifiers domain. (Lisp, CLISP?)
Hello (Alex):

Good to hear from you.

There is no current GPPS code at the present time because we switched computers shortly after the 1999 book. We may get back to GPPS later this year.

Best of luck with your work.

John R. Koza

Consulting Professor
Biomedical Informatics
Department of Medicine
Medical School Office Building (MC 5479)
Stanford University
Stanford, California 94305-5479