
1

Ontological Resolution and
Object-Oriented Software

Frameworks
(part the third)

2

Knowledge

Interrogative Theory of Knowledge
• Data

– symbols and tokens
• Information

– Who? What? When? Where?
• Knowledge

– How?
• Understanding

– Why?

D/I/K is per Quigley and Debons
U is per Ackoff

I is gathered passively by a society of sensors
K is produced by reasoning about {K U I*} (also called procedural knowledge)
K is of higher utility than I since the # of problems that can be solved by K is
greater than I.
U is of higher utility than K as the number of problems that can be solved by U is
greater than K.

3

Software as K Representation

Objects shelved in persistent storage (OODB)
record experience.

Classes abstract instances and allow reasoning
to be done on sets rather than singletons.

Programs (digraphs of classes, objects, and
operations) encode procedural knowledge.

This is information.

This is the first step of knowledge.

This is procedural knowledge.

4

Software as K Representation

Interrelated sets of classes and global objects
that are specific to some domain or task are
called frameworks

Frameworks embody the utility of a software
development system.

Ie. OO-Prolog and Smalltalk as a language are
almost completely syntax and no
semantics.

5

Software as K Representation

The semantics of these (and other) languages
are relegated to object-oriented frameworks.

Object-Oriented software is essentially frame-
based logic.

• Frames have attributes and operations
• Frames are related by generalization, and
aggregation.

6

Software as K Representation
-name
-dob
-sex

Person

-sid
-courses

Student
-empid
-address

Staff

-courses
Faculty

-street
-city
-state
-zip

USAddress

Address

1

* UML is a network of
frames that describe
object-oriented
software.

7

Software as an Asset

Modern enterprises typically have a vast
amount of resources allocated to software
maintenance and development.

We would like to share software as knowledge,
to lower the cost of creating maintaining and
encoding new procedural knowledge.

This includes also software extensions and customizations such as workflows,
spreadsheets, simulations, etc.

8

Intuitive Goal of Resolution

Given two agents A1 and A2 that know
ontologies O1 and O2, respectively.

A1 believes some degree of resolution has been
achieved when a class or object known to A2
can be described by O1.

Note that resolution is not commutative! Ie. (O1 ~ O2) != (O2 ~ O1)

9

Intuitive Goal of Resolution

Slightly more formally,

From agent A1’s perspective, some degree of
resolution between O1 and O2 occurs when
some entity y in O2 is equivalent to some
entity x in O1 or some entity b in O2 is
generalized by a in O1.

10

eog Relations

Intuitively we understand resolution in terms of
of equivalence or generalization (eog).

Ontological resolution will operate on the
subgraphs of O1 and O2 induced by the
generalization relation

In both O1 and O2 generalization relations will
be replaced by eog relations.

Ontological is in bold, because the outer (ontological) resolution will require an
inner (entity) resolution that will be discussed later.

11

Goal of Resolution

Graphically, an object-oriented class hierarchy
(frame logic network) is a directed forest of k
components

Given two disjoint ontologies, O1 and O2, with k1
and k2 components, respectively…

Resolution (O3 = O1~O2) is achieved when
k3 < (k1 + k2).

I’m using the tilde for the resolution operator.

12

Complete Resolution

O3 is the complete resolution of O1 and O2 if for
all frames a∈V(O1), there exists some eog
path r→…→a where r∈V(O2)

Every abstraction in O1

can be realized in O2

Here we have ontologies O1 (red) and O2 (blue) and we can show that B is eog to
G. Thus, every entity in O1 can be realized in O2.

13

Partial Resolution

O3 is the partial resolution of O1 and O2 if there
exists frames {a1…an}∈V(O1), such that
there exists some eog path r→…→ ai,
r∈V(O2) and n<|V(O1)|

Here A in O1 can be
realized as D, E, F,
or G in O2 but B
cannot be realized in
O2.

Here B cannot be shown to eog any entity in O2. Thus from A1’s persepctive, O1 is
not completely resolvable with O2.

14

Null Resolution

O3 is the null resolution of O1 and O2 if there
does not exist a∈ V(O1), such that there
exists some eog path r→…→ai, r∈V(O2)

From A1’s perspective
no resolution is
achieved between O1

and O2

15

Inner Resolution

So far, all that has been shown is that two
ontologies can be (outer) resolved if eog
relations exist between entities x in O1 and y
in O2.

Inner resolution is needed to find eog relations
between two entities in disjoint ontologies.

How does one know if an eog relation exists
between two entities?

16

Inner Resolution

To demonstrate that class (X eog Y), we must
define a mapping m from the attributes of Y
onto the attributes of X.

Then, defining Y by extension, Y is the set of all
instances {y1…yn}.

(X eogm Y) iff there is no yi with attribute ak
that violates the mjk constraint on the jth
attribute of X.

17

Attribute Constraints

As an abstraction, a class covers objects that
possess not only similar properties, but also
similar constraints on those properties.

Such constraints can be formally defined with
types and sets:

18

Attribute Constraints

type
TAge = 0..200; { A little optimistic }
TCity = (Tucson, Phoenix, Yuma);
Person = class(Tobject)

name:string;
age:TAge;
city:TCity;

end;
end;

This code fragment in Object Pascal (Delphi) – which has *excellent* type features
illustrates that there is a class Person and the attributes of person are constrained to
the range 0 to 200 for the age attribute and to an element the set of cities Tcity for
the attribute city.

19

Example
type
TMaturityRange = 0..150;
TWeightRange = 1..600;
Patient = class

first:string;
last:string;
maturity:TMaturityRange;
weight:TWeightRange;
address:string;

end;
end;

20

Example
m1 = {Person.age = Patient.weight}
m2 = {Person.age = Patient.maturity}

Given two instances of Patient

y1 = {age: 24, weight: 180}
y2 = {age: 41, weight: 412}

(y2 m1 X) violates the TAge constraint on
Person. For m2 there is no yi that violates
any constraints on Person.

This isn’t entirely true, because the mapping functions m1 and m2 are not complete
mappings from Y onto X…but for purpose of illustration, hopefully this works.

21

Inner Resolution

Note that a valid eog mapping must be onto X.

A mapping m must define a relationship for
every attribute of X, but not necessarily a
relationship for every attribute of Y.

This mapping can be many to one, but not one
to many.

(Y must contain at least as much information as X.)

That is attributes Y.a1 and Y.a2 can map onto X.a1, but *not* Y.a1 maps onto X.a1
and X.a2

22

Implicit Semantic Constraints
If ontolgies O1 and O2 share some primitive sets

(ie, the ordinal integers), proof techniques
could be used to construct what would
appear to be a valid mapping.

Beyond the formal constraints, there are often
implied semantic constraints.

For a mapping to be correct, these constraints
must be honored as much as the formal
constraints.

23

Implicit Semantic Constraints
Consider as a counter example attributes
X.age and Y.height

If Y.height is measured in inches, the range of
X.age would subsume Y.height

Thus a mapping could be constructed
X.age=Y.height yet such a mapping would
not honor the implied semantics of age and
height.

24

More Problems
There may exist several range and set

consistent mappings from Y onto X.

Which of these is the correct mapping?

The ubiquitous use of INTEGER for quantitative data.

25

More Problems
Many class definitions are not decomposed into

ranges and sets, making formal analysis
difficult.

Furthermore, enumerating some qualitative
attributes may be theoretically possible, but
impractical.

The ubiquitous use of INTEGER for quantitative data.

26

More Problems
Consider an attribute name, which is

constrained to be the name of some living
person.

A set of the names of all living people could be
theoretically be constructed, but is it feasible?

27

Mapping by Experiments
It is not likely that real-world class definitions

will be fully resolvable by constructing
mappings that are logically consistent with
explicit type constraints.

In the method of sketch-interpret, we can
construct interpreters with domain specific
knowledge to gather evidence for fuzzy
reasoning. (ie, BBN, DS, etc)

28

Mapping by Experiments
Examples:
• Domain specific thesaurus to look for

common terms in strings

• Analysis of variance on quantitative attributes
of a large set of candidate instances

• Exploiting common objects, including global
objects and co-occurrences in OODB.

Ie. A thesaurus that relates “video” to “graphics”

If we have two attributes X.height and Y.altitude, we may conclude that these are
equivalent if we have sufficient samples to construct statistical measurements.

An example of this might be linking x in A1’s OODB to y in A2’s OODB if x.ssn =
y.ssn (and we have already shown that x.ssn and y.ssn are eog) then, from that we
can assist in resolving the remaining mappings.

29

Strategies for Outer Resolution

Outer resolution requires as much as
V(O1)•V(O2) inner resolution attempts.

Each inner resolution attempt may have to
explore as many as m(n+1) mappings, where
m is the number of (flattened) attributes of Y
and n is the number of attributes of X.

A strategy to minimize computation would be
advantageous.

The +1 is for the possible NULL mapping that is assigned to attributes of Y that
have no semantic equivalent in X.

I don’t envision the resolution process as occurring in “real” time.

30

Strategies for Outer Resolution

A good strategy for resolution would minimize
the n attributes in each resolution attempt.

A good strategy would also try to resolve
classes that are deep in the hierarchy since
all the classes above them are resolved as a
corollary.

31

Outline of a Good Strategy

With both generalization and aggregation links
considered, reverse topologically sort O1 into
a queue q.

While q is not empty
1. remove entity X from q
2. resolve X with O2
3. on failure remove all entities in q that

have aggregation relations with X.
4. on success preserve mapping

The ordering is then deepest to shallowest.

32

Outline of a Good Strategy

When resolving X with O2, start at leaves of O2
then work up, stopping on failure.

If no resolution was done, then X fails
completely, if at least one resolution was
successful, then X was resolved and the
resolution returns success.

The ordering is then deepest to shallowest.

33

Contributions

• Defined ontological resolution as applied to
object-oriented software hierarchies.

• Identified pitfalls of reasoning about formal
types when the class contains implicit
semantic constraints.

• Suggested methods for fuzzy constructing
fuzzy mappings

• Outlined a strategy to guide the resolution
process, optimizing for computational
efficiency.

My methods quite handily skipped the whole bit about operations.

34

Conclusions

Object-Oriented software is a vessel of
procedural knowledge

Object-Oriented databases store information.

Integrating software frameworks has significant
utility

Software frameworks are amenable to
ontological resolution

35

Future Work

Improve resolution methodology to include
inference about operational similarity.

Continue exploring contributions from…
• Database schema integration
• Programming by example
• Program equivalence

