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Automated Inspection

• used in manufacturing industry for quality 
control tasks

• tireless; relatively error free, low operating 
costs compared to human

• use of non contact sensors (cameras) 
reduces risk of damage during inspection

• use of cameras as sensors => automated 
visual inspection



Types of visual inspection systems

• Four types (Malamas, E. N., et al. (2003). "A Survey on Industrial Vision 

Systems, Applications, and Tools.”):
– dimensional quality

• Are the dimensions of the object within the specified 
tolerances?

– surface quality
• Are there cracks in the object’s surface?

– correct assembling (structural quality)
• Are  there missing components on the PCB board?

– correct operation (operational quality)
• Is the conveyor belt moving as specified?



Introduction

• This research deals with the dimensional 
inspection of the edges of polyhedral 
objects using a stereo camera as the sensor



Automated Visual Inspection 
Planning

• Steps in automated visual inspection system 
design process (Mason, S. O. and A. Grun (1995). "Automatic 

Sensor Placement for Accurate Dimensional Inspection.")
– Zero order design: specifying what to measure
– First order design: selecting optimal network of 

cameras
– Second order design: selecting the measurement 

precision
– Third order: network densification



Automated Visual Inspection 
Planning

• Drawbacks:
– Network design can be tedious and is usually 

accomplished by domain experts
• Automation can result in greater flexibility 

and lower costs



Automated Visual Inspection 
Planning

• This research addresses the ZOD, FOD, and 
SOD

• ZOD: Measuring object edges
• FOD: Finding optimal camera positions 

using nonlinear and integer optimization 
programs

• SOD: Minimizing the MSE of the line 
length



Flexible Automated Visual Inspection 
Planning Framework
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Existing work

• Previous Automated Visual Inspection 
Planning

• Error Models and Sensor Constraints
• Visibility Representations:

– Aspect Graphs, Entity-Based Aspect Graphs, 
Sensor Constraint Graphs

• Photogrammetry and Multiple View 
Geometry



Existing work
• Previous Automated Visual Inspection Planning

– Crosby, K. (1997). Visual Inspection Planning with Error Reduction (VIPER).
– Tarabanis, K. A., R. Y. Tsai, et al. (1995). "The MVP sensor planning system for 

robotic vision tasks.”
– Abrams, S., P. Allen, et al. (1999). "Computing Camera Viewpoints in an Active 

Robot Workcell.”
– Cowan, C. K. and P. D. Kovesi (1988). "Automatic Sensor Placement from Vision 

Task Requirements.”
– Mason, S. O. and A. Grun (1995). "Automatic Sensor Placement for Accurate 

Dimensional Inspection.”
– Olague, G. and R. Mohr (2002). "Optimal camera placement for accurate 

reconstruction."
– Sakane, S., M. Sato, et al. (1990). "Automatic Planning of Light Source Placement 

for an Active Photometric Stereo System.”
– Solomon, F. and K. Ikeuchi (1995). "An Illumination Planner for Lambertian

Polyhedral Objects."
– Yi, S., R. M. Haralick, et al. (1990). "Automatic Sensor and Light Source 

Positioning for Machine Vision."



Existing work
• Error Models, Sensor Constraints

– Yang, C. C., M. M. Marefat, et al. (1999). "Modeling Errors for Dimensional 

Inspection Using Active Vision."
– Gu, X., M. Marefat, et al. (1999). "A Robust Approach for Sensor Placement in 

Automated Vision Dimensional Inspection.”
– Tarabanis, K., R. Y. Tsai, et al. (1994). "Analytical characterization of the feature

detectability constraints of resolution, focus, and field- of-view for vision sensor 
planning."

– Rodriguez, J. J. and J. K. Aggarwal (1990). "Stochastic Analysis of Stereo 
Quantization Error."

– Zhao, W. and N. Nandhakumar (1996). "Effects of Camera Alignment Errors on 

Stereoscopic Depth Estimates."
– Cooper, M. A. R. and P. A. Cross (1988). "Statistical concepts and their application 

in photogrammetry and surveying.”
– Hartley, R. and P. Sturm (1997). "Triangulation."



Existing work
• Aspect Graphs, EAG, SCG

– Stewman, J. H. (1991). Viewer-centered representations for polyhedral objects: 
computing the exact perspective projection aspect graph of an object bounded by 
planar faces

– Yang, C. C., M. M. Marefat, et al. (1998). "Entity-Based Aspect Graph: Making 
Viewer Centered Representations More Efficient.”

– Crosby, K. (1997). Visual Inspection Planning with Error Reduction (VIPER).

• Union Polyhedra, max volume ellipsoid
– Bemporad, A., K. Fukuda, et al. (2000). Convexity Recognition of the Union of  

Polyhedra
– Zhang, Y. (1998). An Interior-Point Algorithm for the Maximum-Volume Ellipsoid 

Problem



Existing work

• Photogrammetry and Multiple View Geometry
– Hartley, R. and A. Zisserman (2000). Multiple view geometry in computer vision.
– Faugeras, O. (1993). Three-dimensional computer vision : a geometric viewpoint.
– Fraser, C. S. (1984). "Network Design Considerations for Non-Topographic

Photogrammetry."
– Triggs, B., P. F. McLauchlan, et al. (2000). Bundle Adjustment - A Modern 

Synthesis. 
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Problem Formulation (Part 1)
Let 

E be the set of entities of interest (e1,e2,…)

P be the set of optimal camera poses (p1,p2,…)

Si be a tuple that associates a camera pose pi with a subset Ei of entities of interest

F be an objective function to minimize

Ti be the set of specified tolerances of the entities ei

Thi be a threshold for the acceptability of the measurement for the entities ei

We want to find a set S such that:

S = ∪Si ∀i such that 

∪entities(S) = E

F(S) is minimized

Prob(dimensional_error(ej,pj) < Tj) >= Thj ∀ej ∈ entities(Si), ∀ pj ∈
pose(Si), ∀ Si ∈ S



Problem Formulation (Part 2)
• Optimal camera pose as nonlinear program
Input 
Set of entities of interest E
F is a function that defines the optimality criterion.  
This function takes as a parameter the entities of interest S and the camera pose (tx, ty, tz, Φ, θ, Ψ).

Output 
Optimal camera pose (tx, ty, tz, Φ, θ, Ψ) and optimal value

Algorithm
Minimize F (tx, ty, tz, Φ, θ, Ψ, E)
Subject to:
g1j <= 0 (resolution),  for j=1 to k, where k is the number of entities in E 
g2a <= 0 (focus)
g2b <= 0 (focus)
g3 <= 0(field of view)
g4 <= 0 (incidence angle)
g5 <= 0 (room size)
g6i <= 0 (visibility) for i=1 to m, where m is the number of hyperplanes that define the visibility 
boundary



Problem Formulation (Part 3)

• F() is a metric that relates the camera pose 
to the expected accuracy of the 
measurement
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Solution approach
• Define stereo error model and objective 

function
• Summary of  sensor constraints
• Summary nonlinear program
• Summary inspection planning algorithm

– Sensor Constraint Graph
– Integer Program
– Tolerance evaluation
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Inspection planning 



Error models

• Previous work
– Sources of error in camera sensor
– Crosby’s Mean Square Error of Displacement 

and Quantization Error
– Crosby’s Probability that Error is Within 

Specified  Tolerances



Displacement error of
single point 

(u,v)

(u’,v’)
εdu

εdv

Image plane

Displacement error for a each end point are new Gaussian RV

εdu = u’ – u 

εdv = v’ – v 



Displacement error of line

• Displacement error is geometrically approximated:
εd ≈ εdxcos(γ) + εdysin(γ)
γ = angle between line



Displacement error of k lines
• Total dimensional error due to displacement 

for k lines is:
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Quantization Error 1D

• Actual Length: 
L = lrx + u + v, where u,v uniform 
random variables

• Quantized Length
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Quantization Error for a line

•Total quantization determined by geometric 
approximation,

εq ≈ εqxcos(γ) + εqysin(γ)
•zero mean 
•E[εq 

2]=σ εq
2 ≈1/6(rx

2cos2 γ + ry
2sin2 γ)



Total quantization error for k 
lines

Total dimensional error due to quantization in all lines:
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Dimensional Tolerances
• Dimensional Tolerance is satisfied if

∫
∆

∆−

≥
L

L

Thresholddf εεε )(

• fε(ε) is the probability density function of 
dimensional inspection error



Error models

• What’s wrong with Crosby’s models?
• Why stereo?
• Sources of errors in stereo
• Stereo error approximation

– least squares adjustment
– Why least squares?



What’s wrong with Crosby’s 
models?

• Error in projected length of a single image 
does not relate to the 3D error

Line 2 units long projects to 1 pixel

Longer line still projects to 1 pixel

Line perpendicular to 
viewing direction, 3D 
length is scaling of 
projection

Lines at an angle can still 
project to the same length



Why stereo?

• At least 2 cameras needed to do 3D 
reconstruction

• It is easy to build a stereo system



Sources of errors in stereo
• Error sources include:

– Quantization Error 
• due to spatial quantization in the CCD array

– Localization Error
• inaccuracies in the endpoint detection algorithms

– Calibration Errors
– Misalignment of cameras

• Introduce an error in the pixel location of 
the projected line endpoints



Least Square Error Estimation

• Functional model (for a single camera):
– Let aij be rotation matrix coefficients from roll-pitch-yaw camera’s 

rotation angles
– Let Xo, Yo, Zo be the coordinates of the camera’s perspective center
– Let u,v be the measured image coordinate of a point X1,Y1,Z1

– Let c be the focal length
• c[a11(X1-X0)+a12(Y1-Y0)+a13(Z1-Z0)] - u[a31(X1-X0)+a32(Y1-Y0)+a33(Z1-Z0)] = 0
• c[a21(X1-X0)+a22(Y1-Y0)+a23(Z1-Z0)] - v[a31(X1-X0)+a32(Y1-Y0)+a33(Z1-Z0)] = 0



Least squares estimates
• Let x be the vector of elements whose values are to be found

– x = [Xl, Yl, Zl, Xr, Yr, Zr]
• Let l be the vector of elements which have been measured

– l = [ul,vl,ur,vr]
• Let c be the vector of elements whose values are known and regarded 

constant. 
– c = [rotation parameters, focal length, camera centers of both cameras]

• Let f be the vector of functional models 
• Functional model can be summarized as
• f(x,l,c)=0



Least squares estimate
Using subscripts l and r to denote left and right camera 
c[a11r(X1-X0r)+a12r(Y1-Y0r)+a13r(Z1-Z0r)] - ur[a31r(X1-X0r)+a32r(Y1-Y0r)+a33r(Z1-Z0r)] = 0
c[a21r(X1-X0r)+a22r(Y1-Y0r)+a23r(Z1-Z0r)] - vr[a31r(X1-X0r)+a32r(Y1-Y0r)+a33r(Z1-Z0r)] = 0
c[a11l(X1-X0l)+a12l(Y1-Y0l)+a13l(Z1-Z0l)] - ul[a31l(X1-X0l)+a32l(Y1-Y0l)+a33l(Z1-Z0l)] = 0
c[a21ll(X1-X0l)+a22l(Y1-Y0l)+a23l(Z1-Z0l)] - vl[a31l(X1-X0l)+a32l(Y1-Y0l)+a33l(Z1-Z0l)] = 0



Least squares estimation
Let x,l be the true values of x,l
Let xo,lo be the first order approximation
Calculating first order approximation of f(x,l,c)

f(xo,lo,c) + df(x-xo)/dx + df(l-lo)/dl = 0

Let b=-f(xo,lo,c)
Let A = df/dx, B=df/dl
Let x = x-xo, v=l-lo
Solving Ax+Bv=b for x and v, give the corrections 

that will give the estimated vector x and l



Least square estimation

• Assume measurement vector l of m 
measurements has the following covariance 
matrix

• Cl = diag[σ1
2
, σ2

2
,.. σm

2]
• Define σo

2 as the reference variance
• Define the weight matrix W= σo

2inv(Cl)
• Define the cofactor matrix Ql=inv(W)



Least squares estimate
• Solution to Ax+Bv = b
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Why least squares? 
• From M.A.R. Cooper, P.A. Cross, (1988), “Statistical 

Concepts and Their Application in Photogrammetry and 
Surveying”
– Simple to estimate, linear estimate
– unique 
– unobjectionable (it is not easy to find an argument against using it)
– leads to a simple quantitative assessment of quality
– least squares estimates are unbiased
– describe a minimum variance estimate
– best linear unbiased estimate independent of PDF of measurement 

errors
– if PDF is normal ==> maximum likelihood estimate



Inspection planning



MSE of the 3D length of a line
Let εpi = Xi - Xi’ (random vector representing the error of estimated 3D point Xi’)
Assume εpi is Normal with E[εpi]=0, Cov(εpi)=Ci (from the LSE algortithm)
Let εp1, εp2 be the errors of points X1 and X2

Let εd = εp1- εp2 be the dimensional error vector of the line formed by X1 and X2

Let u be the unit vector vector representing the direction of the line
Then, the statistics of the dimensional error for a single line can be derived as follows:
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Tolerance satisfaction
Recall εd is Gaussian with E[εd]=0 Var[εd]=σ2

Let ∆i be a tolerance specification for line i
For a 3D line of length Li, the probability that the error is 

within the specified tolerance is:
– Prob(-∆L <= εd <= ∆L) = CDF(∆L, 0, σ)-CDF(-∆L,0, σ)
– CDF(x,µ,σ) is the gaussian cumulative density function 

evaluated at x, with mean and std. dev. µ and σ respectively

• Accept the camera pose if
• Prob(-∆L <= εd <= ∆L) >= Threshold



Inspection planning 



Nonlinear optimization program
Input 
Set of entities of interest E
F is a function that defines the optimality criterion.  
This function takes as a parameter the entities of interest S and the camera pose (tx, ty, tz, Φ, θ, Ψ).

Output 
Optimal camera pose (tx, ty, tz, Φ, θ, Ψ) and optimal value

Algorithm
Minimize F (tx, ty, tz, Φ, θ, Ψ, E)
Subject to:
g1j <= 0 (resolution),  for j=1 to k, where k is the number of entities in E 
g2a <= 0 (focus)
g2b <= 0 (focus)
g3 <= 0(field of view)
g4 <= 0 (incidence angle)
g5 <= 0 (room size)
g6i <= 0 (visibility) for i=1 to m, where m is the number of hyperplanes that define the visibility 
boundary



Sensor Constraints
• Resolution
• Focus
• Field of View
• Incidence Angle
• Room Size
• Visibility

– Determining viewing volumes
– Union of viewing volumes



Resolution

• For each entity j, there is a constraint g1j()
• Projects a line of l millimeters to a line of w 

millimeters



Focus

• Two constraints, g2a(), g2b()
• Require closest and furthest entity vertices 

from the camera position to be within the 
far and near limits of the depth of field

rc

camera
rf

Far limit Near limit



Field Of View

• One constraint: g3()
• Bounding cone must be contained within 

the viewing cone
Bounding cone

Viewing cone



Incidence Angle
• Number of constraints depend on number of 

entities: g4()
• The incidence angle constraint prevents the 

camera position from being coplanar to the entities 
of interest



Room size 

• Only one: g5()
• The room size constraint limits the possible 

range of camera positions. 



Visibility 

• Many equations: g6i() for i=1 to m
• Plane equations that bound the visibility of 

the desired entities

x
y

e1 e2

e3

e4

Example:

To see entities e1, e2, e3, 
e4, the camera must satisfy 
equation y < 0



Aspect Graph (Stewman)
• Viewing volumes as the intersection of 

hyperplanes 
• Viewing volumes for all the entities in the object

Ex:
P3

P1

P2

•Drawbacks – may be 
too much information

Viewing Volume:

H1H2H3



Aspect Graph (Stewman) Cont.

• Aspect graph of ell



Entity Aspect Graph (Yang)**

• EAG simplifies the Aspect Graph, reducing the 
number of nodes

• Viewing regions for a subset of entities on the 
object 

• In the EAG, it has four elements (E, V, O, A). 
– E is a set of entity of interest. 
– V is a set of viewing domains. 
– O is a set of lists of observable entities.  
– A is a set of adjacent pairs of entity viewing domain



Converting AG to EAG (idea)**

• Assume initial AG is an EAG that contains 
all entities

• Apply contraction algorithm to AG to create 
desired EAG



Converting AG to EAG Example:
N0

{e0e1e2e3}
v0

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2

∩ EOI = {e0e1e2e3}

1) Intersect EOIs with 
entities in AG



Converting AG to EAG Example:

N0
{e0e1e2e3}

v0

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2

2) merge 
nodes with 
same 
observable 
entities



Converting AG to EAG Example:
(step 3)

N0
{e0e1e2e3}

v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2



Converting AG to EAG Example:
N0

{e0e1e2e3}
v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2 ∪ v7



Converting AG to EAG Example:
N0

{e0e1e2e3}
v0∪v6

N7
{e0e4e5e6
e7e8e9}

v7

N6
{e0e1e2e3
e6e8e9}

v6

N1
{e4e5e6e7}

v1

N2
{e0e6e8e9}

v2 ∪v7



Merging viewing regions

• Issue
• How are two nodes merged?
• How do you calculate the union of two 

viewing regions?
– Yang didn’t specify a method for this



Union of viewing regions**

• Observations:
– Viewing regions must form convex volumes in 

order to be formulated as linear constraints in 
the NLP formulation

– It is possible for the valid viewing regions to 
form concave volumes



Example: concave viewing space

P3

P5

How can we identify such cases?



Determining convexity of union 
of viewing regions

• From: Bemporad A, Fukuda K, Torrisi F. D, 
Convexity recognition of the union of 
polyhedra, Computational Geometry 
Theory and Applications, 2001



Determining convexity of union 
of polyhedra

• Definitions:
• Convex H-Polyhedra 

– Intersection of a finite set of halfspaces of the 
Euclidean space Rd

P3

P1

P2

x

y

y <= x



Determining convexity of union 
of polyhedra Cont.

• Definitions:
• Valid inequality

– Let P be a convex polyhedron in Rd.  An 
inequality aTx<=b is called valid for P if it is 
satisfied by all points in P

– Conversely, an inequality aTx <= b is called 
invalid for P if there exist a point on the other 
side of the inequality that is in P



Example 
valid/invalid inequalities

H1(invalid for P) H1(valid for P)

QQ

P
P



Identifying valid/invalid 
inequalities

• Recall,

– An inequality aTx <= b is called invalid for P if there exist a point 
on the other side of the inequality that is in P

• Feasibility Problem
• Let (A,b) be the inequalities that define P
• Let (c,t) be the inequality to be tested

– Max F(x)
– Subject to: Ax <= b, c > t
– If there is a feasible point for this problem, the inequality is invalid



Determining convexity of union 
of polyhedra

• Definitions: Envelope of two polyhedra P and Q
• Let P and Q be (possibly unbounded) H-Polyhedra

.:

,:






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
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


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β

α

BxdxQ

AxdxP

• Define },:{),( βα ≤≤ℜ∈= xBxAdxQPenv

where α≤xA β≤xB( () is the subsystem of α≤Ax )β≤xB

obtained by removing all the inequalities not valid 
for the other polyhedron Q (P).  



Example: env(P,Q) original** 

Q

P



Example: env(P,Q)**

Q

P

Invalid inequalities
Env(P,Q)



Constructing the env(P,Q)

Let Hp, Hq be the set of hyperplanes that define P, Q respectively

Let C be the set of hyperplanes that define the env(P,Q)

Let Ab be the set of hyperplanes of Q that are not valid for P

Let Bb be the set of hyperplanes of P that are not valid for Q

For each inequality c in Q

if is_valid(Hp, c) then C = [C; c] else Ab = [Ab; c]

For each inequality c in P

if is_valid(Hq, c) then C = [C; c] else Bb = [Bb; c] 



Determining convexity of union 
of polyhedra**

• Theorem:
– Union(P,Q) is convex iff Union(P,Q)=env(P,Q)

Env(P,Q)Union(P,Q)

Q

P



Example: is union(P,Q) convex?

Q

P

Any point in this 
region is outside 
a pair of invalid 
inequalities but 
inside the 
env(P,Q), 
therefore the 
union is concave

Invalid inequalities
Env(P,Q)



Determining convexity of union 
of viewing polyhedra

• Construct env(P,Q)
Let                        be the set of removed constraints
Let                         be the resulting envelope
2. For each pair                            do:

E*= max (x)
Subject To:                  ,                    , 
If feasible return nonconvex

Endfor
Return env(P,Q) // union(P,Q) is convex

α≤xA β≤xB
}:{),( γ≤= CxxQPenv

ixiA α≤ jxjB β≤

εα +≥ ixiA εβ +≥ jxjB γ≤Cx



Inspection planning 



Sensor Constraint Graph

• Basic structure used to represent the 
optimization problems
– Definition
– Construction
– Expansion
– Contraction
– Processing using SCG

• The output of this processing is a set SLIST 
of optimal pose candidates



Sensor Constraint Graph

• SCG node: 4 tuple (E,O,G,I)
– E: set of desired geometric entities to be 

observed
– O: objective function (MSE)
– G = { V, V’}

• V visibility constraints
• V’ focus, resolution, and field of view constraints

– I: initial camera pose



Sensor Constraint Graph

• SCG Arcs
– solid arcs 

• adjacent, yet disjoint visibility regions between two 
nodes

– dashed arcs
• overlapping visibility regions between two nodes



SCG operations

• Three operations:
– Construction
– Expansion
– Contraction



SCG construction
• Construct an EAG from the set of geometric 

entities
– each node of EAG has set of visible desired 

entities and visibility constraints
• Define objective function for each node
• Define sensor constraints G for each node
• Choose arbitrary initial camera pose I
• Link all nodes with solid arcs



Example: SCG construction

{e1,e2}
V2

{e3,e2}
V3

{e4}
V1

EAG
{e1,e2}

G2={V2,V2’},
O2,I2

{e3,e2}
G3={V3,V3’},

O3,I3

{e4} 
G1={V1,V1’},

O1,I1

SCG



Passing Optimizations

• Stored in SLIST
• Node of SLIST defined as S={F,E,O}

– F camera pose
– O objective function
– E set of entities

• SLIST = ∪S



Similar Settings

• Nodes that have identical entity sets
• Are combined into new setting So such that

– Eo is set of entities
– Oo is objective function
– Fo is the camera pose that results in smallest 

MSE
• Similar settings are replaced by So in the 

SLIST



Failing Optimizations

• There exist a set of passing entities and 
failing entities after an optimization

• Resolved using expansion and contraction 
operations



SCG expansion

• Creates subnodes 
– Desired entity set is a subset of original node
– MSE function is defined in terms of such subset
– Sensor constraints are also defined in terms of 

such subsets
– Visibility constraints are the same as its original 

node  ??



SCG expansion

• For multiple subnodes, the union of the 
desired entity set must be the same as the 
original nodes’ entity set

• All subnodes are connected by dashed arcs

1

2
3

SCG Expanded SCG
1

2
3a

3b



Subnode strategies

• Two types of failing optimizations
– passing entities and failing entities in the set
– only failing entities in the set

• Five strategies to handle these cases
– Strategy 1: Pass/Fail
– Strategy 2: One less
– Strategy 3: Singleton
– Strategy 4: Similar node with one less
– Strategy 5: Similar node with singleton



SCG contraction
• Creates supernodes

– Two or more similar nodes are contracted
– Supernode has the same entity set as original 

nodes
– Same objective function function 
– Same sensor constraints 
– Visibility constraints are the union of the 

visibility constraints of original nodes 
– Initial camera pose that results in Min(MSE)



SCG contraction

• Neighboring nodes keep same relation with 
respect to supernode

• Example: contracting node 1 and 3b

Contracting SCG

1-3b

2
3a

Original SCG
1

2
3a

3b



New concepts
• Definition

– Mergeable nodes: two nodes are mergeable if 
their viewing regions are mergeable

– Mergeable viewing regions: two viewing 
regions are mergeable if their union is a convex 
viewing region



Conservative contraction

e0

P1

N0

N0 e0 N3 e0

Join nodes with a curly 
arc to identify 
unmergeable nodesP3

N3



Prioritizing nodes

• Prioritize nodes toward greater cardinality 
in entity sets to reduce number of 
optimizations

• Unprocessed nodes are included in priority 
queue known as NLIST



Prioritizing nodes

•Find similar node with E#
•combine into supernode No
•replace similar nodes with No
•sort NLIST
•N’ = first(NLIST)

Perform Optimization 
on N’

•Create subnodes
•Append NLIST
•Sort NLIST

Determine
plan

done

1
yes

no

no

yes

no

NLIST = rest(NLIST)NLIST = rest(NLIST)Priority = 0

Priority = #E(N’)
NLIST empty?

N’ = first(NLIST)

Passing
optimization? yes

Save setting 
in SLIST

#E(N’) < priority?

1
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Determining final camera poses

• An integer program is used to the determine 
the final set S



Integer Programming
Input
Let
p be the  number of camera poses in SLIST
xi = 1 if ith camera pose Si is part of inspection plan for i=1 to p
aij = 1 if entity Ej is in setting SI
n be the total number of desired entities
F(x) be a optimality function 

Output
An optimal inspection plan x that indicates the set of cameras that minimize the objective function F(x)

Algorithm
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Comparison with related work
• This work vs. Crosby, Yang

– based on VIPER, SCG, and EAG concepts
– completes formulation of EAG by defining algorithm to 

determine the union of viewing volumes
– uses different error model since 3D measurements can’t 

be done using a single image
– uses stereo camera setup to perform 3D measurements



Comparison with related work
• This work vs. Mason, Olague

– Follows the philosophy of Mason and Olague of using more than 
one camera to perform accurate measurements

– Visibility calculations use viewing sphere and search is done using 
heuristics (Mason) and genetic algorithms (Olague) vs. Aspect 
Graph and nonlinear programming (This Work)

– Mason uses predefined networks originally specified by expert
photogrammetrists and updates them to satisfy new requirements. 
Olague generates poses using genetic algorithms.  Both systems 
handle more than 2 cameras. Usually 4 or more.

– This work only deals with stereo



Comparison with related work

• This work vs. Tarabanis
– Uses the same sensor constraints and adds Room Size, 

Incidence Angle constraints from Mason’s work
• EAG, AG, Union of Viewing Volumes

– Stewman’s Aspect Graph code
– modified Yang’s Entity-Based Aspect Graph algorithm 

and incorporated Bemporad’s Union of Polyhedra
algorithm

• only 2 cams



Comparison with related work

• Limits of current implementation
– No illumination planning is done
– Only two cameras are used
– Only edges are measured
– Only polyhedral objects are used
– Optimal solution depends on initial feasible pose
– It was shown that searching the viewing space is a NP complete 

problem [Mason] (using heuristics is the sensible way of achieving 
a suboptimal solution) <-- we don’t do this

– Using only two image points to estimate 3D position doesn’t give a 
statistically significant number of observations, therefore the LSE 
estimates may be inaccurate [Mason] <-- That’s why 
photogrammetrists use at least 4 cameras!



Outline
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• Plan for Work



Plan of work

• Incorporate new error model into the 
framework

• Run simulations to verify it
• Run real experiments
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