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Motivation
• Retrieval of similarly shaped components can:

– Add functionality to existing CAD databases
– allow for the reuse of process plans which can both speed up and reduce 

the cost of development.

Challenges
• Retrieval of similarly shaped components has many 

challenges:
– Multiple interpretations
– Interacting features
– Topological differences do not guarantee component dissimilarity
– Graph matching solution is computationally intensive



System Overview

Query Evaluator

Feature 
Extractor

Query Relaxation

Component Database

Geometric Modeler

Block Handler

Query In

B-Rep
User Interface Query Answer

Spatial Logic

Spatial Logic



Query Evaluator

User InterfaceQuery In

B-Rep

Feature 
Extractor

Query Relaxation

Component Database

Geometric Modeler

Query Answer

Block Handler

Spatial Logic

Spatial Logic

Spatial Logic



Goals of Spatial Logic

• Development of a Usable Logic for Problem of
Machinable part Shape Similarity
– Characterize feature-feature interactions
– Reasoning about interactions

• Determining new interactions from existing information
• Dynamically modify interaction for relaxation
• Use of Characterizations for clustering 



Related Work

• Volumetric Reasoning
– Lee, Scott, Williams, and Cox

• Spatial Reasoning using Region Connection Calculus
– Randell, Cui, Cohn
– Bennett
– Renz Nebel



Volumetric Reasoning

• Defines volumes as a set of internal points unioned
with a set of boundary points
– Pi(V)∩Pb(V)
– Positive volumes have solid (exisiting) internal and boundary 

points
– Negative Volumes have nonsolid (removed) internal points

• Absolute Volume (||V||) refers to a volume regardless 
of type

• An inverse is defined which compares positive and 
negative volumes inv(V)



Volumetric Reasoning

• Defines three Volumetric Relations
– Inclusion of Volumes

• V2 is included in V1 if same type or included in inv(V) if 
inverses

• V1 ⊗ V2
– Interpenetration of Volumes

• V1 and V2 have some volumetric overlap
• V1 ⊕ V2  ≡ ∃V ((V1 ⊗ V)∧(V2 ⊗ V1))

– Adjacency of Volumes
• V1 and V2 are adjacent if and only if the interpenetration of the 

volumes is a single plane
• V1 O V2  ≡ p∈V, p ∈Pb(V1), p ∈ Pb(V2)

• Similar Definitions defined for Topological Relations



Volumetric Reasoning

• Uses defined Topological Relations to reason about 
volume removal in machined parts.

• Determines three types of relationships between 
features:
– Inclusion
– Interpenetration
– Inclusion (Ownership)

• Useful when using the complete graph of a part.
– Maximal Feature Interaction reasoning requires a richer 

relationship base.



Spatial Reasoning

• Defines basic relation C(x,y)
– X connects with y

• Other Relations based on this
– Disconnected DC(x,y) = ¬C(x,y)
– Part of P(x,y) = ∀z[C(z,x)→C(z,y)]
– Proper Part of PP(x,y) = P(x,y)∧ ¬P(y,x)
– Overlaps O(x,y) = ∃z[P(z,x) ∧P(z,y)]
– Partial Overlap PO(x,y) = O(x,y) ∧ ¬P(x,y) ∧ ¬P(y,x)
– Discrete from DR(x,y) = ¬O(x,y)
– Tangential PP TPP(x,y) = PP(x,y) ∧∃z[EC(z,x) ∧EC(z,y)]
– Edge Connected EC(x,y) = C(x,y) ∧¬O(x,y)
– Non-TPP NTPP(x,y) = PP(x,y) ∧ ¬ ∃z[EC(z,x) ∧EC(z,y)]



Spatial Reasoning

• Boolean Operators are also defined:
– Sum of the two regions sum(x,y)
– The Universal Spatial Region us
– Complement of a region compl(x)
– Intersection of two regions prod(x,y)
– Difference of two regions diff(x,y)

• Other Relationships Introduced:
– A connected one-piece region CON(x)
– Convex region CONV(x)
– A region is inside the convex hull of another INSIDE(x,y)
– Part of a region is inside the convex hull of P-INSIDE(x,y)
– A region is outside the convex hull of another OUTSIDE(x,y)



Spatial Reasoning

• An inferencing table is developed to estimate the 
interaction between two regions given their 
interactions with a third region

• Continuity Constraints are added to show how 
regions go from one relation to another

• Directional relations mentioned but not implemented
• Bennett extended the original work by tansforming

the first order logic to a propositional logic
• Renz and Nebel extended the original work by adding 

a Modal Logic implementation



Logic for current Work

• Based on three dimensional ortho-normal features
• All features represent a volume (no lines, planes, or 

points)
• 3-D logic built up from 1-D information
• Qualitative reasoning supported
• All features bounded by 6 faces
• Maximal Feature Considerations
• Interactions are directed

– Feature order matters
– Determined in both directions for current uses



Fundamental Definitions

• Bottom = Lowest Y Value
• Top = Highest Y Value
• Left = Lowest X Value
• Right = Highest X Value
• Front = Lowest Z Value
• Back = Highest Z Value
• A feature can be considered two sets of faces {L,H}

– L = ∀Fa ∃F(((Fa = Bottom)∨(Fa = Left) ∨(Fa = Front)))
– H = ∀Fa∃F(((Fa = Top)∨(Fa = Right) ∨(Fa = Back)))

Y

X

Z



Fundamental 1-D Comparitors

• Equal
– The two faces are at the same point in the direction of 

interest

• Greater Than
– The face is not on the same half-space of the face being 

compared as the center of the feature

• Less Than
– The face is on the same half-space of the face being 

compared as the center of the feature 



One Dimensional Face Relations

• Define how one face is related to the cross section of 
a feature in one dimension

• Definitions
– FF1 indicates the feature face on the same side of the 

feature as the face being compared (if Fa in L FF1 in L)
– FF2 indicates the feature face on the opposite side of the 

feature as the face being compared (if Fa in L FF2 in H)



One Dimensional Face Relations

• Using the convections and comparators described 
the following Face Relations can be defined:

• Outside Other (OO): (OO) ⇒ (Fa>FF2)
• Same Other (SO): (SO) ⇒ (Fa = FF2)
• Inside Both (IB): (IB) ⇒ (Fa < FF1)∧(Fa > FF2)
• Same Like SL: (SL) ⇒ (Fa = FF1)
• Outside Like (OL): (OL) ⇒ (Fa>FF1)



One Dimensional Interactions
• Combining the face relation knowledge for the parallel faces of a 

feature defines the one dimensional interaction
• Results in 25 (5x5) potenial 1D interactions
• All combinations not physically meaningful

– 13 Physically Possible
– 8 unique phisically meaningful combinations
– 1 of these is disconnected

NOL

XXSL

XXIB

XXXXSO

NXXXXOO

OLSLIBSOOOValue



One Dimensional Interactions

• There are 8 Physical Configurations that can exist
• Disconnected (D):

– D ⇒ ∃ OO
• Edge Connected (EC):

– EC ⇒ ∃ SO
• Partial Overlap (PO):

– PO ⇒ ((Fa1 OL) ∧ (Fa2 IB)) ∨ ((Fa1 IB) ∧ (Fa2 OL))
• Edge Connected Sub Part (ECB)

– ECB ⇒((Fa1 SL) ∧ (Fa2 IB)) ∨ ((Fa1 IB) ∧ (Fa2 SL))
• Equal (Eq)

– EQ ⇒ (Fa1 SL) ∧ (Fa2 SL)
• Super Part (SP)

– SP ⇒((Fa1 OL) ∧ (Fa2 OL)) ∨ ((Fa1 OL) ∧ (Fa2 OL))
• Edge Connected Super Part (ECP)

– ECP ⇒((Fa1 SL) ∧ (Fa2 OL)) ∨ ((Fa1 OL) ∧ (Fa2 SL))
• Sub Part (BP)

– BP ⇒ (Fa1 IB) ∧ (Fa2 IB)



Qualitative Interaction Families

• Determined by the one-dimensional interactions
• Used as a clustering method for determining similarity

Pass-ThroughIntrusionImproperFaceNOL

IntrusionNon-determiningNon-determiningXXSL

ImproperNon-determiningNon-determiningXXIB

FaceXXXXSO

NXXXXOO

OLSLIBSOOOValue



Three Dimensional Interactions

• The three dimensional interactions between features 
are defined by the combination of the three one-
dimensional interactions.

• Using maximal features limits the combinations that 
can exist.

• Allows the three-dimensional interaction to be 
qualitatively identified.



Three Dimensional Interactions

• Combining the three One-D Interactions (7 interacting 
combinations) results in (7x7x7) 343 3-dimensional 
interactions.

• From a qualitative perspective many of these are not 
unique. Results in 84 unique combinations of 3 1D 
Relationships



Three Dimensional Interactions

• Use of Maximal Features further reduces acceptable 
combinations
– There cannot be more than 2 from the set {SP, ECB, EQ} in 

any interaction
– There cannot be more than one EC in an interaction
– If 2 from {SP, ECB, EQ} then the third must be in the set {E, 

SP}
– There must be at least one from {SP, ECB, PO}
– There must be at least one from {PO, ECP, SP}
– There cannot be more than one EQ in an interaction
– If any dimension is disconnected the features are 

disconnected.
– If 2 from {EQ, ECP, SP} then third must be from {SP, ECB}



Three Dimensional Interactions

• There cannot be more than 2 from the set {SP, ECB, 
EQ} in any interaction
– All of these are inside the feature area therefor the third must 

be outside

• There cannot be more than one EC in an interaction
– More than one results in an edge or vertex interaction

• If 2 from {SP, ECB, EQ} then the third must be in the 
set {E, SP}
– Since 2 are inside the third must be outside

• There must be at least one from {SP, ECB, PO}
– At least one face must be outside or the feature is subsumed



Three Dimensional Interactions

• There must be at least one from {PO, ECP, SP}
– There must be at least one face inside or the feature is 

subsuming (complement of previous rule)

• There cannot be more than one EQ in an interaction
– Two EQ results in the same 2D Cross section therefore the 

two features create one maximal-volume

• If any dimension is disconnected the features are 
disconnected.
– If any one dimension does not interact than the others are 

not in the same space as the feature of interest

• If 2 from {EQ, ECP, SP} then third must be from {SP, 
ECB
– Since 2 are outside third must be inside 



Three Dimensional Interactions

• The Maximal Feature Constraints reduce the total 
from 84 down to 36 unique 3D directional interactions

• These are the Cannonical interactions and there 
inverses

• Total reduction of potential 3-D Interactions = 307
– 259 for redundant qualitative interactions
– 48 for Maximal Feature Constraints

• Include 23 Interactions on next slide with their 
inverses



Show All Interactions Here



Reasoning with Spatial Logic

• Determining New Iteractions from Existing ones
– Requires use of Face-Pair information for better resolution 

since qualitative 1D interactions lose direction information
– Uses Transitive Properties of Face relations 

Value 03 11 12 13 21 22 23 30 31 32 33
03 2y N 30 3y N 30 3y N N 30 3y
11 N xx x3 x3 3x 33 33 N 3x 33 33
12 03 yz y2 y3 3z 32 33 N 3z 32 33
13 1y yz y1 yy 3z 31 3y N 3z 31 3y
21 N zy z3 z3 2y 23 23 30 3y 33 33
22 03 11 12 13 21 22 23 30 31 32 33
23 1y 11 11 1y 21 21 2y 30 31 31 3y
30 N N N N 03 03 03 y2 y3 y3 y3
31 N zy z3 z3 1y 13 13 y1 yy y3 y3
32 03 11 12 13 11 12 13 y1 y1 y2 y3
33 1y 11 11 1y 11 11 1y y1 y1 y1 yy

x – U y – >O z – <S N – no interaction (OO)
0 =SO, 1 = IB, 2 = SL, 3 = OL 



Example 1 of Reasoning

• Given Features a,b and c and I(a,c) and I(b,c) find 
I(b,a)

• I(a,c)= BP = IB,IB, I(b,c) = ECP = SL,OL
• Since maxc < mina < minc and
• minb = minc Implies mina < minb
• Since minc < maxa < maxc and
• maxb > maxc Implies maxa < maxb
• Therefore I(b,a) = OL, OL = SP



Example 2 of Reasoning

• Given Features a,b and c and I(a,c) and I(b,c) find 
I(b,a)

• I(a,c) = ECB = IB,SL, I(b,c) = PO = IB,OL
• Since maxc < mina < minc and
• maxc < minb < minc Can not Tell relation between 

mina and minb
• Since maxa = maxc and maxb < maxc Implies maxa

> maxb
• Know that minb < maxa so minb < maxa < maxb so 

Interaction Exists
• Therefore I(b,a) = {OL, SL, IB}, OL = {SP, ECP, PO}



Example 3 of Reasoning

• Given Features a,b and c and I(a,c) and I(b,c) find I(b,a)
• I(a,c) = BP = IB,IB, I(b,c) = PO = IB,OL
• Since maxc < mina < minc and
• maxc < minb < minc Cannot Tell mina Relation to minb
• Since minc < maxa < maxc and
• maxb > maxc Implies minb < maxa < maxb
• Since minc < maxa < maxc and minc < minb < maxc can not tell 

if the two features interact  However We do know that the 
possibilities are: 
– mina < maxa < minb implies no interaction
– mina < maxa = minb implies Face type interaction
– mina < minb < maxa implies Improper interaction
– mina = minb < maxa Implies Intrusion Interaction
– minb < mina < maxa Implies Passthrough



Relaxation With Spatial Logic

• Relaxation of query part is to be done a face by face 
basis.
– Need to know if face is “relaxable”

• Boundary faces can not be relaxed beyond edge of component
• Can not violate Maximal Feature Constraints 

– Relies on Qualitative Ordering of Interactions (Next Slide)
• Only one face relaxed at a time
• A face can only make one qualitative step at a time



1D Qualitative Ordering of Interactions

• The following Graph shows Ordering of interactions

D EC

ECP

ECB

Comparison of Top and 
Bottom Faces Only SP

PO EQ

BP



Relaxation of Faces

• The boundary faces of a feature define the feature 
type
– Relaxation changes the feature type as well as the 

interaction
– Relaxation of a boundary face can only be into a component

• If a boundary face is made, need to make sure the 
feature is still valid



Qualitative Ordering of Features

• The following Graph shows how relaxation of feature 
boundary faces can change a feature type
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3D Interaction Relaxation
• Combine 1D interactions to generate 3D Graph
• Includes Maximal Feature Constraints
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Face Relaxation Algorithm

• Pick Face
– Determine Candidate Relaxations

• If Boundary then
– Determine relaxable direction
– Determine resulting feature

• Use Interaction Ordering with any boundary constraints
– Check Maximal Feature Constraints
– Return list of relaxed interactions and feature type



Example

• F1 = Step, F2 = Slot, Interaction = PP2a
• PP2a Corresponds to BBF on previous Graph
• If Pick Bottom of Step

– Not a boundary face
– Can Move up or down

• If move Up Next qualitative step removes feature
• Qualitative move down becomes even with bottom of slot

– BBF Changes to BDF = PP3
– Return step, PP3

• If Pick Front of Step
– Boundary face

• Can only move Back
• Qualitative Move Back Changes Feature to a Slot

– BBF Changes to ABF = PP1
– Return Slot, PP1



Example

• F1 = Step, F2 = Slot, Interaction = PP2a
• PP2a Corresponds to BBF on previous Graph
• If Pick Right Side of Step

– Boundary face
• Can only move Left
• Qualitative Move Left Changes Feature to a Blind Step

– BBF Changes to BBE = PI2a
– Return Blind Step, PI-2A



Conclusions

• Spatial Logic Developed for use in both determining 
and characterizing interactions

• Spatial Logic can be used to inference about the 
interactions between features based on their mutual 
interactions with a third feature



Future Work

• Query Relaxation Unit
– Two methods being considered

• Query Evaluation Unit
– Perform graph matching on the candidate matches

• Implement Spatial Logic with Query Relaxation



System Demonstration

• Chandan will demonstrate the system in the lab for 
anyone interested
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