
Autonomic Computing
A Multiagent and Distributed AI perspective

Sumit Chachra

April 2, 2004

Intelligent Systems Laboratory



Presentation Outline
• Introduction

– What is Autonomic Computing ?

– What is an Agent ?

– MAS & DAI

– Why MAS & DAI ?

– Issues in MAS

– Distributed CSP / COP

– Agent Oriented Programming / Environments

• Related Work / Literature Survey

• Solution Approaches

– Resource Allocation
– Sensor Networks

– Distributed Breakout

– Partial Constraint Satisfaction

• Conclusions and Future Work

Intelligent Systems Laboratory Autonomic Computing – 1/34



Introduction - What is Autonomic Computing ?

Phrase coined by Dr. Alan Ganek, Vice President of Autonomic Computing.
According to IBM an Autonomic Computing System:

• needs to “know itself”

• must configure and reconfigure itself under varying conditions

• never settles for the status quo - it always looks for ways to optimize its
workings

• must perform something akin to healing

• must be an expert in self-protection

Intelligent Systems Laboratory Autonomic Computing – 2/34



Contd . . . Introduction - What is Autonomic Computing ?

• must know its environment and the context surrounding its activity, and act
accordingly

• cannot exist in a hermetic environment

• will anticipate the optimized resources needed while keeping its complexity
hidden

Intelligent Systems Laboratory Autonomic Computing – 3/34



Introduction - What is an Agent ?

An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time, in pursuit
of its own agenda and so as to effect what it senses in the future . . . S. Franklin and

A. Graesser, “Is it an agent, or just a program?: A taxonomy for autonomous agents,” in Proceedings of the Third International Workshop

on Agent Theories, Architectures and Language. Springer-Verlag, 1996

An agent is a computational entity such as a software program or a robot
that can be viewed as perceiving and acting upon its environment and that is
autonomous in that its behavior at least partially depends on its own experience
. . . G. Weiss, Ed., Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press, 1999

Intelligent Systems Laboratory Autonomic Computing – 4/34



Contd . . . Introduction - What is an Agent ?

Agents are:

Computational Entities Physically exist in the form of programs that run on
computing devices

Autonomous To some extent they have control over their behavior and can
act without the intervention of humans or other systems.

Interacting They may be effected by other agents or by humans in pursuing
their goals and executing their tasks.

Intelligent Systems Laboratory Autonomic Computing – 5/34



Introduction - MAS & DAI

• MAS stands for Multi-Agent Systems or environments where more than one
agent exists.

• At times the number of agents may be too numerous to deal with them
individually. It is then more convenient to deal with them collectively, as a
society of agents.

• Distributed AI (DAI) is the study, construction and application of multiagent
systems, that is, systems in which several interacting, intelligent agents
pursue some set of goals or perform some set of tasks.

• DAI focuses on coordination:

– Cooperation
– Competition

Intelligent Systems Laboratory Autonomic Computing – 6/34



Introduction - Why MAS & DAI ?

The current computing systems/infrastructure lend themselves well to be
modelled as MAS:

Inherent Distribution - In the sense that data and information to be processed
arise at geographically different locations/times etc. For example computers
in a network/wireless computing devices etc.

Inherent Complexity - Too large tuo be solved by a single agent

Natural View of Intelligent Systems - Intelligence and interaction are deeply
coupled

Speed-up and Efficiency - Agents can operate asynchronously and in
parallel

Intelligent Systems Laboratory Autonomic Computing – 7/34



Contd . . . Introduction - Why MAS & DAI ?

Reliability - Failure of 1 or several agents does not make overall system
useless

Scalability - New agents can be added or removed easily

Costs - More cost effective than a centralised system

Intelligent Systems Laboratory Autonomic Computing – 8/34



Introduction - Issues in MAS

• How to enable agents to decompose their goals and tasks, allocate sub-
goals and sub-tasks to other agents, and to synthesize partial results and
solutions

• How to enable agents to negotiate and contract, and which protocols should
they use

• How to reconcile disparate viewpoints and conflicts and synthesize views
and results

• How to enable agents to form and dissolve organizational structures –
teams, alliances etc.

• How to enable agents to reason and represent other agents

• How to enable them to find out whether they have achieved progress in their
coordination efforts

Intelligent Systems Laboratory Autonomic Computing – 9/34



Introduction - Distributed CSP / COP

• A distributed CSP is a CSP in which variables and constraints are distributed
among autonomous agents.

• Each variable xj belongs to one agent i, represented as belongs(xj, i).

• Constraints are also distributed among agents, and the fact that an agent l
knows a constraint predicate pk is represented as known(pk, l).

• We say that a distributed CSP is solved iff the following conditions are
satisfied:

- ∀i, ∀xj where belongs(xj, i), the value of xj is assigned to dj, and ∀l,∀pk

where known(pk, l), pk is true under the assignment xj = dj.

Intelligent Systems Laboratory Autonomic Computing – 10/34



Contd . . . Introduction - Distributed CSP / COP

Intelligent Systems Laboratory Autonomic Computing – 11/34



Introduction - Agent Oriented Programming /
Environments

The Foundation for Intelligent Physical Agents (FIPA) is an international
standards body working for interoperability between agents and agent
platforms, has defined specifications for agents, agent management services
and agent communication languages. There are a number of environments
available for programming agent-based software:

ABLE - Better known as the Agent Based Learning Environment. Developed
by IBM, this is a toolkit for building multiagent autonomic systems. Easy
to build hybrid intelligent agents which draw on the strengths of each
technology while compensating for any weaknesses.

JADE - The Java Agent Development framework is another FIPA-compliant
multiagent toolkit

ZEUS, FIPA-OS, JatLite and AgentBuilder are a few others.

Intelligent Systems Laboratory Autonomic Computing – 12/34



Presentation Outline
• Introduction

– What is Autonomic Computing ?

– What is an Agent ?

– MAS & DAI

– Why MAS & DAI ?

– Issues in MAS

– Distributed CSP / COP

– Agent Oriented Programming / Environments

• Related Work / Literature Survey

• Solution Approaches

– Resource Allocation
– Sensor Networks

– Distributed Breakout

– Partial Constraint Satisfaction

• Conclusions and Future Work

Intelligent Systems Laboratory Autonomic Computing – 13/34



Related Work / Literature Survey

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE Computer, pp.
41–50, Jan. 2003

The authors envisage that pervasive computing will become a nightmare
given the constant increase in complexity and interconnectivity of systems,
hence systems need to be made autonomic and be able to make decisions
on their own, eliminating the human from the loop.

Some challenges which have been outlined:

• Machine learning in MAS environments not well studied

• Standardization of directory services, expression of system capabilities etc.

• Understanding of how business level policies/goals effect lower level
performance and vice-versa

• Development of negotiation mechanisms

Intelligent Systems Laboratory Autonomic Computing – 14/34



Contd . . . J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE
Computer, pp. 41–50, Jan. 2003

Intelligent Systems Laboratory Autonomic Computing – 15/34



Related Work / Literature Survey

N. R. Jenning, “On agent-based software engineering,” Artificial Intelligence, vol. 117, pp.
277–296, 2000

A qualitative analysis of the merits and demerits of agent-based software
engineering and its comparison with the current object oriented paradigm.

Two central arguments of this paper can be expressed as:

The Adequacy Hypothesis - Agent oriented approaches can enhance
modelling/design capabilities of making complex and distributed software
systems.

The Establishment Hypothesis - This approach will succeed as a main
stream software engineering paradigm.

Intelligent Systems Laboratory Autonomic Computing – 16/34



Related Work / Literature Survey

D. D. Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt, “The evolution of the grid,”
Grid computing: making the global infrastructure a reality, Wiley, pp. 65–100, 2003

The approach to computing, using geographically distributed resources
for parallel and distributed applications has several names - metacomputing,
scalable computing, global computing, internet computing and lately as grid
computing. The evolution has been divided into three generations:

First Generation Characterised by projects such as FAFNER and I-WAY. Basically task-
farmed a large number of fine-grain computations or connected existed high bandwidth
networks.

Second Generation Represented the development of middleware, software infrastructure
and toolkits. Key grid technologies such as CORBA, Jini & RMI, peer-to-peer computing
etc. emerged.

Third Generation There is a strong sense of automation in the third generation systems, for
eg. when humans can no longer deal with the scale and heterogeneity, but delegate to
processes to do so. Configuration and repair cannot remain manual tasks.

Intelligent Systems Laboratory Autonomic Computing – 17/34



Related Work / Literature Survey

J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings, “Engineering executable agents
using multi-context systems,” Journal of Logic and Computation, vol. 12, no. 3, pp. 413–442,
2002

They introduce three new ideas over previous work on advantages of multi-
context systems:

• grouping of contexts together into modules, giving another level of abstraction

• idea of bridge rules which delete formulae from certain contexts (as opposes to just
introducing them), which allows the modelling of consumable resources.

• time delay in the execution of bridge rules in order to allow inter-context synchronization.

Work gains importance since it allows different agents to follow different
logics as long as there exists a common one for communication. This can
easily be extended and understood in the real world domain, where each
company/server/software follows its own particular logic.

Intelligent Systems Laboratory Autonomic Computing – 18/34



Contd . . . J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings, “Engineering executable
agents using multi-context systems,” Journal of Logic and Computation, vol. 12, no. 3, pp.
413–442, 2002

Bridge rules can be
understood as rules of
inference with premises
and conclusions in different
units. For instance:

u1 : Ψ, u2 : ϕ

u3 : Θ
(1)

u1 > Ψ, u2 : ϕ

u3 : Θ
(2)

Intelligent Systems Laboratory Autonomic Computing – 19/34



Related Work / Literature Survey
M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed constraint

satisfaction problem: Formalization and Algorithms,” IEEE Transactions on Knowledge and
Data Engineering, vol. 10, no. 5, September/October 1998

General assumptions:
• Each agent has exactly one variable

• All constraints are binary

• Each agent knows all constraint predicates relevant to its variables

This work is focussed on discussing 2 algorithms for solving DCSP
problems:

Asynchronous Backtracking Allows agents to run concurrently and asynchronously.
Directed constraint graph which decides the flow of messages.

Asynchronous Weak-Commitment Search Uses the min-conflict heuristic
as a value ordering heuristic. Abandons partial solutions and restarts search
process if it is a nogood.

Intelligent Systems Laboratory Autonomic Computing – 20/34



Related Work / Literature Survey

P. Scerri, J. Modi, W. Shen, and M. Tambe, “Are multiagent algorithms relevant for real
hardware? A case study of distributed constraint algorithms,” in Proceedings of the Eighteenth
Annual ACM Symposium on Applied Computing, Mar. 2003

• Aim was to do efficient and optimal resource allocation in sensor networks
so as to track a particular target.

• Applied a particular distributed resource allocation algorithm (Adopt-
SC) developed for an abstract coordination problem in a real hardware
application.

• Probabilistic representation of resources and tasks, to deal with uncertainty
and dynamics.

• Task uncertainty, real-time constraints and tast dynamism are the “domain
details” dealt by using a two-layer architecture.

Intelligent Systems Laboratory Autonomic Computing – 21/34



Presentation Outline
• Introduction

– What is Autonomic Computing ?

– What is an Agent ?

– MAS & DAI

– Why MAS & DAI ?

– Issues in MAS

– Distributed CSP / COP

– Agent Oriented Programming / Environments

• Related Work / Literature Survey

• Solution Approaches

– Resource Allocation
– Sensor Networks

– Distributed Breakout

– Partial Constraint Satisfaction

• Conclusions and Future Work

Intelligent Systems Laboratory Autonomic Computing – 22/34



Solution Approaches - Resource Allocation

A distributed resource allocation problem can be represented as a triple
< Ag, ω, θ > where:

– Ag = {A1, A2, . . . , An} is a set of agents

– ω = {O1
1, O

1
2 . . . , Oi

p, . . . , O
n
q } is a set of operations, where operation Oi

p

denotes the pth option of agent Ai.

– θ = {T1, T2, . . . , Tn} is a set of tasks, where each task T ∈ θ is a set of sets
{t1, t2, . . . , tn} and each ti ∈ T is a set of operations. Each ti is called a
minimal set.

Intelligent Systems Laboratory Autonomic Computing – 23/34



Contd . . . Solution Approaches- Resource Allocation/Sensor Networks 1

Sensor networks are the ideal domain for application of resource allocation
algorithms/constraint satisfaction/optimization techniques.

As computer networks (and computational grids) become increasingly
complex, the problem of allocating resources within such networks, in a
distributed fashion, will become more and more of a design and implementation
concern . . . V. Lesser, C. L. Ortiz, and M. Tambe, Eds., Distributed Sensor Networks: A Multiagent Perspective. Kluwer

Academic Publishers, 2003

Hence techniques applied to solve sensor network problems(using simple
Doppler radar sensors/DARPA challenge problem) can easily be extended to
apply computer systems. The major change is in the kind of abstractions that
are applied to the real-world problem.

1Work being done along with Ted

Intelligent Systems Laboratory Autonomic Computing – 24/34



Solution Approaches - Distributed Breakout

• The breakout algorithm is an iterative improvement algorithm

• All variables have tentative initial values

• Each constraint is assigned a weight(initally 1)

• The flawed solution is revised by using a hill-climbing search

• Occasionally they will be trapped in a local-minima

• The summation of the weights of violated constraints is used as an
evaluation function

Intelligent Systems Laboratory Autonomic Computing – 25/34



Contd . . . Solution Approaches - Distributed Breakout

When trapped in a local-minimum, the breakout algorithm increases the
weight of violated constraints in the current state by 1 so that the evaluation
value of the current state becomes larger than those of the neighboring states.

procedure breakout
until current-state is solution do

if current state is not a local-minimum
then make any change of a variable value that
reduces the total cost

else increase weights of all current nogoods
end if; end do;

Intelligent Systems Laboratory Autonomic Computing – 26/34



Contd . . . Solution Approaches - Distributed Breakout

2 problems while applying the procedure breakout to distributed
CSP’s:

• If 2 neighboring agents are allowed to change their values at the same
time(to make use of parallelism), the evaluation value may not be improved,
and oscillations may occur.

• To detect that the agents as a whole are stuck in a local-minimum, agents
have to exchange global information among themselves.

These problems can be solved by the following ideas:

• Only that agent among the neighboring agents, which can maximally
improve the evaluation value is given the right to change its value.

• Each agent instead detects that it is in a quasi-local-minimum, which is a
weaker condition and requires local communication only.

Intelligent Systems Laboratory Autonomic Computing – 27/34



Contd . . . Solution Approaches - Distributed Breakout

NOTES:

• The agents exchange ok? and improve messages amongst their neighbours
iteratively.

• A termination counter is maintained to detect termination of algorithm. If its
value is d, it means that every agent whose distance from agent xi is within
d satisfies all its constraints.

• When termination counter of some agent becomes equal to max distance,
agents terminate the execution of the algorithm.

• Most CSP algorithms can be converted to COP algorithms. For example, in
the above an appropriate cut-off(value of max distance) would do the trick.

• Other DCSP algorithms such as ‘asynchronous backtracking’ and
‘asynchronous weak-commitment search’ work in a similar manner.

Intelligent Systems Laboratory Autonomic Computing – 28/34



Solution Approaches - Partial Constraint
Satisfaction

When real-life problems are modelled as a CSP, the resulting CSP is often
over-constrained and almost all conventional CSP algorithms do not produce a
solution.

A partial CSP is formall described as:

< (P,U), (PS,≤), (M, (N,S)) > (3)

• P is an original CSP

• U is a set of ‘universes’

• (PS,≤) is a problem space, where PS is a set of CSP’s and ≤ is a partial order over PS

• M is a distance function over the problem space

• (N, S) are necessary and sufficient bounds on the distance between P and some soluble
member of PS

Intelligent Systems Laboratory Autonomic Computing – 29/34



Contd . . . Solution Approaches - Partial Constraint Satisfaction

Extensions:

• Maximal CSP’s

• Hierarchical CSP’s - Constraints are divided into several groups, which are
ordered according to the importance value of constraints within them

• Soft and hard constraints

• Weighted CSP’s - Each constraint has a weight. Become similar to what we
discussed before

Intelligent Systems Laboratory Autonomic Computing – 30/34



Solution Approaches - Other approaches

1. Market Based Approaches, Auctioning, Contract Net Architecture,
Blackboard systems

2. Methods of modelling Agent Architectures - Reactive, BDI (Belief Desire
Intention), Layered etc.

3. Distributed planning and problem solving techniques

4. Learning techniques such as Q-Learning and Reinforcement learning in
general can be applied to MAS for iterative performance improvement.

5. Learning from own and other agents experience.

Intelligent Systems Laboratory Autonomic Computing – 31/34



Presentation Outline
• Introduction

– What is Autonomic Computing ?

– What is an Agent ?

– MAS & DAI

– Why MAS & DAI ?

– Issues in MAS

– Distributed CSP / COP

– Agent Oriented Programming / Environments

• Related Work / Literature Survey

• Solution Approaches

– Resource Allocation
– Sensor Networks

– Distributed Breakout

– Partial Constraint Satisfaction

• Conclusions and Future Work

Intelligent Systems Laboratory Autonomic Computing – 32/34



Conclusions and Future Work

• Viewing autonomic elements as agents and autonomic systems as
multiagent systems makes it clear that agent-oriented architectural concepts
will be critically important.

• Machine learning and specifically reinforcement learning lends itself well to
multiagent systems applied for autonomic applications.

• Simulation of autonomic components and systems, trying to model them in
the best possible manner along with abstracting them so as to be able to
apply problem solving techniques easily

• Identify real world constraints and issues in computer systems, which come
under the purview of problems autonomic computing aims to solve

• Working on applying DCOP algorithms to simulations of a particular Doppler
radar sensor networks

Intelligent Systems Laboratory Autonomic Computing – 33/34



www.ece.arizona.edu/∼chachra/autonomic
Username: isl
Password: autonomic

Intelligent Systems Laboratory Autonomic Computing – 34/34


