
Flexible Automated Visual Inspection
Planning Framework using Stereo Sensor

with Error Reduction
--Proposal

By Alexis H Rivera

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Automated Inspection

• used in manufacturing industry for quality
control tasks

• tireless; relatively error free, low operating
costs compared to human

• use of non contact sensors (cameras)
reduces risk of damage during inspection

• use of cameras as sensors => automated
visual inspection

Types of visual inspection systems

• Four types (Malamas, E. N., et al. (2003). "A Survey on Industrial Vision

Systems, Applications, and Tools.”):
– dimensional quality

• Are the dimensions of the object within the specified
tolerances?

– surface quality
• Are there cracks in the object’s surface?

– correct assembling (structural quality)
• Are there missing components on the PCB board?

– correct operation (operational quality)
• Is the conveyor belt moving as specified?

Introduction

• This research deals with the dimensional
inspection of the edges of polyhedral
objects using a stereo camera as the sensor

Automated Visual Inspection
Planning

• Steps in automated visual inspection system
design process (Mason, S. O. and A. Grun (1995). "Automatic

Sensor Placement for Accurate Dimensional Inspection.")
– Zero order design: specifying what to measure
– First order design: selecting optimal network of

cameras
– Second order design: selecting the measurement

precision
– Third order: network densification

Automated Visual Inspection
Planning

• Drawbacks:
– Network design can be tedious and is usually

accomplished by domain experts
• Automation can result in greater flexibility

and lower costs

Automated Visual Inspection
Planning

• This research addresses the ZOD, FOD, and
SOD

• ZOD: Measuring object edges
• FOD: Finding optimal camera positions

using nonlinear and integer optimization
programs

• SOD: Minimizing the MSE of the line
length

Flexible Automated Visual Inspection
Planning Framework

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Existing work

• Previous Automated Visual Inspection
Planning

• Error Models and Sensor Constraints
• Visibility Representations:

– Aspect Graphs, Entity-Based Aspect Graphs,
Sensor Constraint Graphs

• Photogrammetry and Multiple View
Geometry

Existing work
• Previous Automated Visual Inspection Planning

– Crosby, K. (1997). Visual Inspection Planning with Error Reduction (VIPER).
– Tarabanis, K. A., R. Y. Tsai, et al. (1995). "The MVP sensor planning system for

robotic vision tasks.”
– Abrams, S., P. Allen, et al. (1999). "Computing Camera Viewpoints in an Active

Robot Workcell.”
– Cowan, C. K. and P. D. Kovesi (1988). "Automatic Sensor Placement from Vision

Task Requirements.”
– Mason, S. O. and A. Grun (1995). "Automatic Sensor Placement for Accurate

Dimensional Inspection.”
– Olague, G. and R. Mohr (2002). "Optimal camera placement for accurate

reconstruction."
– Sakane, S., M. Sato, et al. (1990). "Automatic Planning of Light Source Placement

for an Active Photometric Stereo System.”
– Solomon, F. and K. Ikeuchi (1995). "An Illumination Planner for Lambertian

Polyhedral Objects."
– Yi, S., R. M. Haralick, et al. (1990). "Automatic Sensor and Light Source

Positioning for Machine Vision."

Existing work
• Error Models, Sensor Constraints

– Yang, C. C., M. M. Marefat, et al. (1999). "Modeling Errors for Dimensional

Inspection Using Active Vision."
– Gu, X., M. Marefat, et al. (1999). "A Robust Approach for Sensor Placement in

Automated Vision Dimensional Inspection.”
– Tarabanis, K., R. Y. Tsai, et al. (1994). "Analytical characterization of the feature

detectability constraints of resolution, focus, and field- of-view for vision sensor
planning."

– Rodriguez, J. J. and J. K. Aggarwal (1990). "Stochastic Analysis of Stereo
Quantization Error."

– Zhao, W. and N. Nandhakumar (1996). "Effects of Camera Alignment Errors on

Stereoscopic Depth Estimates."
– Cooper, M. A. R. and P. A. Cross (1988). "Statistical concepts and their application

in photogrammetry and surveying.”
– Hartley, R. and P. Sturm (1997). "Triangulation."

Existing work
• Aspect Graphs, EAG, SCG

– Stewman, J. H. (1991). Viewer-centered representations for polyhedral objects:
computing the exact perspective projection aspect graph of an object bounded by
planar faces

– Yang, C. C., M. M. Marefat, et al. (1998). "Entity-Based Aspect Graph: Making
Viewer Centered Representations More Efficient.”

– Crosby, K. (1997). Visual Inspection Planning with Error Reduction (VIPER).

• Union Polyhedra, max volume ellipsoid
– Bemporad, A., K. Fukuda, et al. (2000). Convexity Recognition of the Union of

Polyhedra
– Zhang, Y. (1998). An Interior-Point Algorithm for the Maximum-Volume Ellipsoid

Problem

Existing work

• Photogrammetry and Multiple View Geometry
– Hartley, R. and A. Zisserman (2000). Multiple view geometry in computer vision.
– Faugeras, O. (1993). Three-dimensional computer vision : a geometric viewpoint.
– Fraser, C. S. (1984). "Network Design Considerations for Non-Topographic

Photogrammetry."
– Triggs, B., P. F. McLauchlan, et al. (2000). Bundle Adjustment - A Modern

Synthesis.

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Problem Formulation (Part 1)
Let

E be the set of entities of interest (e1,e2,…)

P be the set of optimal camera poses (p1,p2,…)

Si be a tuple that associates a camera pose pi with a subset Ei of entities of interest

F be an objective function to minimize

Ti be the set of specified tolerances of the entities ei

Thi be a threshold for the acceptability of the measurement for the entities ei

We want to find a set S such that:

S = ∪Si ∀i such that

∪entities(S) = E

F(S) is minimized

Prob(dimensional_error(ej,pj) < Tj) >= Thj ∀ej ∈ entities(Si), ∀ pj ∈
pose(Si), ∀ Si ∈ S

Problem Formulation (Part 2)
• Optimal camera pose as nonlinear program
Input
Set of entities of interest E
F is a function that defines the optimality criterion.
This function takes as a parameter the entities of interest S and the camera pose (tx, ty, tz, Φ, θ, Ψ).

Output
Optimal camera pose (tx, ty, tz, Φ, θ, Ψ) and optimal value

Algorithm
Minimize F (tx, ty, tz, Φ, θ, Ψ, E)
Subject to:
g1j <= 0 (resolution), for j=1 to k, where k is the number of entities in E
g2a <= 0 (focus)
g2b <= 0 (focus)
g3 <= 0(field of view)
g4 <= 0 (incidence angle)
g5 <= 0 (room size)
g6i <= 0 (visibility) for i=1 to m, where m is the number of hyperplanes that define the visibility
boundary

Problem Formulation (Part 3)

• F() is a metric that relates the camera pose
to the expected accuracy of the
measurement

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Solution approach
• Define stereo error model and objective

function
• Summary of sensor constraints
• Summary nonlinear program
• Summary inspection planning algorithm

– Sensor Constraint Graph
– Integer Program
– Tolerance evaluation

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Inspection planning

Error models

• Previous work
– Sources of error in camera sensor
– Crosby’s Mean Square Error of Displacement

and Quantization Error
– Crosby’s Probability that Error is Within

Specified Tolerances

Displacement error of
single point

(u,v)

(u’,v’)
εdu

εdv

Image plane

Displacement error for a each end point are new Gaussian RV

εdu = u’ – u

εdv = v’ – v

Displacement error of line

• Displacement error is geometrically approximated:
εd ≈ εdxcos(γ) + εdysin(γ)
γ = angle between line

Displacement error of k lines
• Total dimensional error due to displacement

for k lines is:

222

1

][
dd

j

d

k

j
dd

E εε ησε

εε

+=

=∑
=

Quantization Error 1D

• Actual Length:
L = lrx + u + v, where u,v uniform
random variables

• Quantized Length









≤∩>∪>∩≤+
>∩>+
≤∩≤

=
)5.5.()5.5.()1(

5.5.)2(
5.5.

vuvurl
vurl
vulr

Lq

x

x

x

Quantization Error for a line

•Total quantization determined by geometric
approximation,

εq ≈ εqxcos(γ) + εqysin(γ)
•zero mean
•E[εq

2]=σ εq
2 ≈1/6(rx

2cos2 γ + ry
2sin2 γ)

Total quantization error for k
lines

Total dimensional error due to quantization in all lines:

∑

∑

=

=

==

=

k

j
jq

k

j
qq

qq

j

E
1

222

1

][εε σσε

εε

Dimensional Tolerances
• Dimensional Tolerance is satisfied if

∫
∆

∆−

≥
L

L

Thresholddf εεε)(

• fε(ε) is the probability density function of
dimensional inspection error

Error models

• What’s wrong with Crosby’s models?
• Why stereo?
• Sources of errors in stereo
• Stereo error approximation

– least squares adjustment
– Why least squares?

What’s wrong with Crosby’s
models?

• Error in projected length of a single image
does not relate to the 3D error

Line 2 units long projects to 1 pixel

Longer line still projects to 1 pixel

Line perpendicular to
viewing direction, 3D
length is scaling of
projection

Lines at an angle can still
project to the same length

Why stereo?

• At least 2 cameras needed to do 3D
reconstruction

• It is easy to build a stereo system

Sources of errors in stereo
• Error sources include:

– Quantization Error
• due to spatial quantization in the CCD array

– Localization Error
• inaccuracies in the endpoint detection algorithms

– Calibration Errors
– Misalignment of cameras

• Introduce an error in the pixel location of
the projected line endpoints

Least Square Error Estimation

• Functional model (for a single camera):
– Let aij be rotation matrix coefficients from roll-pitch-yaw camera’s

rotation angles
– Let Xo, Yo, Zo be the coordinates of the camera’s perspective center
– Let u,v be the measured image coordinate of a point X1,Y1,Z1

– Let c be the focal length
• c[a11(X1-X0)+a12(Y1-Y0)+a13(Z1-Z0)] - u[a31(X1-X0)+a32(Y1-Y0)+a33(Z1-Z0)] = 0
• c[a21(X1-X0)+a22(Y1-Y0)+a23(Z1-Z0)] - v[a31(X1-X0)+a32(Y1-Y0)+a33(Z1-Z0)] = 0

Least squares estimates
• Let x be the vector of elements whose values are to be found

– x = [Xl, Yl, Zl, Xr, Yr, Zr]
• Let l be the vector of elements which have been measured

– l = [ul,vl,ur,vr]
• Let c be the vector of elements whose values are known and regarded

constant.
– c = [rotation parameters, focal length, camera centers of both cameras]

• Let f be the vector of functional models
• Functional model can be summarized as
• f(x,l,c)=0

Least squares estimate
Using subscripts l and r to denote left and right camera
c[a11r(X1-X0r)+a12r(Y1-Y0r)+a13r(Z1-Z0r)] - ur[a31r(X1-X0r)+a32r(Y1-Y0r)+a33r(Z1-Z0r)] = 0
c[a21r(X1-X0r)+a22r(Y1-Y0r)+a23r(Z1-Z0r)] - vr[a31r(X1-X0r)+a32r(Y1-Y0r)+a33r(Z1-Z0r)] = 0
c[a11l(X1-X0l)+a12l(Y1-Y0l)+a13l(Z1-Z0l)] - ul[a31l(X1-X0l)+a32l(Y1-Y0l)+a33l(Z1-Z0l)] = 0
c[a21ll(X1-X0l)+a22l(Y1-Y0l)+a23l(Z1-Z0l)] - vl[a31l(X1-X0l)+a32l(Y1-Y0l)+a33l(Z1-Z0l)] = 0

Least squares estimation
Let x,l be the true values of x,l
Let xo,lo be the first order approximation
Calculating first order approximation of f(x,l,c)

f(xo,lo,c) + df(x-xo)/dx + df(l-lo)/dl = 0

Let b=-f(xo,lo,c)
Let A = df/dx, B=df/dl
Let x = x-xo, v=l-lo
Solving Ax+Bv=b for x and v, give the corrections

that will give the estimated vector x and l

Least square estimation

• Assume measurement vector l of m
measurements has the following covariance
matrix

• Cl = diag[σ1
2
, σ2

2
,.. σm

2]
• Define σo

2 as the reference variance
• Define the weight matrix W= σo

2inv(Cl)
• Define the cofactor matrix Ql=inv(W)

Least squares estimate
• Solution to Ax+Bv = b

kTBWv

bxATBBWk

bTBBWTAATBBWTAx

ˆ1ˆ

ˆ
11ˆ

11
111ˆ

−−=

−
−−=

−−
−−−=




























































• Cofactor matrix of estimated positions x
11

ˆ

−−
=




























 ATBlBQTAxQ

Why least squares?
• From M.A.R. Cooper, P.A. Cross, (1988), “Statistical

Concepts and Their Application in Photogrammetry and
Surveying”
– Simple to estimate, linear estimate
– unique
– unobjectionable (it is not easy to find an argument against using it)
– leads to a simple quantitative assessment of quality
– least squares estimates are unbiased
– describe a minimum variance estimate
– best linear unbiased estimate independent of PDF of measurement

errors
– if PDF is normal ==> maximum likelihood estimate

Inspection planning

MSE of the 3D length of a line
Let εpi = Xi - Xi’ (random vector representing the error of estimated 3D point Xi’)
Assume εpi is Normal with E[εpi]=0, Cov(εpi)=Ci (from the LSE algortithm)
Let εp1, εp2 be the errors of points X1 and X2

Let εd = εp1- εp2 be the dimensional error vector of the line formed by X1 and X2

Let u be the unit vector vector representing the direction of the line
Then, the statistics of the dimensional error for a single line can be derived as follows:

)(]2[

)(

0

dVardE

J
d

CTJdVar

zuyuxu
dd
dJ

dE

udd

dd

d

εε

εε

ε
ε

ε

εε

εε

ε

=

=

=
∂

=

=

⋅≈
















d
JC

CT
d

J
d

C

pd
d

pd
d

d
J

dE

εεε

ε
ε

ε
ε

ε

ε





























































=

−
−

−
=

∂∂
=

=

20
01

100100
010010
001001

21

0

Tolerance satisfaction
Recall εd is Gaussian with E[εd]=0 Var[εd]=σ2

Let ∆i be a tolerance specification for line i
For a 3D line of length Li, the probability that the error is

within the specified tolerance is:
– Prob(-∆L <= εd <= ∆L) = CDF(∆L, 0, σ)-CDF(-∆L,0, σ)
– CDF(x,µ,σ) is the gaussian cumulative density function

evaluated at x, with mean and std. dev. µ and σ respectively

• Accept the camera pose if
• Prob(-∆L <= εd <= ∆L) >= Threshold

Inspection planning

Nonlinear optimization program
Input
Set of entities of interest E
F is a function that defines the optimality criterion.
This function takes as a parameter the entities of interest S and the camera pose (tx, ty, tz, Φ, θ, Ψ).

Output
Optimal camera pose (tx, ty, tz, Φ, θ, Ψ) and optimal value

Algorithm
Minimize F (tx, ty, tz, Φ, θ, Ψ, E)
Subject to:
g1j <= 0 (resolution), for j=1 to k, where k is the number of entities in E
g2a <= 0 (focus)
g2b <= 0 (focus)
g3 <= 0(field of view)
g4 <= 0 (incidence angle)
g5 <= 0 (room size)
g6i <= 0 (visibility) for i=1 to m, where m is the number of hyperplanes that define the visibility
boundary

Sensor Constraints
• Resolution
• Focus
• Field of View
• Incidence Angle
• Room Size
• Visibility

– Determining viewing volumes
– Union of viewing volumes

Resolution

• For each entity j, there is a constraint g1j()
• Projects a line of l millimeters to a line of w

millimeters

Focus

• Two constraints, g2a(), g2b()
• Require closest and furthest entity vertices

from the camera position to be within the
far and near limits of the depth of field

rc

camera
rf

Far limit Near limit

Field Of View

• One constraint: g3()
• Bounding cone must be contained within

the viewing cone
Bounding cone

Viewing cone

Incidence Angle
• Number of constraints depend on number of

entities: g4()
• The incidence angle constraint prevents the

camera position from being coplanar to the entities
of interest

Room size

• Only one: g5()
• The room size constraint limits the possible

range of camera positions.

Visibility

• Many equations: g6i() for i=1 to m
• Plane equations that bound the visibility of

the desired entities

x
y

e1 e2

e3

e4

Example:

To see entities e1, e2, e3,
e4, the camera must satisfy
equation y < 0

Aspect Graph (Stewman)
• Viewing volumes as the intersection of

hyperplanes
• Viewing volumes for all the entities in the object

Ex:
P3

P1

P2

•Drawbacks – may be
too much information

Viewing Volume:

H1H2H3

Aspect Graph (Stewman) Cont.

• Aspect graph of ell

Entity Aspect Graph (Yang)**

• EAG simplifies the Aspect Graph, reducing the
number of nodes

• Viewing regions for a subset of entities on the
object

• In the EAG, it has four elements (E, V, O, A).
– E is a set of entity of interest.
– V is a set of viewing domains.
– O is a set of lists of observable entities.
– A is a set of adjacent pairs of entity viewing domain

Converting AG to EAG (idea)**

• Assume initial AG is an EAG that contains
all entities

• Apply contraction algorithm to AG to create
desired EAG

Converting AG to EAG Example:
N0

{e0e1e2e3}
v0

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2

∩ EOI = {e0e1e2e3}

1) Intersect EOIs with
entities in AG

Converting AG to EAG Example:

N0
{e0e1e2e3}

v0

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2

2) merge
nodes with
same
observable
entities

Converting AG to EAG Example:
(step 3)

N0
{e0e1e2e3}

v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2

Converting AG to EAG Example:
N0

{e0e1e2e3}
v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2 ∪ v7

Converting AG to EAG Example:
N0

{e0e1e2e3}
v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2 ∪v7

Merging viewing regions

• Issue
• How are two nodes merged?
• How do you calculate the union of two

viewing regions?
– Yang didn’t specify a method for this

Union of viewing regions**

• Observations:
– Viewing regions must form convex volumes in

order to be formulated as linear constraints in
the NLP formulation

– It is possible for the valid viewing regions to
form concave volumes

Example: concave viewing space

P3

P5

How can we identify such cases?

Determining convexity of union
of viewing regions

• From: Bemporad A, Fukuda K, Torrisi F. D,
Convexity recognition of the union of
polyhedra, Computational Geometry
Theory and Applications, 2001

Determining convexity of union
of polyhedra

• Definitions:
• Convex H-Polyhedra

– Intersection of a finite set of halfspaces of the
Euclidean space Rd

P3

P1

P2

x

y

y <= x

Determining convexity of union
of polyhedra Cont.

• Definitions:
• Valid inequality

– Let P be a convex polyhedron in Rd. An
inequality aTx<=b is called valid for P if it is
satisfied by all points in P

– Conversely, an inequality aTx <= b is called
invalid for P if there exist a point on the other
side of the inequality that is in P

Example
valid/invalid inequalities

H1(invalid for P) H1(valid for P)

QQ

P
P

Identifying valid/invalid
inequalities

• Recall,

– An inequality aTx <= b is called invalid for P if there exist a point
on the other side of the inequality that is in P

• Feasibility Problem
• Let (A,b) be the inequalities that define P
• Let (c,t) be the inequality to be tested

– Max F(x)
– Subject to: Ax <= b, c > t
– If there is a feasible point for this problem, the inequality is invalid

Determining convexity of union
of polyhedra

• Definitions: Envelope of two polyhedra P and Q
• Let P and Q be (possibly unbounded) H-Polyhedra

.:

,:

























≤ℜ∈=

≤ℜ∈=

β

α

BxdxQ

AxdxP

• Define },:{),(βα ≤≤ℜ∈= xBxAdxQPenv

where α≤xA β≤xB(() is the subsystem of α≤Ax)β≤xB

obtained by removing all the inequalities not valid
for the other polyhedron Q (P).

Example: env(P,Q) original**

Q

P

Example: env(P,Q)**

Q

P

Invalid inequalities
Env(P,Q)

Constructing the env(P,Q)

Let Hp, Hq be the set of hyperplanes that define P, Q respectively

Let C be the set of hyperplanes that define the env(P,Q)

Let Ab be the set of hyperplanes of Q that are not valid for P

Let Bb be the set of hyperplanes of P that are not valid for Q

For each inequality c in Q

if is_valid(Hp, c) then C = [C; c] else Ab = [Ab; c]

For each inequality c in P

if is_valid(Hq, c) then C = [C; c] else Bb = [Bb; c]

Determining convexity of union
of polyhedra**

• Theorem:
– Union(P,Q) is convex iff Union(P,Q)=env(P,Q)

Env(P,Q)Union(P,Q)

Q

P

Example: is union(P,Q) convex?

Q

P

Any point in this
region is outside
a pair of invalid
inequalities but
inside the
env(P,Q),
therefore the
union is concave

Invalid inequalities
Env(P,Q)

Determining convexity of union
of viewing polyhedra

• Construct env(P,Q)
Let be the set of removed constraints
Let be the resulting envelope
2. For each pair do:

E*= max (x)
Subject To: , ,
If feasible return nonconvex

Endfor
Return env(P,Q) // union(P,Q) is convex

α≤xA β≤xB
}:{),(γ≤= CxxQPenv

ixiA α≤ jxjB β≤

εα +≥ ixiA εβ +≥ jxjB γ≤Cx

Inspection planning

Sensor Constraint Graph

• Basic structure used to represent the
optimization problems
– Definition
– Construction
– Expansion
– Contraction
– Processing using SCG

• The output of this processing is a set SLIST
of optimal pose candidates

Sensor Constraint Graph

• SCG node: 4 tuple (E,O,G,I)
– E: set of desired geometric entities to be

observed
– O: objective function (MSE)
– G = { V, V’}

• V visibility constraints
• V’ focus, resolution, and field of view constraints

– I: initial camera pose

Sensor Constraint Graph

• SCG Arcs
– solid arcs

• adjacent, yet disjoint visibility regions between two
nodes

– dashed arcs
• overlapping visibility regions between two nodes

SCG operations

• Three operations:
– Construction
– Expansion
– Contraction

SCG construction
• Construct an EAG from the set of geometric

entities
– each node of EAG has set of visible desired

entities and visibility constraints
• Define objective function for each node
• Define sensor constraints G for each node
• Choose arbitrary initial camera pose I
• Link all nodes with solid arcs

Example: SCG construction

{e1,e2}
V2

{e3,e2}
V3

{e4}
V1

EAG
{e1,e2}

G2={V2,V2’},
O2,I2

{e3,e2}
G3={V3,V3’},

O3,I3

{e4}
G1={V1,V1’},

O1,I1

SCG

Passing Optimizations

• Stored in SLIST
• Node of SLIST defined as S={F,E,O}

– F camera pose
– O objective function
– E set of entities

• SLIST = ∪S

Similar Settings

• Nodes that have identical entity sets
• Are combined into new setting So such that

– Eo is set of entities
– Oo is objective function
– Fo is the camera pose that results in smallest

MSE
• Similar settings are replaced by So in the

SLIST

Failing Optimizations

• There exist a set of passing entities and
failing entities after an optimization

• Resolved using expansion and contraction
operations

SCG expansion

• Creates subnodes
– Desired entity set is a subset of original node
– MSE function is defined in terms of such subset
– Sensor constraints are also defined in terms of

such subsets
– Visibility constraints are the same as its original

node ??

SCG expansion

• For multiple subnodes, the union of the
desired entity set must be the same as the
original nodes’ entity set

• All subnodes are connected by dashed arcs

1

2
3

SCG Expanded SCG
1

2
3a

3b

Subnode strategies

• Two types of failing optimizations
– passing entities and failing entities in the set
– only failing entities in the set

• Five strategies to handle these cases
– Strategy 1: Pass/Fail
– Strategy 2: One less
– Strategy 3: Singleton
– Strategy 4: Similar node with one less
– Strategy 5: Similar node with singleton

SCG contraction
• Creates supernodes

– Two or more similar nodes are contracted
– Supernode has the same entity set as original

nodes
– Same objective function function
– Same sensor constraints
– Visibility constraints are the union of the

visibility constraints of original nodes
– Initial camera pose that results in Min(MSE)

SCG contraction

• Neighboring nodes keep same relation with
respect to supernode

• Example: contracting node 1 and 3b

Contracting SCG

1-3b

2
3a

Original SCG
1

2
3a

3b

New concepts
• Definition

– Mergeable nodes: two nodes are mergeable if
their viewing regions are mergeable

– Mergeable viewing regions: two viewing
regions are mergeable if their union is a convex
viewing region

Conservative contraction

e0

P1

N0

N0 e0 N3 e0

Join nodes with a curly
arc to identify
unmergeable nodesP3

N3

Prioritizing nodes

• Prioritize nodes toward greater cardinality
in entity sets to reduce number of
optimizations

• Unprocessed nodes are included in priority
queue known as NLIST

Prioritizing nodes

•Find similar node with E#
•combine into supernode No
•replace similar nodes with No
•sort NLIST
•N’ = first(NLIST)

Perform Optimization
on N’

•Create subnodes
•Append NLIST
•Sort NLIST

Determine
plan

done

1
yes

no

no

yes

no

NLIST = rest(NLIST)NLIST = rest(NLIST)Priority = 0

Priority = #E(N’)
NLIST empty?

N’ = first(NLIST)

Passing
optimization? yes

Save setting
in SLIST

#E(N’) < priority?

1

Inspection planning

Determining final camera poses

• An integer program is used to the determine
the final set S

Integer Programming
Input
Let
p be the number of camera poses in SLIST
xi = 1 if ith camera pose Si is part of inspection plan for i=1 to p
aij = 1 if entity Ej is in setting SI
n be the total number of desired entities
F(x) be a optimality function

Output
An optimal inspection plan x that indicates the set of cameras that minimize the objective function F(x)

Algorithm



































=

=

≥

px

x
x

x

npana

aa
A

Ax

TS

xFMinimize

...
2
1

...1

.........

...1211

1

..

)(:

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Comparison with related work
• This work vs. Crosby, Yang

– based on VIPER, SCG, and EAG concepts
– completes formulation of EAG by defining algorithm to

determine the union of viewing volumes
– uses different error model since 3D measurements can’t

be done using a single image
– uses stereo camera setup to perform 3D measurements

Comparison with related work
• This work vs. Mason, Olague

– Follows the philosophy of Mason and Olague of using more than
one camera to perform accurate measurements

– Visibility calculations use viewing sphere and search is done using
heuristics (Mason) and genetic algorithms (Olague) vs. Aspect
Graph and nonlinear programming (This Work)

– Mason uses predefined networks originally specified by expert
photogrammetrists and updates them to satisfy new requirements.
Olague generates poses using genetic algorithms. Both systems
handle more than 2 cameras. Usually 4 or more.

– This work only deals with stereo

Comparison with related work

• This work vs. Tarabanis
– Uses the same sensor constraints and adds Room Size,

Incidence Angle constraints from Mason’s work
• EAG, AG, Union of Viewing Volumes

– Stewman’s Aspect Graph code
– modified Yang’s Entity-Based Aspect Graph algorithm

and incorporated Bemporad’s Union of Polyhedra
algorithm

• only 2 cams

Comparison with related work

• Limits of current implementation
– No illumination planning is done
– Only two cameras are used
– Only edges are measured
– Only polyhedral objects are used
– Optimal solution depends on initial feasible pose
– It was shown that searching the viewing space is a NP complete

problem [Mason] (using heuristics is the sensible way of achieving
a suboptimal solution) <-- we don’t do this

– Using only two image points to estimate 3D position doesn’t give a
statistically significant number of observations, therefore the LSE
estimates may be inaccurate [Mason] <-- That’s why
photogrammetrists use at least 4 cameras!

Outline

• Introduction and Motivation
• Existing Related Works
• Problem Formulation and Statement
• Solution Approach
• Details
• Comparison with Related Work
• Plan for Work

Plan of work

• Incorporate new error model into the
framework

• Run simulations to verify it
• Run real experiments

	Flexible Automated Visual Inspection Planning Framework using Stereo Sensor with Error Reduction --Proposal
	Outline
	Automated Inspection
	Types of visual inspection systems
	Introduction
	Automated Visual Inspection Planning
	Automated Visual Inspection Planning
	Automated Visual Inspection Planning
	Flexible Automated Visual Inspection Planning Framework
	Outline
	Existing work
	Existing work
	Existing work
	Existing work
	Existing work
	Outline
	Problem Formulation (Part 1)
	Problem Formulation (Part 2)
	Problem Formulation (Part 3)
	Outline
	Solution approach
	Outline
	Inspection planning
	Error models
	Displacement error of single point
	Displacement error of line
	Displacement error of k lines
	Quantization Error 1D
	Quantization Error for a line
	Total quantization error for k lines
	Dimensional Tolerances
	Error models
	What’s wrong with Crosby’s models?
	Why stereo?
	Sources of errors in stereo
	Least Square Error Estimation
	Least squares estimates
	Least squares estimate
	Least squares estimation
	Least square estimation
	Least squares estimate
	Why least squares?
	Inspection planning
	MSE of the 3D length of a line
	Tolerance satisfaction
	Inspection planning
	Nonlinear optimization program
	Sensor Constraints
	Resolution
	Focus
	Field Of View
	Incidence Angle
	Room size
	Visibility
	Aspect Graph (Stewman) Cont.
	Entity Aspect Graph (Yang)**
	Converting AG to EAG (idea)**
	Converting AG to EAG Example:
	Converting AG to EAG Example:
	Converting AG to EAG Example:(step 3)
	Converting AG to EAG Example:
	Converting AG to EAG Example:
	Merging viewing regions
	Union of viewing regions**
	Example: concave viewing space
	Determining convexity of union of viewing regions
	Determining convexity of union of polyhedra
	Determining convexity of union of polyhedra Cont.
	Example valid/invalid inequalities
	Identifying valid/invalid inequalities
	Determining convexity of union of polyhedra
	Example: env(P,Q) original**
	Example: env(P,Q)**
	Constructing the env(P,Q)
	Determining convexity of union of polyhedra**
	Example: is union(P,Q) convex?
	Determining convexity of union of viewing polyhedra
	Inspection planning
	Sensor Constraint Graph
	Sensor Constraint Graph
	Sensor Constraint Graph
	SCG operations
	SCG construction
	Example: SCG construction
	Passing Optimizations
	Similar Settings
	Failing Optimizations
	SCG expansion
	SCG expansion
	Subnode strategies
	SCG contraction
	SCG contraction
	New concepts
	Conservative contraction
	Prioritizing nodes
	Prioritizing nodes
	Inspection planning
	Determining final camera poses
	Integer Programming
	Outline
	Comparison with related work
	Comparison with related work
	Comparison with related work
	Comparison with related work
	Outline
	Plan of work

