
Software Reuse

Haiyan Qiao
ECE Dept.
University of Arizona

What is software reuse? Why?

Software reuse is the process of using
existing software artifacts rather than
building them from scratch.
The primary purpose is to reduce the time
and effort required to build software
systems. The quality is also enhanced.

History of Software

First Generation: 1950’s To have a flawless program a programmer needed
to have a very detailed knowledge of the computer where he or she worked on. A small mistake
caused the computer to crash.

Second Generation: These generation made use of symbols and are
called assemblers. But an assembler still works on a very low level with the machine. For each
processor a different assembler was written.

Third Generation: At the end of the 1950's the 'natural language'
interpreters and compilers were made.

Forth Generation: A 4GL is an aid witch the end user or programmer can
use to build an application without using a third generation programming language. Therefore
knowledge of a programming language is strictly spoken not needed. In the 1990's the
expectations of a 4GL language are too high. And the use of it only will be picked up by Oracle
and SUN that have enough power to pull it through.

Why is software reuse difficult?

Software reuse involves Selection,
specialization, and integration of artifacts.
It implies a higher level of abstraction that
describes the artifacts in terms of what
they do instead of how they do it.
Useful abstractions for large, complex,
reusable software artifacts will be
complex.

Difficulties in practice

For a effective software reuse technique, it must
reduce the cognitive distance between the initial
concept of a system and its final executable
implementation.
It must be easier to reuse the artifacts than it is
to develop the software from scratch.
It will be found faster than to be built.
Open Area: high-level abstractions for software
artifacts.

Storage and retrieval of reusable
assets

Retrieval depends on matching a candidate asset
against a user query, the representation of both the
query and the asset is an important consideration.
Queries can be represented in different ways:

Natural language and templates
List of key words
Sample input/output
Input/output signature or functional description
Design or program patterns (for structural methods)

Two distinct goals of asset retrieval: exact retrieval,
approximate retrieval

Attributes of a software library
Nature of asset:

source code, exe code, requirements specification, design descsription,
test data, documentation, proof

Scope of library: within a proejct, a organization or larger scale
Query representation

Functional specification, signature specification, keyword list, design
pattern, behavior sample

Asset representation
Functional specification, signature specification, source code,
executable code, requirements documentation, keywords

Storage structure
Flat structure, hypertext links, refinement ordering, ordering by
genericity

Attributes of a software library
Navigation schema

Exhaustive linear scan, navigating hypertext links, navigating
refinement relations.

Retrieval Goal
Correctness, functional proximity, structural proximity

Relevance criterion
Correctness, signature matching, minimizing functional distance,
minimizing structural distance

Matching criterion
Correctness formula, signature identity, signature refinement,
equality/subsumption of keywords, natural language analysis,
pattern recognition.

Storage/Retrieval Methods

Information Retrieval Methods
A specialized form of information storage and
retrieval.
Restriction: scope, retrieval goal

Descriptive Methods
Match a keyword-based query against assets that are
presented by (structured) list of descriptive keywords.
Restriction: scope, gap between relevance and
matching criterion

Storage/Retrieval Methods

Operational semantics methods
Software has discriminating feature: executable.
Selection by excitability.
Queries take the form of an interface specification: a
sample of input data.

Denotational semantics methods
Function matching.
Restriction: signature matching doesn’t ensure
correctness. Relevance criterion?

Storage/Retrieval Methods

Topological methods
Identify the library assets that come closest to
providing the features described in the query
Functional distance, structural distance
Query representation: not uniform

Structural methods
Select candidate on basis of structure, instead of
function properties.
The intent is to use retrieved components after
modification.

Related Work

APU – Automated Programmerfor Unix
It uses top-down decomposition of problems,
employing a hierarchical planner and a layered
knowledge base rules, derivational analogy.

AUTOBAYES - a fully automatic program
synthesis system for statistical data analysis
domain. Input/output
Specification level test

Alloy: a first-order relational language. –TestEra
UMLTest tool
Z specification

References
Software Reuse, Charles W. Krueger, ACM Computing
Surveys, Vol.24, No.2, June 1992
A Survey of Software Reuse Libraries, A.Mili, R.Mili, R.T.
Mittermeir, Annals of Software Engineering 5(1998) 349-
414
Synthesis of Unix Programs using Derivational Analogy,
Sanjay Bhansali, Mehdi T. Harandi, Journal of Machine
Learning, Vol10, 7-55, 1993
Hierarchical Case-Based Reasoning Integrating Case-
Based and Decompositional Problem-Solving
Techniques for Plant-Control Software Design, Barry
Smyth, Mark T. Keane, Padraig Cunningham, IEEE
Transactions o Knowledge and Data Engineering, Vol
13, No 5, September/October 2001

Reference cont’
Automated Deduction -A Basis for Applications, Volume III
Applications, Chapter 5 Program Synthesis, Chapter 6 Termination
Analysis for Functional Programs, Wolfgang Bibel and Peter H.
Schmitt, Kluwer Academic Publicashers, 1998
The proceedings of IEEE international conference on ASE (formerly
the Knowledge Based Software Engineering Conference) On-line
Bibliography

http://ase.informatik.uni-essen.de/olbib/index.html
Automated Software Engineering Group, NASA Ames Research
Center

http://ase.arc.nasa.gov/
Z specification language

http://www.rbjones.com/rbjpub/cs/csfm03.htm

http://ase.informatik.uni-essen.de/olbib/index.html
http://ase.informatik.uni-essen.de/olbib/index.html
http://ase.arc.nasa.gov/
http://www.rbjones.com/rbjpub/cs/csfm03.htm
http://www.rbjones.com/rbjpub/cs/csfm03.htm

	Software Reuse
	What is software reuse? Why?
	History of Software
	Why is software reuse difficult?
	Difficulties in practice
	Storage and retrieval of reusable assets
	Attributes of a software library
	Attributes of a software library
	Storage/Retrieval Methods
	Storage/Retrieval Methods
	Storage/Retrieval Methods
	Related Work
	References
	Reference cont’

